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Abstract— Power analysis attacks are a type of side-channel
attacks that exploits the power consumption of computing
devices to retrieve secret information. They are very effective
in breaking many cryptographic algorithms, especially those
running in low-end processors in embedded systems, sensor
nodes, and smart cards. Although many countermeasures to
power analysis attacks have been proposed, most of them
are software based and designed for a specific algorithm.
Many of them are also found vulnerable to more advanced
attacks. Looking for a low-cost, algorithm-independent solution
that can be implemented in many processors and makes all
cryptographic algorithms secure against power analysis attacks,
we start with register file, where the operands and results
of most instructions are stored. In this paper, we propose
RFRF, a register file that stores data with a redundant flipped
copy. With the redundant copy and a new precharge phase
in write operations, RFRF provides data-independent power
consumption on read and write for cryptographic algorithms.
Although RFRF has large energy overhead, it is only enabled
in the security mode. We validate our method with simulations.
The results show that the power consumption of RFRF is
independent of the values read out from or written to registers.
Thus RFRF can help mitigate power analysis attacks.

I. INTRODUCTION

In recent years, security has become an important issue
in the design of computer systems as more critical ser-
vices are provided over the Internet and many networked
devices communicate through wireless channels. Normally
cryptographic algorithms are used to provide basic security
functions such as confidentiality, authentication, and digital
signature. Therefore their security is vital to any security
mechanisms or protocols.

The security of cryptographic algorithms such as block
ciphers and public-key algorithms relies on the secrecy of
the key. Traditionally, when cryptanalysists examine the
security of a cryptographic algorithm, they try to recover
the secret key by observing the inputs and outputs of the
algorithm. Assuming this type of attack models, cryptologists
have made commonly-used cryptographic algorithms secure
against such attacks.

However, a real computing device not only generates the
outputs specified in algorithms but also inevitably produces
some other information such as timing and power. These
types of information, called side-channel information, can be
exploited in side-channel attacks to retrieve secret keys. Side-
channel attacks have successfully broken many algorithms
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that are secure under traditional attack models [4], [7], [8].
Mobile devices and sensor nodes that work in the field,
not protected by physical security mechanisms, are more
vulnerable to side-channel attacks.

Among all side channel attacks, power analysis, which
exploits the power consumption of a cryptographic system,
can be carried out easily. It is very effective in breaking
cryptographic algorithms [4], [7], [8]. In this type of attacks,
adversaries learn what operations are performed and what
data are processed by analyzing the power traces of compu-
tations. They can then figure out part or all of the bits in the
secret key.

A lot of work has been done on the countermeasures
against power analysis attacks. Many countermeasures stud-
ied software implementations, trying to make the power
consumption of a crypto system either random or identical
for different keys [4], [15]. The software countermeasures
usually only work for specific algorithms and have large
performance overhead. Very often, the countermeasures are
found vulnerable to more advanced attacks. For example,
randomized automata [15] for Elliptic Curve Cryptography
operations are found not secure and can be broken by many
new attacks [6], [13], [16], [19].

There are some hardware countermeasures [11], [12], [17].
The use of self-timed dual-rail logics is proposed in [11] to
provide protection to power analysis attacks. Dynamic and
differential logic is also employed in [17]. Both the two
logic styles can make the power consumption of logic gates
independent of the data values. One of the drawbacks of
these methods is large area and power overhead. The method
described in [12] compensates the power consumption of the
system with voltage and frequency scaling techniques and
an analog current injection circuit. However, besides large
power overhead, frequency scaling affects the performance
of software and may make the system vulnerable to timing
attacks. It should be pointed out that memory security is not
the primary focus of these above techniques.

Some other hardware countermeasures are at the archi-
tectural level [9], [10]. They randomize either the register
renaming [9] or the issue of instructions in the instruction
window [10] to make the power analysis attacks more
difficult. However, these methods may not fit well with the
low-end processors, which typically do not have register
renaming mechanism or large instruction window to support
out-of-order execution.

Despite the previous work, it is still desirable to study an
effective, low-cost, algorithm-independent countermeasure



Fig. 1. An example of a 32× 32 register file.

for general-purpose processors, especially for low-end pro-
cessors used in mobile devices or sensor nodes. Considering
the fact that most of current attacks exploit power traces
on memory and register accesses [1], [2], [14], in this
paper we study how to make register file resistant to power
analysis attacks. Admittedly, the register file is only one of
many modules that produce power information that can be
exploited. Improving the register file alone is not enough
to make a device secure against power analysis attacks.
However, the work on register file will help identify the
effective mechanisms that mitigate power analysis attacks
and hence can be extended to other components in the system
as well.

The organization of this paper is as follows. Section II
describes a typical register file in a processor core. Section III
presents our methods. Section IV validates our methods with
simulations. We conclude the paper in Section V.

II. VULNERABILITY OF REGISTER FILES TO POWER
ANALYSIS ATTACK

On-chip memories are a major source of power informa-
tion leakage that can be exploited in power analysis attacks.
In particular, the register file, most frequently accessed, con-
tributes a significant part to the power traces of computation.

Figure 1 shows the generic architecture of a conventional
register file. For illustration purpose we consider the register
file to comprise of 32 registers with 32 bits in each register.
The address decoder selects the target register cells accord-
ing to the register address and asserts the corresponding
wordlines. Each register cell is an SRAM cell with multiple
read/write ports [5] (2r/1w in this example). During a read
operation, the wordline WL r 1 or WL r 2 is asserted, and
the data stored in the selected register are evaluated by the
read bitlines. Upon a write operation, data can be written
from the write bitlines into the selected register. Typically,
read logic is implemented in dynamic CMOS circuits that are
precharged in the first half of the clock cycle and evaluated
and sensed in the second half of the cycle, whereas write
logic is in static circuits that are activated in the first half of

the cycle. Thus, this register file supports back-to-back read
and write operations with single-cycle latency.

While the average power consumption of a register file is
usually small, its frequent activities can generate substantial
transient responses that contribute to data-dependent power
traces. To illustrate, we consider the power consumption on
register bitlines, a dominant component in the power profile
of register file as bitlines typically have much larger parasitic
capacitance than bit cells. We will also consider capacitive
power consumption due to the high switching activities and
the small size of register files where the leakage power
is relatively small. During a register read, all read bitlines
are precharged to the supply voltage Vdd in the first half
of a clock cycle. During the next half of the cycle, some
read bitlines will be discharged if 0’s (or 1’s depending on
the read logic) are stored in corresponding bit cells. As a
result, the charging/discharging of the involved bitlines will
draw/release currents from the power supply. The power
consumption is data-dependent, as the number of 0’s in a
register determines the amount of the charging/discharging
current. For example, consider that registers R0 and R31 in
Fig. 1 are read at different clock cycles, and the data (32 bits)
stored in R0 and R31 are 0000 0000 and FFFF FFFF,
respectively (For convenience, we use eight hexadecimal
digits to denote 32 bits). All the 32 bitlines are discharged
when R0 is read, while there is no discharging current when
R31 is read. Such different activities can be observed from
the power traces and hence be exploited in power analysis
attacks. Similarly, during register write, 0 → 1 and 1 → 0
transitions are expected on the write bitlines and in bit cells,
which also contribute to the data-dependent power traces.
It is worth to notice that read and write operations induce
different data-dependent patterns on power traces. Since
write logic is typically implemented in static circuits, both
0 → 1 and 1 → 0 transitions can be observed on the write
bitlines during write access. On the other hand, as read logic
is usually designed with dynamic circuits that are precharged
to Vdd, only 1 → 0 transitions can be observed on the read
bitlines during the evaluation phase (the 0 → 1 transitions
can be observed during the precharge phase though).

III. REGISTER FILE WITH REDUNDANCY

As explained in section II, conventional register files are
vulnerable to power analysis attacks as the power consump-
tion is highly data-dependent. In this section, we propose a
method to make register files resistant to this kind of attacks.

A. Modified Register File

As power consumption is determined by the patterns of
0 → 1 and 1 → 0 transitions, one approach to protect
register file from power analysis is to make the number of
transitions independent of the data values accessed during
read and write operations. The proposed method exploits
this idea by introducing redundancy in the register file so
that each register access will always incur the same number
of transitions on the read and write bitlines. Specifically,
we introduce an additional register bank that is activated



Fig. 2. Modified Register File.

only when security programs are running. Data are stored
at two locations in the register file. One location has the
normal bit representation of the value and the other has the
complemented bits. Writing to a register updates the bits at
both locations. Reading from the register file also retrieves
values from both locations. The new register file will be
referred to as RFRF (register file with redundant, flipped
copies).

Figure 2 shows the design of RFRF. In comparison with
the conventional register file, RFRF comprises two identical
register banks. For example of a typical embedded processor,
each bank has 32 registers and each register has 32 bits. One
bank is used to store the original data values, referred to as
the original bank. The other bank, referred to as the redun-
dant bank, stores the complemented bits. For convenience,
we use Ri and Ri′ to denote the register i in the original
and redundant banks, respectively.

One may think that the proposed approach will intro-
duce large hardware overhead due to the additional register
bank. However, we expect this overhead to be well paid-off
for most embedded systems where protection from power
analysis is becoming a top priority. To reduce the power
overhead due to redundant reads and writes, we define two
operation modes for RFRF, normal mode and secure mode.
The redundant operations are enabled only when the system
is in the secure mode. In the normal mode, RFRF works
in the same way as a conventional register file. Thus, it
only consumes extra power in the secure mode for security
programs.

As shown in Fig. 2, in the normal mode the data
write data goes directly to the original bank, whereas the
redundant bank is shutdown by the signal secure mode
(secure mode = 1). Thus, only the original bank is accessed
and the register file works as a conventional one.

In the secure mode (secure mode = 0), both the origi-
nal and redundant banks are enabled. The redundant bank
performs write and read operations on the flipped bits of
write data. On a write, write data and its flipped bits are
simultaneously stored in the original and redundant banks,
respectively. On a read, both banks are accessed. The original
and flipped write data are read out from the register file,
where the corresponding read bitlines are evaluated by these
data. Both the original data and the flipped copy are written

to the pipeline registers, which are placed between pipeline
stages, although only the original data is used in the func-
tional units for further computations. Thus, the capacitive
load of the two read ports can match each other in order
to avoid power information leakage. Again, this capacitive
load of the flipped read-out does not incur power overhead in
the normal mode where the redundant register bank is shut
down.

B. Resistance to Power Analysis

We now discuss how RFRF enables data-independent
power consumption during read and write register accesses.

1) Read Operation: As discussed in section II, for a read
operation, the numbers of 1 → 0 transitions (during the
evaluate phase) and 0 → 1 transitions (during the precharge
phase) on read bitlines are determined by the number of 0
bits in the data being read out. It can be shown that in the
secure mode, the total number of 0’s in the original and
the flipped write data is always equal to W , where W is
the register width. Consider a register data with n bits of
0’s, where (0 ≤ n ≤ W ). In the secure mode, the register
in the original bank stores these 0’s and the corresponding
register in the redundant bank stores the flipped copy that
has (W − n) bits of 0’s. Thus, the total number of 0’s is
exactly W . One can consider that the modified register file
has a width of 2W bits and half of these bits are always 0.

Consider a specific example where W = 32, R0 =
0000 0001, and R0′ = FFFF FFFE. Among all the bits
in R0 and R0′ are there 32 0’s. During the read operation,
these 0-value bits will discharge the read bitlines. Note that
no matter what value R0 has, the number of discharged
read bitlines is always 32 when the flipped copy R0′ is also
included. Then, when the read bitlines are precharged, these
32 bitlines will be charged back to Vdd. Therefore, a read
access in the secure mode will always introduce an equal
number of 0 → 1 and 1 → 0 transitions that are data-
independent.

2) Write operation: For a write operation, things be-
come a little more complicated because the number of bit
transitions depends not only on the value being written to
the register but also on the value currently stored in the
register. Simply writing a redundant copy does not defeat
power analysis attacks. Even worse, it enlarges the power
variance among different data values and makes it easier for
adversaries to launch power analysis attacks.

Consider an example where R0 is 0000 0000 and will be
updated with 0000 0001. In the normal mode, there is one
0 → 1 transition in the original bank. In the secure mode, in
addition to this transition, there is one more 1 → 0 transition
in the redundant bank. In total, there are two bit transitions.
If the original value in R0 is FFFF FFFF instead, there will
be a total of 62 (= 2× 31) transitions. The redundant bank
actually doubles the number of transitions, making it easier
for adversaries to observe the power differences.

Therefore, we need to modify the write operation so that
its power consumption cannot be exploited. Inspired by the
precharge in read operations, which makes the discharging



Fig. 3. Modified write circuitry. (Dotted lines represent the modified write
bitlines. secure mode = 0 indicates the secure mode.)

power dependent only on the data value in the current cycle,
we add a precharge phase in write operations.

Figure 3 shows the modified write circuitry. In the fig-
ure, a signal precharge w, generated from secure mode
and precharge (the precharge control in read operations),
controls the precharge in write operations. In addition, an
inverter is added to prevent the write bitline from being
pulled down by a 0 in the cell. If the register file is in the
normal mode (secure mode = 1), the NMOS in dotted line
is open while the PMOS in dotted line is closed. The register
file works in the same way as a conventional implementation.
If the register file is in the secure mode (secure mode = 0),
however, the write bitline will be precharged in the first half
of the clock cycle by the PMOS. 0 will be written into
register that are selected by the write wordline, replacing
the old value. In the second half of the cycle, the PMOS is
closed and the NMOS is open. New data will be written into
the selected register.

With the precharge phase, RFRF has W 1 → 0 transitions
during the write precharge, and also exactly W 0 → 1
transitions when the new data is actually written into the
bit cells.

Let us look at the previous example again, in which
W = 32, R0 = 0000 0000, and R0′ = FFFF FFFF. Now
consider a write operation that updates R0 to 0000 0001
(and R0′ to FFFF FFFE). In the precharge phase, both R0
and R0′ are set to 0. Since the total number of 1’s in R0
and R0′ is 32, there are 32 1 → 0 transitions in total. In the
second half of the cycle, there is one 0 → 1 transition in R0
and 31 0 → 1 transitions in R0′. Thus, there is a total of 32
0 → 1 transitions in the second half of the cycle. No matter
what value R0 has, the number of bit transitions is the same.

Note that the additional overwriting operation introduces
energy overhead, but the overhead is confined in the secure
mode. In the normal mode, no precharge is performed and
RFRF behaves as a conventional register file.

Many processors require back-to-back write and read
accesses on the same register in the same cycle. However,

the write operations in RFRF will finish in the second half
of the clock cycle due to the introduced precharge phase.
(Note that finishing the writes in the first half or the second
half of the cycle does not have a necessary impact on the
processor performance.) To support back-to-back write and
read, a small circuit is needed to check whether the register
being written to is also being read at the same time and
bypass the written data to the read bitlines when necessary.

C. Support for the Modified Register File

As mentioned at the beginning of this section, we maintain
two operation modes, the normal mode and the secure mode,
to reduce the energy overhead. Accessing the redundant
bank and precharging write bitlines are only enabled in the
secure mode. Thus, we need to add a processor status bit
secure mode to indicate the operation mode of the register
file. In addition, new instructions need to be added to allow
the security applications to enter and leave the secure mode
and to allow the operating system to save and restore the
status bit.

When an application needs to perform a cryptographic
algorithm, it first enters the secure mode with the new
instruction that sets secure mode to 1. When the crypto-
graphic operation is done, the application leaves the secure
mode by setting secure mode to 0.

IV. SIMULATIONS

In this section, we use simulation to validate our design
and estimate the energy overhead. In simulations, we assume
a register file that has 32 registers of 32-bit each. The register
file has 4 read bit lines and 3 write bit lines. In order to
obtain supply current traces as accurately as possible, we
implemented the physical design of the register file in TSMC
0.18-µm process technology [18] and ran simulations at the
transistor level, considering parasitics with Spectre (a SPICE
simulation tool from Cadence [3]). The simulations ran with
a clock of 100MHz.

To validate our proposed technique, we first compare
RFRF with the conventional approach. Figure 4 shows the
transient supply current for a conventional register file.
Figure 4(a) shows the results for three read operations, each
reading a different register. The data in the three cycles
are 0000 0000, 0000 FFFF, and 0000 5555. The three
reads are performed through the same bit lines, which has the
value FFFF FFFF before the first read. The last downward
spike shown in Fig. 4(a) is the precharge for the next read.
Figure 4(b) shows the results for three write operations,
writing 0000 0000, 0000 FFFF, and 0000 5555 to the
same register that holds FFFF FFFF originally. The same
write bit lines were employed for all three write operations.
Figure 4(c) shows the results of performing two read op-
erations and one write operation per cycle for three cycles.
The operations are on different registers, but the data that
are read out or written to registers are same in each cycle.
The data in cycles 1, 2, and 3 are 0000 0000, 0000 FFFF,
and 0000 5555, respectively. From the figures, we can see



(a) One read per cycle (b) One write per cycle (c) Two reads and one write per cycle

Fig. 4. Supply current for conventional register file.

(a) One read per cycle (b) One write per cycle (c) Two reads and one write per cycle

Fig. 5. Supply current for RFRF.

(a) Conventional register file (b) RFRF in the normal mode (c) RFRF in the secure mode

Fig. 6. Transient power consumption for a read operation.

(a) Conventional register file (b) RFRF in the normal mode (c) RFRF in the secure mode

Fig. 7. Transient power consumption for a write operation.



that the power consumption of the conventional register file
is highly data-dependent.

In Fig. 5, we present the simulation results for RFRF
performing the same operations. Figures 5(a), (b), and (c)
show the results for reading one register, writing to one
register, and reading two register and writing to one register
in the same cycle, respectively. Figure 5(b) clearly shows
the precharges for write operations. It can be seen that the
power consumption of each type of operation is similar in
all three settings. Since the power consumption is indepen-
dent of data value, the proposed RFRF can mitigate power
analysis attacks. The access latencies of RFRF read and
write operations are only slightly increased from those of
the conventional register file, which are acceptable for low-
end processors vulnerable to power analysis attacks. Note
that although there is an additional precharge phase for the
write operations, performance is not degraded as long as the
writes can finish in the second half of the cycle and the
back-to-back write and read accesses are supported.

As mentioned in Section III, the improvement in security
comes at the cost of energy overhead. We compare the
average power consumption for the following three settings:
conventional register file, RFRF in the normal mode, and
RFRF in the secure mode. Figures 6 and 7 compares the
transient power consumption for read and write operations,
respectively. In the simulations, we assume that half of the
bits read from a register are 0 and that half of the bit cells
are switched during write operations. From the figures, we
can see that in the normal mode, RFRF consumes almost
the same amount of power as the conventional design, for
both read and write. In the secure mode, however, the power
consumption of RFRF is doubled for read operations. Be-
cause of the newly added precharge phases, write operations
consumes almost 3.6x power than the conventional design.
The overhead is large. Fortunately, the overhead is only for
the secure mode. The overall power overhead is determined
by how often and how long the specific workloads need the
system to stay in the secure mode.

V. CONCLUSIONS

In this paper, we propose RFRF, a register file that is
resistant to power analysis attacks. By storing a flipped copy
of data and adding a precharge phase for write operations,
RFRF has the same number of transitions on bitlines for all
read or write operations. We also validate our method with
simulations. The results show that the power trace of RFRF
is independent of data values. When combined with similar
solutions for other processor components, it is expected that
the proposed method can strongly protect the system from
power analysis attacks.

The overhead of RFRF mainly comes from the redun-
dant register bank and additional circuitry for the precharge
phase in writes and for the data bypassing during back-to-
back write and read. However, the overhead is considered
worthwhile as chip security is becoming a top priority in
most embedded systems. Future efforts will also be spent
on improving the cost-efficiency of the solution. To reduce

the power overhead, the RFRF has two working modes
where only security applications incur energy overhead for
the security enhancement.

It should also be pointed out that due to variations in
process, voltages, and temperature, as well as differences
in routing of the two register banks, the power consumption
may not always be absolutely independent on data values.
However, this effect is considered difficult to exploit for the
power analysis attacks. In the future, we will study more
efficient implementation of RFRF and incorporate the coun-
termeasures into on-chip cache and memory. Besides, RFRF
will also be studied for other purposes such as thwarting fault
analysis attacks and improving the reliability of devices.
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