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Abstract 

 
Elliptic curve cryptography (ECC) has been adopted 
in many systems because it requires shorter keys than 
traditional public-key algorithms in primary fields. 
However, power analysis attacks can exploit the power 
consumptions of ECC devices to retrieve secret keys. 
In this paper, we propose an efficient window-based 
countermeasure that is secure against existing power 
analysis attacks. Compared to previously proposed 
countermeasures, our method has low memory 
overhead, requiring only a table of w+1 entries for a 
window size of w bits.  It also has better performance 
than many algorithms that perform one point addition 
or subtraction for each bit in the scalar.  
 
1. Introduction 
 
Since Miller and Koblitz proposed the elliptic curve 
cryptography (ECC) in the middle 1980s, ECC has 
attracted a lot of attention because compared to 
traditional public-key algorithms working in a prime 
field, ECC algorithms provide equivalent security 
strengths with shorter keys. Smaller key sizes have 
many advantages including higher performance, 
smaller storage space, and lower energy consumption. 
These advantages are especially important to resource-
constrained systems. 

Many implementations of ECC algorithms have 
been found vulnerable to power analysis attacks. 
Power analysis is one type of side channel attacks that 
exploit the power consumptions of cryptographic 
devices to reveal the secret data used in cryptographic 
computations [3]. There are two main types of power 
analyses: Simple Power Analysis (SPA) [3] and 
Differential Power Analysis (DPA) [3]. SPA exploits 
the correlation between the power outputs and the 
operations. By observing power traces of 
cryptographic computations, adversaries can learn 
what operations are performed and then figure out part 
or all of the secret data. DPA exploits the relationship 

between power consumptions and values generated 
during computation. Adversaries collect a set of power 
traces and use statistical methods to check whether a 
specific value is generated during cryptographic 
computations. They can then deduce the secrets by 
observing how input data affect the watched value. 
Both of SPA and DPA can be utilized to attack ECC 
implementations.  

In this paper, we proposed an efficient window-
based countermeasure. To defeat SPA, we propose an 
extended signed binary form to represent all possible 
values in a window with the same Hamming weight. 
We adopt the random initial point and randomized 
projective coordinate techniques to defeat DPA 
attacks. The way we utilize the random initial point 
requires only one additional subtraction to compute the 
correct output. Our countermeasure is also secure 
against other attacks. Moreover, it requires a small 
amount of memory, e.g., much less than the methods 
proposed in [14][15], and has a better performance 
than the methods proposed in [9] [12].  

The rest of the paper is organized as follows. 
Section 2 describes the basic operations in ECC and 
reviews existing power analysis attacks on ECC and 
previous countermeasures. Then we present our 
countermeasure in Section 3 and discuss its security 
properties in Section 4. We conclude the paper in 
Section 5. 
 
2. Past work  
 
This section first gives a brief description of ECC 
operations and then discusses previous power analysis 
attacks on ECC and some existing countermeasures.  
 
2.1. Elliptic Curve Cryptography 
 
An elliptic curve can be defined over either a prime 
field or a binary field. Both have similar properties in 
terms of power analysis. Here we use elliptic curves 
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over a binary field to illustrate main operations in 
ECC. An elliptic curve over a binary field is defined 
by a bivariate cubic equation: 

.232 baxxxyy ++=+   (1) 
where a and b are constant, x, and y ∈ GF(2n). 

The points on an elliptic curve, together with a 
special point O called the point at infinity and an 
addition operation, form an abelian group [5]. If a 
point P = (x1, y1) ≠ O, –P = (x1, x1+y1). Given another 
point Q = (x2, y2) ≠ O and Q ≠ –P, the addition (x3, y3) 
= P + Q is defined as: 
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A subtraction can be performed with a negation 
followed by an addition, i.e., P – Q = P + (– Q). Since 
the negation of a point is fast, the performance of 
subtraction and additions is similar. 

A multiplication dP of a scalar d and a point P, 
referred to as a scalar multiplication, is defined as 
adding d copies of P together.  
 
2.2. Power analysis attacks of ECC and 

countermeasures 
 
Scalar multiplication is the basic operation in ECC 
algorithms. It can be performed with the binary 
algorithm BINALG as shown in Figure 1(a) where  
dl – 1 = 1 and l is the number of bits in d. In BINALG, 
point doubling 2Q is performed in every iteration 
while point addition Q + P is performed only when di 
= 1. BINALG is vulnerable to SPA [6]. Since point 
doubling and point addition are performed with 
different formulae (see Section 2.1), they have 
different power outputs. Adversaries can monitor the 
power traces of a device performing BINALG and 
identify the point addition and doubling operations. A 
doubling followed by an addition indicates a 1 bit and 
two consecutive doublings indicate a 0 bit. The 
adversaries can easily retrieve the value of the secret d.  

To make the algorithm SPA-resistant, one can 
remove the correlations between operations and data 
values. Coron [6] proposed a countermeasure 
BINALG′, as shown in Figure 1(b). The algorithm 
performs the point addition for every bit in d no matter 
whether it is 0 or 1. BINALG′ is secure against SPA. 
However, Coron discovered that it is vulnerable to 
DPA [6]. Oswald and Aigner further pointed out that 

any similar algorithms are also vulnerable to DPA 
attacks [4]. 

 

BINALG 
Input :       P and d 
Output:     Q = dP 
Q←P 
For i from l–2 to 0 do 
      Q←2Q 
      If di =1 then Q←Q+P 
Return Q 

BINALG′ 
Input:      P and d 
Output:   Q[0] = dP 
Q[0]←P 
For i from l–2 to 0 do 

Q[0]←2Q[0] 
Q[1]←Q[0]+P 
Q[0]←Q[di] 

Return Q[0] 

(a) Binary algorithm (b) Double-and-add algorithm 
 

Figure 1: Scalar multiplication algorithms 

Oswald and Aigner proposed two randomized 
automata (Automata 1 and 2) trying to thwart both 
SPA and DPA [4]. When performing a scalar 
multiplication dP, an automaton starts from the initial 
state and accepts the bits in d from the least significant 
bit. For every bit, the automaton performs proper 
operations and advances to the next state. In order to 
thwart power analysis attacks, random variables are 
introduced to decide some state transitions. As a result, 
the automaton travels through different states and 
performs different operations even if the scalar d 
remains the same. However both automata are not 
secure. Many attacks have been designed to attack 
randomized automata [1][2][7][8][16][17][18]. In [7], 
Okeya et al proposed an attack on Automaton 1. In [8], 
Han et al proposed an attack that can break both 
automata. In [1][2], an attack based on unique 
sequences was proposed, which can be extended to all 
randomized algorithms by exploiting the distribution 
of power outputs. In [16], Walter showed an efficient 
attack that requires only tens of traces. In [17][18], a 
general framework of attack was proposed, which can 
be applied to all randomized algorithms. 

Besides Oswald et al’s randomized algorithms, 
many other countermeasures have also been proposed 
[6][9][10][11][14][15]. In [6], Coron described three 
countermeasures that prevent DPA: (1) Randomizing 
the private scalar d. This method first computes d'= d 
+ kE, where k is a random number and E is the number 
of the points on the elliptic curve. Then Q = d'P = dP 
is computed. (2) Blinding the point P. This method 
adds a random point R to P and computes Q' = d 
(R+P). The final result is computed as Q = Q' – S, 
where S = dR. (3) Randomizing projective 
coordinates. This method represents a point P = (x,y) 
with projective coordinates (X, Y, Z) and the 
conversion is determined by a parameter θ, which can 
be randomly chosen.  
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In [22], Okeya et al discussed potential attacks to 
the first two methods proposed in [6]. In method 1, 
although k is randomly chosen, E is fixed for an 
elliptic curve. Computing the distribution of bits in d' 
can reveal corresponding bits in d. In method 2, the 
total number of possible values of R is too small 
because of the way R is computed. Goubin proposed 
Refined Power Analysis (RPA) attacks in [11], which 
can not be prevented by method 3. In RPA attacks, 
adversaries guess that a value c appears in d and 
choose special points P1 = c–1P0, where P0 is a point 
that has a coordinate of 0. The 0 coordinate remains as 
0 even if the point is represented with randomized 
projective coordinates. If the guess of c is correct, P0 
will be generated during the scalar multiplication, 
which can be detected from power traces because of 
the 0 coordinate. In [10], Akishita et al generalized 
Goubin’s work and designed the Zero-Value Point 
Attack (ZPA) which exploits special points that 
generate zero values in registers if the special points 
are used in a doubling or addition operation. Checking 
whether zero values are stored in registers, adversaries 
can learn whether a special point is generated during 
the multiplication and thus confirm whether the guess 
of c is correct or not. ZPA does not require that special 
points have a 0 coordinate. 

In [9], Mamiya et al pointed out that the attacks 
based on the zero-value points [10][11] can be 
prevented by forcing a point value check at the 
beginning of the scalar multiplication. Accordingly, 
they proposed a countermeasure BRIP that uses a 
random initial point R to resist DPAs. They add R to P 
and perform addition and subtraction for every bit in 
the scalar [6]. In [13], Yen et al proposed a chosen 
plaintext attack to Mamiya’s countermeasure for RSA. 
In [12], Kim et al proposed a countermeasure to Yen’s 
attack. The countermeasure requires additional random 
initial points that are not on the elliptic curve. It also 
performs an addition or subtraction for every bit.  

In [14][15], Okeya et al proposed a  
countermeasure based on width-w non-adjacent form 
(NAF). In the countermeasure, they utilize the SPA-
resistant fractional window method and randomly 
select the size of the partial window B where 0 < B < 
2w–1. However, since the window size is not large in 
many implementations, especially those on resource 
constrained devices, the choices of B are very limited. 
For large window sizes, their method has large 
memory overhead because it requires a table of 2w–1 + 
B entries. The memory requirements are exponential to 
the window size w. Furthermore, they focused on SPA 
attacks in the paper. They mentioned that randomized 
projective coordinates may be used to thwart DPA. 
However, as we discussed earlier, a simple adoption of 

randomized project coordinates may not be enough to 
defeat DPA attacks. 

 

3. The Proposed Countermeasure 
 
In this Section, we describe a new window-based 
countermeasure to power analysis attacks. Since 
randomized scalar multiplication algorithms are 
vulnerable to power analysis attacks [1][2][7][8][16] 
[17][18], we design a deterministic algorithm that 
performs the same operations and thus generates the 
same addition and doubling power traces in all runs. 
The power traces are also independent of the scalar 
value, so our algorithm is secure against SPA attacks. 
Furthermore, we adopt random initial points and 
randomized projective coordinates to thwart DPA 
attacks. 

In addition to security, we also try to achieve 
better performance. In a scalar multiplication, a point 
doubling is always performed for each bit in the scalar. 
However, the number of additions varies in different 
algorithms and fewer additions lead to better 
performance. As we shall see, the number of additions 
is dependent on the number of non-zero bits in the 
representation of the scalar.  Therefore, before 
presenting our countermeasure, we first discuss 
representations of a scalar and identify a representation 
to be used in the countermeasure.  
 
3.1. Representations of a scalar 
 
The performance of a scalar multiplication algorithm 
depends on the number of additions performed in the 
algorithm. For example, the number of additions 
performed in BINALG is the number of 1’s in d while 
in BINALG′, it is the total number of the bits in d. If d 
is randomly chosen, only half of the bits are 1. Hence, 
BINALG has better performance than BINALG′.  

Since a point subtraction is almost as fast as an 
addition, it can be used to achieve better performance. 
In general, we can represent an m-bit scalar d with a 
singed binary form: 

∑
−

=

=
1

0
2

m

i

i
idd  

where di ∈{−1, 0, 1} and m is the number of bits in d. 
For simplicity, we still call a digit in this form a bit, 
although it has three values.  

Representing d in a signed binary form, we can 
perform scalar multiplication similarly as in BINALG. 
The difference is that a subtraction is performed if di = 
−1. As a result, d is computed through a chain of 
additions, subtractions, and doublings. 
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Non-Adjacent Form (NAF) is a unique signed 
digital representation, in which non-zero digits are not 
next to each other. In this paper, we limit NAF to 
signed binary representations. In a NAF, two non-zero 
bits, 1 or –1, are separated by at least one 0. An 
important property of NAF is that its Hamming weight 
is minimal among all signed binary representations 
[20]. On average, half of the bits in binary 
representations are non-zero while in NAF, only one 
third of the bits are non-zero [20]. This implies that in 
a scalar multiplication, the total number of additions 
and subtractions is minimal if we represent d in NAF. 

Table 1 lists the NAF of numbers from 0 to 63. 
For convenience, we use 1  to indicate –1. In the table, 
column d gives a decimal value, column NAF is the 
NAF of the value, and column H is the Hamming 
weight of the NAF. Notice that the NAF needs one 
more bit than the binary representation.  

Table 1:  NAF of numbers from 0 to 63 

d NAF H d NAF H d NAF H d NAF H
0 0000000 0 16 0010000 1 32 0 1 0 0 0 0 0 1 48 10 1 0000 2 
1 0000001 1 17 0010001 2 33 0 1 0 0 0 0 1 2 49 10 1 0001 3 
2 0000010 1 18 0010010 2 34 0 1 0 0 0 1 0 2 50 10 1 0010 3 
3 000010 1  2 19 001010 1  3 35 010010 1  3 51 10 1 010 1 4 
4 0000100 1 20 0010100 2 36 0 1 0 0 1 0 0 2 52 10 1 0100 3 
5 0000101 2 21 0010101 3 37 0 1 0 0 1 0 1 3 53 10 1 0101 4 
6 00010 1 0 2 22 010 1 0 1 0 3 38 01010 1 0 3 54 100 1 0 1 0 3 
7 000100 1  2 23 010 1 00 1  3 39 010100 1  3 55 100 1 00 1 3 
8 0001000 1 24 010 1 000 2 40 0 1 0 1 0 0 0 2 56 100 1 000 2 
9 0001001 2 25 010 1 001 3 41 0 1 0 1 0 0 1 3 57 100 1 001 3 
10 0001010 2 26 010 1 010 3 42 0 1 0 1 0 1 0 3 58 100 1 010 3 
11 0010 1 0 1  3 27 0100 1 0 1  3 43 10 1 0 1 0 1  4 59 1000 1 0 1 3 
12 0010 1 00 2 28 0100 1 00 2 44 10 1 0 1 00 3 60 1000 1 00 2 
13 0010 1 01 3 29 0100 1 01 3 45 10 1 0 1 01 4 61 1000 1 01 3 
14 00100 1 0 2 30 01000 1 0 2 46 10 1 00 1 0 3 62 10000 1 0 2 
15 001000 1  2 31 010000 1  2 47 10 1 000 1  3 63 100000 1 2  

 
As we can see from Table 1, each number has a 

different Hamming weight and thus requires different 
numbers of additions and subtractions. Adversaries 
may exploit the information by SPA attacks.  

If a scalar has a large number of bits, there is a 
simple way to prevent SPA attacks. We can perform 
all doublings first, save the results in a table, and then 
perform additions or subtractions for each non-zero 
bit. Power traces of this method have a sequence of 
doublings followed by a sequence of additions or 
subtractions. Adversaries know the number of non-
zero bits in the representation, but do not know their 
locations. A problem with the method is the large 
memory overhead. 

To reduce memory overhead, we adopt a window 
method in which the bits in the binary representation 
of the large scalar are processed window by window. 
In each window, we deal with a much smaller value 
that has only a small number of bits. We use two 
techniques to prevent SPA attacks. The first one is 

performing all doublings first. The second one is to 
perform the same number of additions and subtractions 
for all possible values in a window. This means we 
need to represent the values in a window in signed 
binary forms that have the same Hamming weight.  

We first determine the smallest Hamming weight 
needed to represent all the values in a window. 
Suppose the window size is w. Then the value of the 
bits in a window is between 0 and 2w–1.  Let HMAX (x) 
be the largest Hamming weight of the NAF of integers 
between 0 and x, i.e.,  

{ }xyyHxH NAFMAX ≤≤= 0|)(max)(  

where H( yNAF) is the Hamming weight of y’s NAF. 
Consider a value y, 0 ≤ y ≤ 2w–1, we represent y in a 
signed binary form that has a Hamming weight equal 
to HMAX (2w–1). Table 2 lists the values of HMAX (2w–1) 
for w from 3 to 9.  

Table 2: Number of additions/subtractions in a window of size w 

W 3 4 5 6 7 8 9 

2w–1 7 15 31 63 127 255 511 

n= HMAX(2w–1) 2 3 3 4 4 5 5 

n/w 0.67 0.75 0.6 0.67 0.57 0.63 0.56 

 
If H( yNAF) = HMAX (2w–1), we can just use its NAF 

in the scalar multiplication. If H( yNAF) < HMAX(2w–1), 
we construct another signed binary form to represent y. 
We start from y’s NAF and increase the Hamming 
weight of the representation. The Hamming weight of 
a signed binary form can be incremented by replacing 
01 with 11 or 10 with 11 . The replacements can be 
done multiple times as long as 01  or 10 can be found.  

If no 01  or 10 can be found, we extend the 
signed binary form and add an extra bit to one of bit 
positions. As a result, a bit position may have two bits. 
The two bits will be denoted as {yi, e}, where yi is the 
bit value in the normal signed binary form and e is the 
extra bit. When computing with the extended signed 
binary form, two additions or subtractions need to be 
performed at the bit position that has two bits. Note 
that both bits at the same position are not zero. 
Otherwise, the extra bit can be removed. 

If we need to increase the Hamming weight by 
one but cannot apply the replacement method, we find 
a pair of bits yi+1 and yi such that yi+1yi = 10  (or 01 ). 
Then we change the pair of bits from 10 to 0{1,1} (or 
from 01  to 0{ 1 , 1 }). An extra bit is added to the 
position of yi and the values of yi+1 and yi are also 
changed. The Hamming weight of y’s representation is 
increased by one.  
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Now we look at the cases that we need to increase 
the Hamming weight by two or more. If the Hamming 
weight of a singed binary form of y is less than 
HMAX(2w–1), and 01 or 10  cannot be found, the least 
significant bit y0 must be 0. We change y0 to {1, 1 }. 
Doing this, we increase the Hamming weight of the 
representation by two. If necessary, the Hamming 
weight can be increased to a larger value with the 
replacement method.  

With the extended signed binary form, all 
numbers between 0 and 2w–1 may be represented with 
a form that has exactly HMAX (2w–1) non-zero digits. 
Thus exactly HMAX (2w–1) additions or subtractions are 
performed in each window. Table 3 shows that when w 
= 3, all the values between 0 and 7 can be represented 
in a form that has a Hamming weight of two. Notice 
that when d = 0, we change d0 to {1, 1 }. With the new 
representation, all the values in a 3-bit window require 
two additions and subtractions. 

Table 3: Representations of values in a window of 3 bits 

d NAF H Representations 
0 0000 0 000{1, 1 } 
1 0001 1 001 1  
2 0010 1 01 1 0 
3 010 1  2 010 1  
4 0100 1 1 1 00 
5 0101 2 0101 
6 10 1 0 2 10 1 0 
7 100 1  2 100 1  

 

 
3.2. Efficient window-based countermeasure 
 
We now describe our countermeasure. To perform a 
scalar multiplication dP, we divided the bits d into 
small groups (i.e. windows) of w bits. The bits in a 
window have a value between 0 and 2w–1, which can 
be represented in an extended signed binary form that 
has a Hamming weight of HMAX (2w–1). Thus for each 
window, we perform w doublings and HMAX (2w–1) 
additions and subtractions. Furthermore, we perform 
all doublings first and then perform additions or 
subtractions. To thwart DPA attacks, we adopt the 
random initial point and randomized projective 
coordinate techniques. 

In Figure 2, we illustrate the countermeasure with 
w = 3. The algorithm first checks whether P(x, y) is a 
valid point on the elliptic curve. It also checks whether 
P’s coordinate is zero, to thwart RPA attacks proposed 
in [11]. Then, it randomly chooses a point R as the 
initial value of Q. R is subtracted from Q at the end of 
the algorithm to generate the correct result. In addition, 
our countermeasure adopts randomized projective 

coordinates, which are decided by a random variable θ. 
Our countermeasure can adopt any projective 
coordinates such as homogeneous or Jacobian 
projective coordinates. At the end of the algorithm, 
projective coordinates are converted back to affine 
coordinates.  

After representing Q and P with projective 
coordinates, the algorithm adds leading 0’s to d so that 
the number of bits in d is a multiple of three because w 
= 3. Then, it processes the bits window by window 
from the lower end to the higher end. In each window, 
three doublings are performed to compute 2P, 4P and 
8P (in Step 10).  The results are stored in a table of 
four entries (T0, T1, T2, T3) = (P, 2P, 4P, 8P). 
Depending on the value of the three bits in the current 
window, two additions or subtractions are performed 
in Steps 12–19. As shown in Table 3, a number 
between 0 and 7 can be represented in a signed binary 
form with an extra bit which has a Hamming weight of 
two. The power output of a window is always 
DDDAA, where D indicates a doubling and A an 
addition. The power output of the algorithm looks like 
DDDAADDDAA…DDDAAA, where the last A is the 
subtraction in Step 24.  

 
 Window-Based Countermeasure (w = 3) 
  

Input: d, P=(x, y) 
Output: Q=dP 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

If P is not a valid point on the elliptic curve, return P; 
If x = 0 or y = 0, return P; 
Randomly select a point R on the curve and R≠P;   
Q = R;  
Randomly select θ; 
Represenet P and Q with projective coordincates determined by θ; 
Add leading 0’s in d so the number of bits in d is a multiple of 3; 
for (i = 0; i <= k–1; i += 3) { 
    T0  = P; 

for (j=1; j <=3; j++){ Tj = 2Tj-1};  
switch (di+2 , di+1, di)2 {  
    case 0:  Q = Q + T0,  Q = Q – T0, break; 
    case 1:  Q = Q + T1,  Q = Q – T0, break; 
    case 2:  Q = Q + T2,  Q = Q – T1,  break; 
    case 3:  Q = Q + T2,  Q = Q – T0,  break; 
    case 4:  Q = Q + T3,  Q = Q – T2,  break; 
    case 5:  Q = Q + T2,  Q = Q + T0,  break; 
    case 6:  Q = Q + T3,  Q = Q – T1,  break; 
      case 7:  Q = Q + T3,  Q = Q – T0; break; 
} 
P = T3; 

} 
Convert Q back to the affine coordinates; 
Q = Q – R; 
return Q; 

Figure 2: A window-based countermeasure with a windows size of 3 
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3.3. Performance and memory overhead 
 
When the window size is w, each window requires w 
doublings and n additions or subtractions, where n = 
HMAX (2w–1). On average, each bit needs one doubling 
and n/w additions or subtractions. In Table 2, the last 
row gives the n/w values for w between 3 and 9. We 
can see that n/w does not change much when w 
increases. As a result, we chose a small window size of 
three to illustrate our countermeasure. It requires one 
doubling and 2/3 additions and subtractions per bit. 
For comparison, BINALG requires one doubling and 
about 1/2 additions per bit and BINGALG′ requires 
one doubling and one addition per bit. 

The memory overhead of the algorithm is a table 
of w + 1 entries, which is linear to w. When w = 3, the 
table has only four entries. Other window-based 
algorithms such as [14][15] require a table size that is 
exponential to w. 
 
4. Security Analysis 
 
Security assumption. We assume that the power 
traces of additions and subtractions are similar and 
adversaries cannot tell whether an operation is an 
addition or subtraction from power traces. The 
subtraction of two points Q – P can be done in two 
steps: first compute –P and then perform a point 
addition Q + (–P). The negative of a point P = (x1, y1) 
≠ O is –P = (x1, x1 + y1) for a curve over a binary field 
and –P = (x1, – y1) for a curve over a prime field. 
Compared to point addition, the overhead of 
computing –P is small in both fields. So it is assumed 
in a lot of prior work such as [4] that the power 
consumption differences are negligible for addition 
and subtraction.  
 
SPA attacks. Since our countermeasure performs the 
same number of doublings and additions/subtractions 
for all windows, each window generates the same 
power output sequence. Hence, our countermeasure is 
secure against SPA attacks.  
 
DPA attacks. To prevent DPA attacks, we use the 
random initial point technique [9]. Here we use it in a 
different way. Instead of adding the random point R to 
P, we assign R to Q in Step 4. Since Q starts from a 
random point, the adversaries cannot predict the value 
of Q generated in Steps 12–19.  

Our countermeasure uses a 4-entry table to store 
the results of doublings. In order to defeat the attacks 
targeting the table, we adopt randomized projective 

coordinates. So the values stored in the table (T0, T1, 
T2, T3) are randomized. The attackers cannot predict 
the point values stored in the table and thus cannot use 
DPA to examine which entries are accessed in Steps 
12–19. 
 
RPA and ZPA attacks. To prevent RPA attacks that 
exploit special points that have a zero coordinate [11], 
we check the value of P at the beginning of the 
algorithm. 

In the ZPA attacks [10], adversaries guess whether 
a specific scalar c appears in d and feed a special point 
P to a scalar multiplication algorithm. If the guess is 
correct, cP is generated during the multiplication and 
causes that zero values are written into registers in 
later operations. In our countermeasure, cP is never 
explicitly computed because of the random initial point 
assigned to Q. The intermediate value kept in Q is cP 
+ R, represented with projective coordinates. Even if 
the guess of c is correct, cP + R does not cause zero-
value registers in later operations. 
 
Other attacks. In [13], Yen proposed a chosen 
plaintext attack to break the BRIP countermeasure for 
RSA. They mentioned that the attack may be extended 
to ECC as well. When applied to ECC, their attack 
requires a special point P such that 2P = O. With the 
special point, an attack can detect the least significant 
bit d0 by checking the result Q. However, they cannot 
detect other bits by checking the intermediate values of 
Q because the values are either R or P + R, none of 
which is O. So this attack cannot break our 
countermeasure.  

One may try to use timing attack to detect which 
case is executed in Steps 12–19. However, every case 
in Steps 12–19 can be reached by a single branch 
instruction in which the target address of each case is 
loaded from memory and stored in a register. This is a 
common way to implement switch statements in the C 
language. So the execution time of all branches is 
similar and can not be exploited in timing attacks. The 
risks can be further reduced by preloading instructions 
and the table into a cache. 

Our countermeasure is also secure against safe 
error attacks [21], which introduce a temporary 
random fault on the hardware. Part of the secret key 
can be revealed if the device generates the correct 
result even when a fault is injected. There are two 
types of safe errors. One is memory safe error which 
modifies some bits in the storage. The other is 
computational safe error, which is introduced in 
computational circuits such as ALU. For example, the 
computational safe error attacks can break BINALG′. 
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When a temporary computation error is introduced on 
Line 4 of BINALG′, the error causes the program to 
generate a wrong final result when di is 1. However, 
when di is 0, the wrong value is not propagated to later 
stages and the final result is correct. By examining the 
final result, adversaries are able to detect the value of 
di. In our window based countermeasure, however, an 
error is always propagated to the output. So our 
countermeasure is secure against computational safe 
error attack. Our countermeasure is vulnerable to 
memory safe error attacks because it needs a table 
stored in the memory and not all the entries of the table 
are used in Steps 12-19. This attack can be prevented 
by using memory with error correction code. 
Adversaries cannot tell whether an error is corrected 
by the error correction code or the faulty entry is not 
used.  
 
5. Conclusions 
 
In this paper, we propose an efficient window-based 
countermeasure for ECC. We proposed an extended 
signed binary form that can represent all possible 
values in a window with the same Hamming weight. 
Therefore, each window performs the same number of 
additions and subtractions, making our countermeasure 
secure against SPA attacks. We also adopt the random 
initial point and randomized projective coordinate 
techniques to defeat DPA attacks. In our 
countermeasure, both P and Q are randomized and 
only one additional subtraction is required to compute 
the correct output. Furthermore, our countermeasure 
has low memory overhead, requiring a small table size 
that is linear to the window size.  At the same time, our 
method provides good performance, performing about 
2/3 additions and subtractions per bit. 
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