Chord-based Key Establishment Schemes for
Sensor Networks

Fan Zhang, Zhijie Jerry Shi, Bing Wang
Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269

Abstract— Because of limited resources at sensor nodes,
sensor networks typically adopt symmetric-key algorithms
to provide security functions such as protecting commu-
nications between nodes. In order to use symmetric-key
algorithms, two nodes need to establish a secret session
key first. In this paper, we propose a novel chord-based
key establishment (CBKE) protocol that allows any pair
of nodes in a sensor network to establish a secret session
key. CBKE is a generalized deterministic key establishment
scheme that provides great flexibility for balancing memory
overhead, reliability, and communication cost. We analyze
the properties of CBKE and explore the performance trade-
offs using simulation.

1. Introduction

As sensor networks are adopted in more and more
applications, the security of sensor networks becomes
increasingly important because sensor nodes are deployed
in the field and communicated through wireless channels.
Many security goals are achieved through cryptographic
algorithms. Major types of cryptographic algorithms in-
clude symmetric-key and public-key algorithms. Typi-
cally, sensor networks adopt symmetric-key algorithms
since public-key algorithms are computationally expen-
sive while sensor nodes have limited computational ca-
pability and battery energy. To use symmetric-key al-
gorithms, two sensor nodes need to agree on a secret
key first. This process is called key establishment (or
key exchange). While public-key algorithms are used to
perform key establishment in systems that have more
resources, it is desirable to perform key establishment in
sensor networks with symmetric-key algorithms, for the
same reasons described earlier.

In this paper, we focus on pairwise key establishment
that allows any two nodes in the network to agree on a
secret key, since pairwise communications are the most
common cases in sensor networks [13]. Existing pair-
wise key establishment schemes can be broadly classified
into the following four major categories: trusted-server-
based schemes, random key pre-distribution schemes,
deterministic key pre-distribution schemes, and location-
based schemes. Trusted-server-based schemes (e.g., [11])

use a trusted server as an arbiter to establish pairwise
keys between two nodes. Random key pre-distribution
schemes (e.g., [4], [5]) preload a set of keys chosen
from a global key pool into each node. Two neighboring
nodes share a common key with a certain probability. Two
nodes not presharing a key establish keys by finding a
path in the induced key-sharing graph (where two nodes
are connected if they share a key). The performance of
random key pre-distribution schemes can be improved by
using multiple key spaces (e.g., [3], [8]). Deterministic
key pre-distribution schemes pre-distribute keys in a de-
terministic manner. One extreme form of deterministic
key pre-distribution is full pairwise key pre-distribution
in which every pair of nodes share a unique key and each
node has to store many keys in its memory. The other
extreme is that all nodes preload a single key. PIKE [1]
is between these two extremes. It considers the node ID
space as a logical grid. Any two nodes in the same row or
column preshare a unique key; nodes not presharing a key
establish keys through intermediate nodes. Location-based
schemes (e.g., [2], [9], [14]) take advantage of location
information to improve key establishment.

Several other types of key establishment schemes are
proposed recently. For example, [10] proposes a self-
configuring scheme that adapts to the post-deployment
network topology and requires no location information
beforehand; [13] proposes a random perturbation-based
pairwise key establishment scheme that utilizes multiple
perturbed polynomials to establish keys between two
nodes directly.

In this paper, we propose a novel chord-based key
establishment (CBKE) protocol for pairwise key establish-
ment in sensor networks. CBKE is a deterministic key pre-
distribution scheme. It is very flexible and achieves a wide
range of performance trade-offs among memory overhead,
reliability, and communication cost. As we shall see,
existing deterministic key distribution schemes, including
full pairwise pre-distribution, single network-wide key
scheme, and PIKE, are special cases of our scheme. By
choosing parameters properly, CBKE can meet various
design goals. For example, in networks that require low

memory overhead, the proposed scheme can reduce the
number of preloaded keys to log, N 4 1, where N is the
number of nodes in a network.

The rest of the paper is organized as follows. Section 2
presents the CBKE scheme. We discuss its properties in
Section 3 and study performance trade-offs in Section 4.
After discussing several improvements in Section 5, we
conclude the paper in Section 6.

2. Chord-based Key Establishment Scheme

In this section, we first present the basic CBKE scheme
and then describe a generalized scheme.

2.1. Basic CBKE scheme

Since CBKE employs deterministic key pre-
distribution, we start with the key pre-distribution
process. We then describe the key establishment process
and a mechanism to improve reliability.

2.1.1. Key pre-distribution in basic CBKE: Consider a
sensor network of /N nodes. Node ¢ is assigned an ID of
i, ¢ =0,..., N — 1. For simplicity, we assume N = 2™.
So each ID is represented with m bits. Inspired by [12],
we consider that the nodes are arranged in a circle in
the order of their ID, which increases in a clockwise
direction. The distance between two nodes is defined
as the length of the shorter path along the circle from
one node to the other. The shorter path can be either
clockwise or counterclockwise. Let D(i,j) denote the
distance between nodes ¢ and j. It can be computed as
D(i,§) = min(i—7j, j—i)'. When preloading keys, we let
node i preshare a key with nodes i £20, ¢ +£2', ... i+
2m=2j 4+ 2m~1 That is, nodes 7 and j preshare a key
if and only if the distance between them is a power of
two, i.e., D(i,j) = 2% for some z € {0,...,m — 1}. Let
K; ; denote the key preshared by nodes ¢ and j. Then
K; ; = Kj ;. On the circle, we connect two nodes with a
chord if they preshare a key. During key establishment, a
session key is forwarded along the chords from a source
to a destination. So we name our scheme a Chord-based
Key Establishment (CBKE) scheme.

With the above key pre-distribution, each node shares
a unique key with 2m — 1 = 2logy N — 1 nodes. The
number of preloaded keys on each node can be reduced
to m + 1, using the method proposed in [6].

Fig. 1 shows an example of key pre-distribution for a
network of 16 nodes, in which node 0 preshares keys with
nodes 1, 2, 4, 8, 12, 14 and 15. In the figure, node O is
connected with each of these nodes with a chord.

Al computations involving node IDs are modulo N. For simplicity,
we do not indicate it explicitly.

Fig. 1. An illustration of key pre-distribution in CBKE (NN = 16).

2.1.2. Key establishment in basic CBKE: Suppose that
a source node s wants to establish a session key with a
destination node d. For this purpose, s first generates a
random key r. The key establishment process is basically
forwarding the key to d through a secure path. Let k =
D(s,d), k; denote bit 7 in the binary representation of k,
and H (k) be the Hamming weight of k (i.e., the number
of 1’s in k’s binary representation). Since nodes s and d
are not the same, k # 0 and H (k) > 0. We now describe
the key establishment process, as summarized in Fig. 2.

Node s finds a node n; that is closer to d and preshares
a key with s. In particular, s randomly selects u such that
k, = 1 and computes n; = s = 2“. The operation, +
or —, depends on whether the shorter path from s to d
is clockwise or counterclockwise. If it is clockwise, +
is performed. Otherwise, — is performed. Since %k has
H(k) 1 bits and s may select any of these 1’s, s have
H (k) different choices for ni. We refer to these nodes,
which can be selected by s to forward the session key, as
descendants of s. It is clear that nq is closer to d than s
because D(ni,d) = D(s,d) — 2% < D(s,d). After n; is
selected, s sends (r,d) to n;. The message is encrypted
with K ,,,, which is the key preshared by s and n;.

After ny receives the encrypted message from s, it
recovers r and d with K ,,,. If n; is not the destination
node, it selects one of its descendants no and forwards
(r,d) to it. If no is not d either, it will repeat the process.
Since r gets closer to d after each hop, it will eventually
arrive at d.

Once d receives r, it sends an ACK message to s. The
ACK message can be (s,d, p) encrypted with r, where
p is a random value generated by d. If s can retrieve
s and d with r from the ACK message, it assumes that
d has received r successfully. Then it can start a secure
communication session with d.

We refer to a path along which a session key is
forwarded securely from s to d as a logical path. On a
logical path, a node and its descendant form a logical hop

At the source node s:
Generate a session key r
k= D(S, d) = (kmfl, ey ko)g
Randomly choose u such that k,, = 1
if s is closer to d clockwise
Compute n; = s + 2"
else
Compute n; = s — 2"
Encrypt (r,d) using key Ks n,
Send the encrypted message to node 71

At an intermediate node or the destination node n;:
Decrypt the received message to recover (r, d)
if (n; # d) { // Not the destination

k= D(ni, d) = (km_l, ceey ko)z
Randomly choose u such that k, =1
if m; is closer to d clockwise
Compute n;11 = n; + 2%
else
Compute n;11 = n; — 2%
Encrypt (r,d) using key Kn;n,,,
Send the encrypted message to node n;41

else { // At the destination
Generate a random value p
Encrypt (s, d, p) with r
Send the encrypted (s,d, p) to s

}

Fig. 2. Basic CBKE scheme: node s establishes a session key with
node d.

since they are not necessarily neighboring nodes in the
physical network. Two nodes on a logical hop preshare a
key, which is used to protect key forwarding messages. A
logical path is only used for key forwarding — the ACK
message is sent directly from d to s; after the session key
is established, the secure communications between s and
d also take a direct path.

We illustrate the basic scheme with an example shown
in Fig. 3. Suppose N = 256 and node 0 wants to send
a session key r to node 83. The distance between the
two nodes is kK = D(0,83) = 83 = 010100115. Since
H(k) = 4, node 0 has four descendants: nodes 64 =
0+26,16=0+2%2=0+2', and 1 = 0+ 29, where
the exponents 6, 4, 1, and O are the position of 1’s in
k. Node 0 randomly picks one of the descendants, say
node 64, and forwards r and the destination ID 83 to it.
The message is protected with key Ko g4. After receiving
and decrypting the message, node 64 finds out that it is
not the destination. It then forwards the message to one
of its descendants (nodes 65, 66, and 80). This process
continues until node 83 receives r.

2.1.3. Utilizing multiple logical paths: In the basic
CBKE scheme shown in Fig. 2, a session key is forwarded
along a single logical path from s to d. A single path,

Fig. 3. Logical paths from source 0 to destination 83.

however, does not provide sufficient reliability for key
establishment if nodes may fail. As we see in Fig. 3,
many logical paths can be utilized to forward a key from
s to d. Forwarding a session key simultaneously through
multiple logical paths improves reliability. The key can
reach the destination node even if all but one logical path
are broken.

We introduce a parameter ! to our basic scheme and
allow a node to forward a session key to [descendants si-
multaneously. In particular, a node n; forwards the session
key to min(l, H(D(n;,d)) descendants simultaneously.
The message to each of the [descendants is protected
by the unique key preshared by n; and its descendants.
A descendant may receive the same session key multiple
times due to the overlaps among logical paths, but it only
forwards the key once.

When [= 1, only a single logical path is used to
forward the session key from s to d, as illustrated in
Fig. 2. When not restricting [, i.e., a node forwards the
key to all its descendants, the CBKE scheme works in
the flooding mode. There is a clear trade-off in choosing
l: a large [improves the reliability of key establishment
while increasing communication cost. We will explore the
trade-offs in Section 4.

We again use the example in Fig. 3 to illustrate
forwarding along multiple paths. Suppose ! = 2. Each
node forwards the session key to up to two descendants.
Source node O randomly chooses two nodes from its
four descendants, nodes 64, 16, 2, and 1. Suppose nodes
64 and 16 are selected. Node O forwards the session
key to these two nodes simultaneously. The message to
node 64 is encrypted with K4 and the message to
node 16 is encrypted with Ko 6. After receiving the
(encrypted) session key, node 64 chooses two descendants
from nodes 65, 66 and 80. Nodes 16 also chooses two
of its descendants randomly. Note that node 80 is a
descendant for both nodes 64 and 16. It may receive the
session key twice, but it only forwards the key once. Since

the session key is forwarded along multiple paths, it can
reach the destination node 83 even if some nodes (e.g.,
node 16) fail.

To reduce communication cost, multiple logical paths
can be utilized in a different way. They do not have to
be involved in forwarding simultaneously. Instead they
can be utilized in series or in a combination of parallel
and series. The source node s can keep trying to forward
a session key to d with a certain [that incurs less
communication cost (e.g. [= 1 or [= 2) until the key
is successfully sent or a predetermined number of trials
is reached. When [= 1, the multiple logical paths are
tried in series. Since each time the descendants involved
in forwarding are randomly chosen, it is very likely that
different logical paths are taken at different times. This
method can achieve similar reliability as trying multiple
logical paths simultaneously with a larger I. However,
it requires other mechanisms such as ACK messages or
time-out to detect failed attempts.

2.2. Generalized CBKE scheme

In the basic CBKE scheme, we consider k as a binary
number and change a 1 bit to O after each logical hop
when forwarding the session key from s to d. We can
generalize the scheme by representing k as a radix 2°
number, where b > 1, and changing a non-zero digit
of k£ to 0 when forwarding the session key to d. In the
generalized CBKE scheme, H (k) represents the number
of non-zero digits in k.

Key pre-distribution. When the radix is 2°, k can be
represented with g digits (kg—1,kg—2,..., k1, ko), where
g = [m/b]. Each digit k;, i = 0,...,9 — 1, has 2°
different values. Two nodes preshare a key if their distance
is ax 2% where 0 < a <20 and 0 < i < g. In other
words, if the distance between two nodes has only one
non-zero digit, they preshare a key.

Because k has g digits and each digit has 2° — 1 non-
zero values, a node needs to establish a unique key with
2% (2°—1) x (g— 1)+ (2° — 1) nodes. Using the method
proposed in [6], each node needs to store (2°—1) x g+1 =
(2° — 1) x [m/b] + 1 keys.

We use an example to illustrate key pre-distribution
in the generalized CBKE scheme. Suppose N = 256 and
b = 2. The distance between two nodes can be represented
with a 4-digit radix-4 number. Node O preshares a unique
key with 21 nodes, which are listed in Table 1. In the table,
we use a subscript 4 to indicate radix-4 numbers. We also
group the nodes according to the position of the non-zero
digit in their distance to node 0. In general, the nodes
presharing a key with a particular node can be divided
into g groups as k has g digits.

Table 1. Nodes presharing a key with node 0 (N = 256,b = 2).

Distance to node 0 Node IDs Group
00014 =1 1 and 255

00024 =2 2 and 254 1
00034 = 3 3 and 253

00104 =4 4 and 252

00204 = 8 8 and 248 2
00304 = 12 12 and 244

01004 = 16 16 and 240

02004 = 32 32 and 224 3
03004 = 48 48 and 208

10004 = 64 64 and 192 4
20004 = 128 128

Fig. 4. Logical paths from source 0 to destination 83 (b = 2).

Key establishment. The key establishment process in the
generalized CBKE is similar to the process in the basic
CBKE, which is shown in Fig. 2. The only difference
is that at each hop, a node n; randomly selects a non-
zero digit k, in k& = D(n;,d) and compute n;1; =
n; + ky x 2% Similarly, + is performed if n; is closer
to d clockwise. Otherwise, — is performed. After each
logical hop, one of the non-zero digits in k is changed to
0. Consequently, a logical path has at most g hops. On
average, the larger b is, the shorter logical paths we have.

As in the basic CBKE scheme, we can use [to control
the number of descendants to which a node may forward
a session key. Also, the mutliple paths can be utilized in
parallel, in series, or in a combination of both.

We use the example in Fig. 4 to illustrate the gener-
alized CBKE scheme. Suppose N = 256, b = 2,1 =1,
and node 0 wants to send a session key 7 to node 83.
The distance between the two nodes is k = D(0,83) =
83 = 11034. Since k has three non-zero digits, H (k) = 3.
Node 0 has three descendants: nodes 3, 16, and 64. It
randomly picks one of the descendants, say node 3, as
the next node on the logical path. After node 3 receives
r, it selects either node 67 or node 19 as the next node,
which then forwards r to node 83. Because of the larger
radix, a logical path now has only three hops, instead of
four hops in the case shown in Fig. 3.

Relationship to existing deterministic schemes. We
remark that several existing deterministic schemes are
special cases of CBKE. The full pairwise scheme is
CBKE with b = m, where each pair of nodes preshare a

unique key. PIKE [1] is essentially a CBKE scheme with
b = m/2, where each node prestores O(v/N) keys and
each logical path contains two logical hops. When nodes
in a group share the same key, CBKE with b = m has
a single group and all nodes share the same key, which
becomes the single-key predistribution scheme.

3. Properties of CBKE Schemes

We next describe several properties of the CBKE
schemes. Recall that k£ = D(s,d), where s is the source
node and d is the destination node. We consider k as a
radix 2° number and H (k) is the number of non-zero
digits in k.

Memory overhead. As mentioned earlier, the number of
preloaded keys into each node is (2° — 1) x [m/b] + 1,
where m is the number of bits required to represent a
node ID. Therefore, the memory overhead increases with
b.

Length of a logical path. When the session key is
forwarded from s to d, the number of non-zero digits in
k is reduced by one after each logical hop. Eventually the
distance becomes 0 at d. Therefore, a logical path from
s to d has H(k) logical hops. With a larger radix, k has
fewer digits. On average, H (k) is reduced and so is the
length of logical paths.

Number of logical paths and hops. There are more than
one logical path from s to d if H(k) > 1. We now
compute the total number of logical paths that can be
used for key establishment. Let S denote the set of nodes
that may participate in forwarding and S; denote the set
of nodes in S whose distance to s has ¢ non-zero digits,
i =0,...,H(k). In particular, Sy = {s}, Sgu) = {d}.
Starting from Sy, the session key is forwarded to a node
in S, and then to a node in S5, and so on. Consider a
node n; € S;. We have D(n;,d) = H(k) — i. Therefore,
node n; has H(k) — i descendants, all of which are in
Si+1. Node n; has (H(k) — i) choices when selecting a
descendant in S;;1. For example, s has H(k) choices.
And a node in S; has H(k) —1 choices. Hence, the total
number of logical paths from s to d is

H(k)—1
I1 (Hk) =) =HE)
=0

The number of nodes in set S; is (H Ek)) because 4 out
of H(k) non-zero digits in k have changed to 0 for a node
in S;. Combining with the previous observation that each
node in S; has H(k) — 4 different ways to reach nodes

in S;4+1, we obtain the total number of logical hops that
may be used in forwarding as

H(k)—1

> (H(k) - i) (Hik)) = H(k)2H®~1,

i=0

We now look at some examples. In Fig. 3,0 =1, Sy =
{0}, 51 = {1,2,16,64}, So = {3,17,18,65,66,80},
S3 = {19,67,81,82}, and S, = {83}. Each logi-
cal path from node 0 to node 83 contains H(k) =
H(010100112) = 4 logical hops. The total number of
logical paths from node 0 to node 83 is H(k)! = 4! = 24.
The total number of logical hops is H(k)2H()—1 —
4x2% =32.InFig. 4,b =2, Sy = {0}, S; = {3,16, 64},
Sy = {19,67,80}, and S3 = {83}. Each logical path
from node 0 to node 83 has H(k) = H(11034) = 3
logical hops. The total number of logical paths from node
0 to node 83 is H(k)! = 3! = 6. The total number of
logical hops is H (k)27 () =1 =3 x 22 = 12.

Summary. In summary, when b increases, the memory
overhead increases, while, on average, the length of a
logical path and the total number of logical paths decrease.
If we assume that nodes in a network are uniformly dis-
tributed and node failures are also uniformly random, then
each logical hop contains a similar number of physical
hops and has a similar propability to break. Therefore, on
average, a shorter logical path incurs less communication
cost and provides better reliability. However, when a
logical path is short, the total number of logical paths from
a source to a destination is also small, which limits the
number of logical paths that can be used simultaneously
for key establishment, and hence limits the degree of
reliability that can be achieved. In Section 4, we will
study how the choice of b affects communication cost
and reliability in detail.

4. Performance Trade-offs

In this section, we explore how the choices of b and
[affect the memory overhead, reliability, and commu-
nication cost of CBKE. The memory overhead is the
number of keys that need to be preloaded into a sensor
node. The reliability is the probability that a pair of
nodes can establish a session key successfully when
nodes may fail. The communication cost is the average
number of messages transmitted in the network for a key
establishment.

We assume a network of N = 4096 nodes. Thus m =
logy N = 12. The transmission range of a node is one unit
and the node density is 20 nodes per square unit. We adopt
GPSR [7] as the routing protocol in the physical network.

140
120 2

100
80
60 -
40 -
20 A

Memory overhead

Fig. 5. Memory overhead.

We set b and [to a wide range of settings: b= 1,2,... 6,
and [= 1,2, 3 and unlimited (i.e., in the flooding mode).
Note that when b = 6, CBKE becomes PIKE [1].

We first compare the memory overhead for different
choices of b. As we discussed in Section 2.2, the number
of preshared keys on each node is (2° — 1) x [m/b] +
1, which increases as b. In particular, when b = 1, the
number of preshared keys is O(logy N); when b = m/2,
the number of preshared keys is O(v/N). Fig. 5 plots
the memory overhead for various values of b. We observe
that, as b increases from 1 to 6, the number of preloaded
keys first increases gradually and then increases sharply.
Therefore, when memory is a stringent constraint, it is
desirable to choose smaller values of b.

We now explore how the values of b and [affect the
reliability and communication cost of CBKE. We set node
failure rate, p, to values between 0.1 and 0.5, with an
increment of 0.1. For each value of p, we randomly choose
10, 000 pairs of alive nodes in the network and establish
keys for each pair. We then obtain the average reliability
and communication cost over all the pairs.

Fig. 6(a) and (b) plot the average reliability and com-
munication cost for p = 0.3. We observe that when [= 1,
that is, when using a single path from a source to a
destination for key establishment, the average reliability
increases significantly with b. This is because larger
values of b lead to shorter logical paths and thus to
higher probabilities of successful key establishments. As [
increases from 1 to 2, the average reliability for all values
of b increases significantly, indicating the effectiveness of
using multiple paths to increase reliability. When [= 3,
we observe that the average reliability decreases with b.
This is because when | = 3, more logical paths can be
utilized for key establishment for small values of b and
hence result in good reliability. As b increases, the number
of logical paths that can be utilized for key establishment
decreases significantly. Although each logical path is more
likely to be successful, the overall reliability decreases
because of the small number of logical paths. When not

limiting [, we observe a similar trend as when [= 3.
In Fig. 6(b), as expected, we observe that the average
communication cost decreases with b since the average
length of a logical path decreases as b increases. Further-
more, as [increases, the average communication cost may
increase significantly, especially when b is small, since a
much larger number of logical hops are involved in key
establishment.

We observe similar trends in reliability and communi-
cation cost for other values of p (0.1,0.2,0.4, and 0.5). In
general, the average reliability increases with b for small
values of [, and decreases with b for large values of [; the
highest reliability is achieved when b = 1 and not limiting
[, at the price of the highest communication cost.

In summary, we see a clear trade-off in memory over-
head, reliability, and communication cost when choosing
different values of b and [in CBKE. The best choices of
the parameters depends on the constraints of a specific
setting. For instance, one may determine b and [to
achieve the highest reliability for certain constraints of
memory overhead and communication cost. By tuning the
parameters of b and [, CBKE provides a wide range of
performance trade-offs among memory overhead, reliabil-
ity, and communication cost.

5. Further Improvements to CBKE

CBKE can be further improved in several ways. Due
to the space limit, we only briefly discuss a few of them
here. Further study is left as future work.

Resilience to compromise. In CBKE, a logical path from
s to d has H (k) hops, where H (k) is the number of non-
zero digits in k. Assume the probability of a node being
compromised is p. Then the probability of the session key
being compromised is 1—(1—p)(¥). As H (k) increases,
the probability that a session key is compromised in-
creases. To improve security, one can use a larger radix to
reduce the number of hops on a logical path, as discussed
in Section 2.2. Alternatively, s can send several secret
values to d over different paths. One needs to know all the
values to construct the session key. For example, s may
send two secret values to d, one through the clockwise
path and the other through the counterclockwise path.
The destination node d can construct the session key
by exclusive-or-ing the two values. Even if an adversary
compromises one or more nodes on one of the paths,
he cannot construct the session key. However, sending
multiple values increases communication cost. The trade-
off between security and communication cost is left as
future work.

=
o

0.9 .—-/:::T__./a
0.8
E 0.7 A
g 0.6 1 /
gg 05 -o- unlimited |

/ - |=3

0.4 / - |=2
0.3 / —|=1
0.2 .
1 2 3 4 5 6

(a) Reliability.

10000
-e-unlimited |
g - |=3
o =
S 1000 BN ==
i) -I=1
©
o
=
>
€ 100 ~
£
o
O 0\0\’\‘\‘\‘
10 T T . . .
1 2 3 4 5 6
b

(b) Communication cost.

Fig. 6. Reliability and communication cost, p = 0.3.

Choice of forwarding paths. In CBKE, the total number
of logical paths from s to d is H(k)!. For relatively small
H(k) (e.g., H(k) = 1 or 2), H(k)! logical paths may
not provide sufficient amount of path redundancy. More
logical paths can be utilized if one chooses additional
intermediate nodes. For instance, suppose s = 0, d = 6,
and b = 1. The current CBKE scheme provides only two
paths: (0,2,6) or (0,4,6). If both nodes 2 and 4 fail,
the session key cannot be forwarded to node 6. However,
it can be done through additional paths such as (0,8, 6)
and (0,1,5,6). The additional forwarding paths may also
reduce the length of logical paths. For example, when
b = 1, a logical path between nodes 0 and 7 has three
hops in the current scheme. A shorter path (0,8,7) can
be utilized to reduce communication cost.

Partial deployment. So far, we have assumed that the
number of nodes in the network is a power of two. In a
real deployment, the number of nodes in a network may
not be a power of two. A simple way to deal with this
problem is to consider undeployed nodes as failed nodes.
A more advanced deployment and forwarding scheme can
reduce communication overhead.

6. Conclusions

In this paper, we propose CBKE, a pairwise key
establishment protocol for large-scale sensor networks.
Compared to previously proposed schemes such as PIKE,
our scheme provides more flexibility to balance memory
overhead, reliability, and communication cost. We also
evaluated the trade-offs using simulation. In the future,
we plan to enhance CBKE in several ways such as

improving its resilience to compromise and achieving
better reliability with low communication overhead.

References

[1] H. Chan and A. Perrig. PIKE: Peer intermediaries for key
establishment in sensor networks. In IEEE INFOCOM, 2005.

[2] W. Du, J. Deng, Y. S. Han, S. Chen, and P. Varshney. A key man-
agement scheme for wireless sensor networks using deployment
knowledge. In Proc. IEEE INFOCOM, Hong Kong, March 2004.

[3] W.Du,J. Deng, Y. S. Han, and P. K. Varshney. A pairwise key pre-
distribution scheme for wireless sensor networks. In CCS, pages
42-51, New York, NY, 2003.

[4] L. Eschenauer and V. Gligor. Key management scheme for
distributed sensor networks. In CCS, pages 4147, 2002.

[5] A. Perrig H. Chan and D. Song. Random key predistribution
schemes for sensor networks. In IEEE Symposium on Security
and Privacy, pages 197-213, 2003.

[6] S. I. Huang. Adaptive random key distribution schemes for
wireless sensor networks. In Proceedings of the International
Workshop on Advanced Developments in Software and Systems
Security, 2003.

[7]1 B. Karp and H. T. Kung. GPSR: greedy perimeter stateless routing
for wireless networks. In MobiCom, pages 243-254, 2000.

[8] D. Liu and P. Ning. Establishing pairwise keys in distributed sensor
networks. In CCS, New York, NY, 2003.

[9] D. Liu, P. Ning, and W. Du. Group based key pre-distribution in
wireless sensor networks. In Wise, 2005.

[10] F. Liu and X. Cheng. A self-configured key establishment scheme
for large-scale sensor networks. In MASS, 2006.

[11] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar. SPINS:
Security protocols for sensor networks. In MobiCom, pages 189—
199, 2001.

[12] I. Stoica, R. Morris, D. L. Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer
lookup protocol for internet applications. In SIGCOMM, pages
149-160, San Diego, CA, 2001.

[13] W. Zhang, M. Tran, S. Zhu, and G. Cao. A random perturbation-
based scheme for pairwise key establishment in sensor networks.
In ACM MobiHoc, Montreal, QC, Candada, September 2007.

[14] L. Zhou, J. Ni, and C. V. Ravishankar. Efficient key establishment
for group-based wireless sensor networks. In Wise, 2005.

