

An Efficient Window-Based Countermeasure
to Power Analysis of ECC Algorithms

Fan Zhang and Zhijie Jerry Shi
Computer Science and Engineering Department

University of Connecticut, Storrs, CT 06269, USA

Abstract

Elliptic curve cryptography (ECC) has been adopted
in many systems because it requires shorter keys than
traditional public-key algorithms in primary fields.
However, power analysis attacks can exploit the power
consumptions of ECC devices to retrieve secret keys.
In this paper, we propose an efficient window-based
countermeasure that is secure against existing power
analysis attacks. Compared to previously proposed
countermeasures, our method has low memory
overhead, requiring only a table of w+1 entries for a
window size of w bits. It also has better performance
than many algorithms that perform one point addition
or subtraction for each bit in the scalar.

1. Introduction

Since Miller and Koblitz proposed the elliptic curve
cryptography (ECC) in the middle 1980s, ECC has
attracted a lot of attention because compared to
traditional public-key algorithms working in a prime
field, ECC algorithms provide equivalent security
strengths with shorter keys. Smaller key sizes have
many advantages including higher performance,
smaller storage space, and lower energy consumption.
These advantages are especially important to resource-
constrained systems.

Many implementations of ECC algorithms have
been found vulnerable to power analysis attacks.
Power analysis is one type of side channel attacks that
exploit the power consumptions of cryptographic
devices to reveal the secret data used in cryptographic
computations [3]. There are two main types of power
analyses: Simple Power Analysis (SPA) [3] and
Differential Power Analysis (DPA) [3]. SPA exploits
the correlation between the power outputs and the
operations. By observing power traces of
cryptographic computations, adversaries can learn
what operations are performed and then figure out part
or all of the secret data. DPA exploits the relationship

between power consumptions and values generated
during computation. Adversaries collect a set of power
traces and use statistical methods to check whether a
specific value is generated during cryptographic
computations. They can then deduce the secrets by
observing how input data affect the watched value.
Both of SPA and DPA can be utilized to attack ECC
implementations.

In this paper, we proposed an efficient window-
based countermeasure. To defeat SPA, we propose an
extended signed binary form to represent all possible
values in a window with the same Hamming weight.
We adopt the random initial point and randomized
projective coordinate techniques to defeat DPA
attacks. The way we utilize the random initial point
requires only one additional subtraction to compute the
correct output. Our countermeasure is also secure
against other attacks. Moreover, it requires a small
amount of memory, e.g., much less than the methods
proposed in [14][15], and has a better performance
than the methods proposed in [9] [12].

The rest of the paper is organized as follows.
Section 2 describes the basic operations in ECC and
reviews existing power analysis attacks on ECC and
previous countermeasures. Then we present our
countermeasure in Section 3 and discuss its security
properties in Section 4. We conclude the paper in
Section 5.

2. Past work

This section first gives a brief description of ECC
operations and then discusses previous power analysis
attacks on ECC and some existing countermeasures.

2.1. Elliptic Curve Cryptography

An elliptic curve can be defined over either a prime
field or a binary field. Both have similar properties in
terms of power analysis. Here we use elliptic curves

2

over a binary field to illustrate main operations in
ECC. An elliptic curve over a binary field is defined
by a bivariate cubic equation:

.232 baxxxyy ++=+ (1)
where a and b are constant, x, and y ∈ GF(2n).

The points on an elliptic curve, together with a
special point O called the point at infinity and an
addition operation, form an abelian group [5]. If a
point P = (x1, y1) ≠ O, –P = (x1, x1+y1). Given another
point Q = (x2, y2) ≠ O and Q ≠ –P, the addition (x3, y3)
= P + Q is defined as:

.)(
.

13313

21
2

3

yxxxy
axxx

+++=
++++=

λ
λλ

 (2)

where
12

12

xx
yy

+
+

=λ if P ≠ Q, or
1

1

1 x
x
y

+=λ if P = Q.

A subtraction can be performed with a negation
followed by an addition, i.e., P – Q = P + (– Q). Since
the negation of a point is fast, the performance of
subtraction and additions is similar.

A multiplication dP of a scalar d and a point P,
referred to as a scalar multiplication, is defined as
adding d copies of P together.

2.2. Power analysis attacks of ECC and

countermeasures

Scalar multiplication is the basic operation in ECC
algorithms. It can be performed with the binary
algorithm BINALG as shown in Figure 1(a) where
dl – 1 = 1 and l is the number of bits in d. In BINALG,
point doubling 2Q is performed in every iteration
while point addition Q + P is performed only when di
= 1. BINALG is vulnerable to SPA [6]. Since point
doubling and point addition are performed with
different formulae (see Section 2.1), they have
different power outputs. Adversaries can monitor the
power traces of a device performing BINALG and
identify the point addition and doubling operations. A
doubling followed by an addition indicates a 1 bit and
two consecutive doublings indicate a 0 bit. The
adversaries can easily retrieve the value of the secret d.

To make the algorithm SPA-resistant, one can
remove the correlations between operations and data
values. Coron [6] proposed a countermeasure
BINALG′, as shown in Figure 1(b). The algorithm
performs the point addition for every bit in d no matter
whether it is 0 or 1. BINALG′ is secure against SPA.
However, Coron discovered that it is vulnerable to
DPA [6]. Oswald and Aigner further pointed out that

any similar algorithms are also vulnerable to DPA
attacks [4].

BINALG
Input : P and d
Output: Q = dP
Q←P
For i from l–2 to 0 do
 Q←2Q
 If di =1 then Q←Q+P
Return Q

BINALG′
Input: P and d
Output: Q[0] = dP
Q[0]←P
For i from l–2 to 0 do

Q[0]←2Q[0]
Q[1]←Q[0]+P
Q[0]←Q[di]

Return Q[0]

(a) Binary algorithm (b) Double-and-add algorithm

Figure 1: Scalar multiplication algorithms

Oswald and Aigner proposed two randomized
automata (Automata 1 and 2) trying to thwart both
SPA and DPA [4]. When performing a scalar
multiplication dP, an automaton starts from the initial
state and accepts the bits in d from the least significant
bit. For every bit, the automaton performs proper
operations and advances to the next state. In order to
thwart power analysis attacks, random variables are
introduced to decide some state transitions. As a result,
the automaton travels through different states and
performs different operations even if the scalar d
remains the same. However both automata are not
secure. Many attacks have been designed to attack
randomized automata [1][2][7][8][16][17][18]. In [7],
Okeya et al proposed an attack on Automaton 1. In [8],
Han et al proposed an attack that can break both
automata. In [1][2], an attack based on unique
sequences was proposed, which can be extended to all
randomized algorithms by exploiting the distribution
of power outputs. In [16], Walter showed an efficient
attack that requires only tens of traces. In [17][18], a
general framework of attack was proposed, which can
be applied to all randomized algorithms.

Besides Oswald et al’s randomized algorithms,
many other countermeasures have also been proposed
[6][9][10][11][14][15]. In [6], Coron described three
countermeasures that prevent DPA: (1) Randomizing
the private scalar d. This method first computes d'= d
+ kE, where k is a random number and E is the number
of the points on the elliptic curve. Then Q = d'P = dP
is computed. (2) Blinding the point P. This method
adds a random point R to P and computes Q' = d
(R+P). The final result is computed as Q = Q' – S,
where S = dR. (3) Randomizing projective
coordinates. This method represents a point P = (x,y)
with projective coordinates (X, Y, Z) and the
conversion is determined by a parameter θ, which can
be randomly chosen.

3

In [22], Okeya et al discussed potential attacks to
the first two methods proposed in [6]. In method 1,
although k is randomly chosen, E is fixed for an
elliptic curve. Computing the distribution of bits in d'
can reveal corresponding bits in d. In method 2, the
total number of possible values of R is too small
because of the way R is computed. Goubin proposed
Refined Power Analysis (RPA) attacks in [11], which
can not be prevented by method 3. In RPA attacks,
adversaries guess that a value c appears in d and
choose special points P1 = c–1P0, where P0 is a point
that has a coordinate of 0. The 0 coordinate remains as
0 even if the point is represented with randomized
projective coordinates. If the guess of c is correct, P0
will be generated during the scalar multiplication,
which can be detected from power traces because of
the 0 coordinate. In [10], Akishita et al generalized
Goubin’s work and designed the Zero-Value Point
Attack (ZPA) which exploits special points that
generate zero values in registers if the special points
are used in a doubling or addition operation. Checking
whether zero values are stored in registers, adversaries
can learn whether a special point is generated during
the multiplication and thus confirm whether the guess
of c is correct or not. ZPA does not require that special
points have a 0 coordinate.

In [9], Mamiya et al pointed out that the attacks
based on the zero-value points [10][11] can be
prevented by forcing a point value check at the
beginning of the scalar multiplication. Accordingly,
they proposed a countermeasure BRIP that uses a
random initial point R to resist DPAs. They add R to P
and perform addition and subtraction for every bit in
the scalar [6]. In [13], Yen et al proposed a chosen
plaintext attack to Mamiya’s countermeasure for RSA.
In [12], Kim et al proposed a countermeasure to Yen’s
attack. The countermeasure requires additional random
initial points that are not on the elliptic curve. It also
performs an addition or subtraction for every bit.

In [14][15], Okeya et al proposed a
countermeasure based on width-w non-adjacent form
(NAF). In the countermeasure, they utilize the SPA-
resistant fractional window method and randomly
select the size of the partial window B where 0 < B <
2w–1. However, since the window size is not large in
many implementations, especially those on resource
constrained devices, the choices of B are very limited.
For large window sizes, their method has large
memory overhead because it requires a table of 2w–1 +
B entries. The memory requirements are exponential to
the window size w. Furthermore, they focused on SPA
attacks in the paper. They mentioned that randomized
projective coordinates may be used to thwart DPA.
However, as we discussed earlier, a simple adoption of

randomized project coordinates may not be enough to
defeat DPA attacks.

3. The Proposed Countermeasure

In this Section, we describe a new window-based
countermeasure to power analysis attacks. Since
randomized scalar multiplication algorithms are
vulnerable to power analysis attacks [1][2][7][8][16]
[17][18], we design a deterministic algorithm that
performs the same operations and thus generates the
same addition and doubling power traces in all runs.
The power traces are also independent of the scalar
value, so our algorithm is secure against SPA attacks.
Furthermore, we adopt random initial points and
randomized projective coordinates to thwart DPA
attacks.

In addition to security, we also try to achieve
better performance. In a scalar multiplication, a point
doubling is always performed for each bit in the scalar.
However, the number of additions varies in different
algorithms and fewer additions lead to better
performance. As we shall see, the number of additions
is dependent on the number of non-zero bits in the
representation of the scalar. Therefore, before
presenting our countermeasure, we first discuss
representations of a scalar and identify a representation
to be used in the countermeasure.

3.1. Representations of a scalar

The performance of a scalar multiplication algorithm
depends on the number of additions performed in the
algorithm. For example, the number of additions
performed in BINALG is the number of 1’s in d while
in BINALG′, it is the total number of the bits in d. If d
is randomly chosen, only half of the bits are 1. Hence,
BINALG has better performance than BINALG′.

Since a point subtraction is almost as fast as an
addition, it can be used to achieve better performance.
In general, we can represent an m-bit scalar d with a
singed binary form:

∑
−

=

=
1

0
2

m

i

i
idd

where di ∈{−1, 0, 1} and m is the number of bits in d.
For simplicity, we still call a digit in this form a bit,
although it has three values.

Representing d in a signed binary form, we can
perform scalar multiplication similarly as in BINALG.
The difference is that a subtraction is performed if di =
−1. As a result, d is computed through a chain of
additions, subtractions, and doublings.

4

Non-Adjacent Form (NAF) is a unique signed
digital representation, in which non-zero digits are not
next to each other. In this paper, we limit NAF to
signed binary representations. In a NAF, two non-zero
bits, 1 or –1, are separated by at least one 0. An
important property of NAF is that its Hamming weight
is minimal among all signed binary representations
[20]. On average, half of the bits in binary
representations are non-zero while in NAF, only one
third of the bits are non-zero [20]. This implies that in
a scalar multiplication, the total number of additions
and subtractions is minimal if we represent d in NAF.

Table 1 lists the NAF of numbers from 0 to 63.
For convenience, we use 1 to indicate –1. In the table,
column d gives a decimal value, column NAF is the
NAF of the value, and column H is the Hamming
weight of the NAF. Notice that the NAF needs one
more bit than the binary representation.

Table 1: NAF of numbers from 0 to 63

d NAF H d NAF H d NAF H d NAF H
0 0000000 0 16 0010000 1 32 0 1 0 0 0 0 0 1 48 10 1 0000 2
1 0000001 1 17 0010001 2 33 0 1 0 0 0 0 1 2 49 10 1 0001 3
2 0000010 1 18 0010010 2 34 0 1 0 0 0 1 0 2 50 10 1 0010 3
3 000010 1 2 19 001010 1 3 35 010010 1 3 51 10 1 010 1 4
4 0000100 1 20 0010100 2 36 0 1 0 0 1 0 0 2 52 10 1 0100 3
5 0000101 2 21 0010101 3 37 0 1 0 0 1 0 1 3 53 10 1 0101 4
6 00010 1 0 2 22 010 1 0 1 0 3 38 01010 1 0 3 54 100 1 0 1 0 3
7 000100 1 2 23 010 1 00 1 3 39 010100 1 3 55 100 1 00 1 3
8 0001000 1 24 010 1 000 2 40 0 1 0 1 0 0 0 2 56 100 1 000 2
9 0001001 2 25 010 1 001 3 41 0 1 0 1 0 0 1 3 57 100 1 001 3
10 0001010 2 26 010 1 010 3 42 0 1 0 1 0 1 0 3 58 100 1 010 3
11 0010 1 0 1 3 27 0100 1 0 1 3 43 10 1 0 1 0 1 4 59 1000 1 0 1 3
12 0010 1 00 2 28 0100 1 00 2 44 10 1 0 1 00 3 60 1000 1 00 2
13 0010 1 01 3 29 0100 1 01 3 45 10 1 0 1 01 4 61 1000 1 01 3
14 00100 1 0 2 30 01000 1 0 2 46 10 1 00 1 0 3 62 10000 1 0 2
15 001000 1 2 31 010000 1 2 47 10 1 000 1 3 63 100000 1 2

As we can see from Table 1, each number has a

different Hamming weight and thus requires different
numbers of additions and subtractions. Adversaries
may exploit the information by SPA attacks.

If a scalar has a large number of bits, there is a
simple way to prevent SPA attacks. We can perform
all doublings first, save the results in a table, and then
perform additions or subtractions for each non-zero
bit. Power traces of this method have a sequence of
doublings followed by a sequence of additions or
subtractions. Adversaries know the number of non-
zero bits in the representation, but do not know their
locations. A problem with the method is the large
memory overhead.

To reduce memory overhead, we adopt a window
method in which the bits in the binary representation
of the large scalar are processed window by window.
In each window, we deal with a much smaller value
that has only a small number of bits. We use two
techniques to prevent SPA attacks. The first one is

performing all doublings first. The second one is to
perform the same number of additions and subtractions
for all possible values in a window. This means we
need to represent the values in a window in signed
binary forms that have the same Hamming weight.

We first determine the smallest Hamming weight
needed to represent all the values in a window.
Suppose the window size is w. Then the value of the
bits in a window is between 0 and 2w–1. Let HMAX (x)
be the largest Hamming weight of the NAF of integers
between 0 and x, i.e.,

{ }xyyHxH NAFMAX ≤≤= 0|)(max)(

where H(yNAF) is the Hamming weight of y’s NAF.
Consider a value y, 0 ≤ y ≤ 2w–1, we represent y in a
signed binary form that has a Hamming weight equal
to HMAX (2w–1). Table 2 lists the values of HMAX (2w–1)
for w from 3 to 9.

Table 2: Number of additions/subtractions in a window of size w

W 3 4 5 6 7 8 9

2w–1 7 15 31 63 127 255 511

n= HMAX(2w–1) 2 3 3 4 4 5 5

n/w 0.67 0.75 0.6 0.67 0.57 0.63 0.56

If H(yNAF) = HMAX (2w–1), we can just use its NAF

in the scalar multiplication. If H(yNAF) < HMAX(2w–1),
we construct another signed binary form to represent y.
We start from y’s NAF and increase the Hamming
weight of the representation. The Hamming weight of
a signed binary form can be incremented by replacing
01 with 11 or 10 with 11 . The replacements can be
done multiple times as long as 01 or 10 can be found.

If no 01 or 10 can be found, we extend the
signed binary form and add an extra bit to one of bit
positions. As a result, a bit position may have two bits.
The two bits will be denoted as {yi, e}, where yi is the
bit value in the normal signed binary form and e is the
extra bit. When computing with the extended signed
binary form, two additions or subtractions need to be
performed at the bit position that has two bits. Note
that both bits at the same position are not zero.
Otherwise, the extra bit can be removed.

If we need to increase the Hamming weight by
one but cannot apply the replacement method, we find
a pair of bits yi+1 and yi such that yi+1yi = 10 (or 01).
Then we change the pair of bits from 10 to 0{1,1} (or
from 01 to 0{ 1 , 1 }). An extra bit is added to the
position of yi and the values of yi+1 and yi are also
changed. The Hamming weight of y’s representation is
increased by one.

5

Now we look at the cases that we need to increase
the Hamming weight by two or more. If the Hamming
weight of a singed binary form of y is less than
HMAX(2w–1), and 01 or 10 cannot be found, the least
significant bit y0 must be 0. We change y0 to {1, 1 }.
Doing this, we increase the Hamming weight of the
representation by two. If necessary, the Hamming
weight can be increased to a larger value with the
replacement method.

With the extended signed binary form, all
numbers between 0 and 2w–1 may be represented with
a form that has exactly HMAX (2w–1) non-zero digits.
Thus exactly HMAX (2w–1) additions or subtractions are
performed in each window. Table 3 shows that when w
= 3, all the values between 0 and 7 can be represented
in a form that has a Hamming weight of two. Notice
that when d = 0, we change d0 to {1, 1 }. With the new
representation, all the values in a 3-bit window require
two additions and subtractions.

Table 3: Representations of values in a window of 3 bits

d NAF H Representations
0 0000 0 000{1, 1 }
1 0001 1 001 1
2 0010 1 01 1 0
3 010 1 2 010 1
4 0100 1 1 1 00
5 0101 2 0101
6 10 1 0 2 10 1 0
7 100 1 2 100 1

3.2. Efficient window-based countermeasure

We now describe our countermeasure. To perform a
scalar multiplication dP, we divided the bits d into
small groups (i.e. windows) of w bits. The bits in a
window have a value between 0 and 2w–1, which can
be represented in an extended signed binary form that
has a Hamming weight of HMAX (2w–1). Thus for each
window, we perform w doublings and HMAX (2w–1)
additions and subtractions. Furthermore, we perform
all doublings first and then perform additions or
subtractions. To thwart DPA attacks, we adopt the
random initial point and randomized projective
coordinate techniques.

In Figure 2, we illustrate the countermeasure with
w = 3. The algorithm first checks whether P(x, y) is a
valid point on the elliptic curve. It also checks whether
P’s coordinate is zero, to thwart RPA attacks proposed
in [11]. Then, it randomly chooses a point R as the
initial value of Q. R is subtracted from Q at the end of
the algorithm to generate the correct result. In addition,
our countermeasure adopts randomized projective

coordinates, which are decided by a random variable θ.
Our countermeasure can adopt any projective
coordinates such as homogeneous or Jacobian
projective coordinates. At the end of the algorithm,
projective coordinates are converted back to affine
coordinates.

After representing Q and P with projective
coordinates, the algorithm adds leading 0’s to d so that
the number of bits in d is a multiple of three because w
= 3. Then, it processes the bits window by window
from the lower end to the higher end. In each window,
three doublings are performed to compute 2P, 4P and
8P (in Step 10). The results are stored in a table of
four entries (T0, T1, T2, T3) = (P, 2P, 4P, 8P).
Depending on the value of the three bits in the current
window, two additions or subtractions are performed
in Steps 12–19. As shown in Table 3, a number
between 0 and 7 can be represented in a signed binary
form with an extra bit which has a Hamming weight of
two. The power output of a window is always
DDDAA, where D indicates a doubling and A an
addition. The power output of the algorithm looks like
DDDAADDDAA…DDDAAA, where the last A is the
subtraction in Step 24.

 Window-Based Countermeasure (w = 3)

Input: d, P=(x, y)
Output: Q=dP

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

If P is not a valid point on the elliptic curve, return P;
If x = 0 or y = 0, return P;
Randomly select a point R on the curve and R≠P;
Q = R;
Randomly select θ;
Represenet P and Q with projective coordincates determined by θ;
Add leading 0’s in d so the number of bits in d is a multiple of 3;
for (i = 0; i <= k–1; i += 3) {
 T0 = P;

for (j=1; j <=3; j++){ Tj = 2Tj-1};
switch (di+2 , di+1, di)2 {
 case 0: Q = Q + T0, Q = Q – T0, break;
 case 1: Q = Q + T1, Q = Q – T0, break;
 case 2: Q = Q + T2, Q = Q – T1, break;
 case 3: Q = Q + T2, Q = Q – T0, break;
 case 4: Q = Q + T3, Q = Q – T2, break;
 case 5: Q = Q + T2, Q = Q + T0, break;
 case 6: Q = Q + T3, Q = Q – T1, break;
 case 7: Q = Q + T3, Q = Q – T0; break;
}
P = T3;

}
Convert Q back to the affine coordinates;
Q = Q – R;
return Q;

Figure 2: A window-based countermeasure with a windows size of 3

6

3.3. Performance and memory overhead

When the window size is w, each window requires w
doublings and n additions or subtractions, where n =
HMAX (2w–1). On average, each bit needs one doubling
and n/w additions or subtractions. In Table 2, the last
row gives the n/w values for w between 3 and 9. We
can see that n/w does not change much when w
increases. As a result, we chose a small window size of
three to illustrate our countermeasure. It requires one
doubling and 2/3 additions and subtractions per bit.
For comparison, BINALG requires one doubling and
about 1/2 additions per bit and BINGALG′ requires
one doubling and one addition per bit.

The memory overhead of the algorithm is a table
of w + 1 entries, which is linear to w. When w = 3, the
table has only four entries. Other window-based
algorithms such as [14][15] require a table size that is
exponential to w.

4. Security Analysis

Security assumption. We assume that the power
traces of additions and subtractions are similar and
adversaries cannot tell whether an operation is an
addition or subtraction from power traces. The
subtraction of two points Q – P can be done in two
steps: first compute –P and then perform a point
addition Q + (–P). The negative of a point P = (x1, y1)
≠ O is –P = (x1, x1 + y1) for a curve over a binary field
and –P = (x1, – y1) for a curve over a prime field.
Compared to point addition, the overhead of
computing –P is small in both fields. So it is assumed
in a lot of prior work such as [4] that the power
consumption differences are negligible for addition
and subtraction.

SPA attacks. Since our countermeasure performs the
same number of doublings and additions/subtractions
for all windows, each window generates the same
power output sequence. Hence, our countermeasure is
secure against SPA attacks.

DPA attacks. To prevent DPA attacks, we use the
random initial point technique [9]. Here we use it in a
different way. Instead of adding the random point R to
P, we assign R to Q in Step 4. Since Q starts from a
random point, the adversaries cannot predict the value
of Q generated in Steps 12–19.

Our countermeasure uses a 4-entry table to store
the results of doublings. In order to defeat the attacks
targeting the table, we adopt randomized projective

coordinates. So the values stored in the table (T0, T1,
T2, T3) are randomized. The attackers cannot predict
the point values stored in the table and thus cannot use
DPA to examine which entries are accessed in Steps
12–19.

RPA and ZPA attacks. To prevent RPA attacks that
exploit special points that have a zero coordinate [11],
we check the value of P at the beginning of the
algorithm.

In the ZPA attacks [10], adversaries guess whether
a specific scalar c appears in d and feed a special point
P to a scalar multiplication algorithm. If the guess is
correct, cP is generated during the multiplication and
causes that zero values are written into registers in
later operations. In our countermeasure, cP is never
explicitly computed because of the random initial point
assigned to Q. The intermediate value kept in Q is cP
+ R, represented with projective coordinates. Even if
the guess of c is correct, cP + R does not cause zero-
value registers in later operations.

Other attacks. In [13], Yen proposed a chosen
plaintext attack to break the BRIP countermeasure for
RSA. They mentioned that the attack may be extended
to ECC as well. When applied to ECC, their attack
requires a special point P such that 2P = O. With the
special point, an attack can detect the least significant
bit d0 by checking the result Q. However, they cannot
detect other bits by checking the intermediate values of
Q because the values are either R or P + R, none of
which is O. So this attack cannot break our
countermeasure.

One may try to use timing attack to detect which
case is executed in Steps 12–19. However, every case
in Steps 12–19 can be reached by a single branch
instruction in which the target address of each case is
loaded from memory and stored in a register. This is a
common way to implement switch statements in the C
language. So the execution time of all branches is
similar and can not be exploited in timing attacks. The
risks can be further reduced by preloading instructions
and the table into a cache.

Our countermeasure is also secure against safe
error attacks [21], which introduce a temporary
random fault on the hardware. Part of the secret key
can be revealed if the device generates the correct
result even when a fault is injected. There are two
types of safe errors. One is memory safe error which
modifies some bits in the storage. The other is
computational safe error, which is introduced in
computational circuits such as ALU. For example, the
computational safe error attacks can break BINALG′.

7

When a temporary computation error is introduced on
Line 4 of BINALG′, the error causes the program to
generate a wrong final result when di is 1. However,
when di is 0, the wrong value is not propagated to later
stages and the final result is correct. By examining the
final result, adversaries are able to detect the value of
di. In our window based countermeasure, however, an
error is always propagated to the output. So our
countermeasure is secure against computational safe
error attack. Our countermeasure is vulnerable to
memory safe error attacks because it needs a table
stored in the memory and not all the entries of the table
are used in Steps 12-19. This attack can be prevented
by using memory with error correction code.
Adversaries cannot tell whether an error is corrected
by the error correction code or the faulty entry is not
used.

5. Conclusions

In this paper, we propose an efficient window-based
countermeasure for ECC. We proposed an extended
signed binary form that can represent all possible
values in a window with the same Hamming weight.
Therefore, each window performs the same number of
additions and subtractions, making our countermeasure
secure against SPA attacks. We also adopt the random
initial point and randomized projective coordinate
techniques to defeat DPA attacks. In our
countermeasure, both P and Q are randomized and
only one additional subtraction is required to compute
the correct output. Furthermore, our countermeasure
has low memory overhead, requiring a small table size
that is linear to the window size. At the same time, our
method provides good performance, performing about
2/3 additions and subtractions per bit.

References

[1] Z. J. Shi and F. Zhang, “New attacks on randomized
ECC algorithms,” Proceedings of EITC 2006, August 2006.
[2] F. Zhang and Z. J. Shi, “Power Analysis Attacks on
ECC Randomized Automata,” Proceedings of ITNG 2007,
April 2007.
[3] P. Kocher, J. Jaffe, and B. Jun, “Differential power
analysis,” Proceedings of CRYPTO'99, pp. 388-397, August
1999.
[4] E. Oswald and M. Aigner, “Randomized addition-
subtraction chains as a countermeasure against power
attacks,” Proceedings of CHES 2001, pp. 39-50, May 2001.
[5] A. J. Menezes, “Elliptic curve public key
cryptosystems,” Kluwer Academic Publishers, 1993.
[6] J. S. Coron, “Resistance against differential power
analysis for elliptic curve cryptosystems,” Proceedings of
CHES 1999, pp. 292-302, August 1999.

[7] K. Okeya, and K. Sakurai, “On insecurity of the side
channel attack countermeasure using addition-subtraction
chains under distinguishability between addition and
doubling,” Proceedings of 7th Australasian Conference on
Information Security and Privacy, ACISP 2002, pp. 420-435,
July 2002.
[8] D. Han, N. S. Chang, S. W. Jung, Y. H. Park, C. H.
Kim, and H. Ryu, “Cryptanalysis of the full version
randomized addition-subtraction chains”, Proceedings of 8th
Australasian Conference on Information Security and
Privacy, ACISP 2003, pp. 67 – 78, July 2003.
[9] H. Mamiya, A. Miyaji, and H. Morimoto, “Efficient
countermeasure against RPA, DPA, and SPA,” In
Cryptographic Hardware and Embedded Systems CHES '04,
LNCS 3156, pp. 343-356, 2004.
[10] T. Akishita, and T. Takagi, “Zero-value Point Attacks
on Elliptic Curve Cryptosystem,” ISC2003, Lecture Notes in
Computer Science, 2851, pp. 218–233, 2003.
[11] L. Goubin, “A Refined Power-Analysis Attack on
Elliptic Curve Cryptosystems,” PKC2003, Lecture Notes in
Computer Science, 2567, pp. 199–210, 2003.
[12] C. K. Kim, J. C. Ha, S. J. Moon, S. M. Yen, W. C. Lien,
S. H. Kim, “An improved and efficient countermeasure
against Power Analysis Attacks,” Cryptology ePrint Archive,
Report 2005/022, January 2005.
[13] S. M. Yen, W. C. Lien, S. J. Moon, and J. C. Ha,
“Power Analysis by Exploiting Chosen Message and Internal
Collisions – Vulnerability of Checking Mechanism for RSA-
Decryption,” Mycrypt 2005, pp. 183-195, 2005.
[14] K. Okeya, and T. Takagi, “A More Flexible
Countermeasure against Side Channel Attacks Using
Window Method,” Cryptographic Hardware and Embedded
Systems - CHES 2003.
[15] K. Okeya, and T. Takagi, “The Width-w NAF Method
Provides Small Memory and Fast Elliptic Scalar
Multiplications Secure against Side Channel Attacks,” CT-
RSA 2003.
[16] C. D. Walter, “Issues of Security with the Oswald--
Aigner Exponentiation Algorithm,” CT-RSA 2004, pp. 208-
221, 2004.
[17] C. Karlof, and D. Wagner “Hidden Markov Model
Cryptanalysis,” CHES 2003, pp. 17-34, 2003.
[18] P. J. Green, R. Noad and N. P. Smart, “Further Hidden
Markov Model Cryptanalysis,” CHES 2005, pp. 61-74, 2005
[19] D. Hankerson, J. L. Hernandez, and A. Menezes,
“Software Implementation of Elliptic Curve Cryptography
over Binary Fields”, CHES2000, Lecture Notes in Computer
Science, vol 1965, pp. 1-24, 2000.
[20] G. Reitwiesner, “Binary arithmetic,” Advances in
Computers, pp. 231–308, 1960.
[21] S. M. Yen, and M. Joye, “Checking before output may
not be enough against fault based cryptanalysis,” IEEE
Trans. on Computers, vol. 49, no. 9, pp. 967–970, September
2000.
[22] K.Okeya, K.Sakurai, "Power analysis breaks elliptic
curve cryptosystems even secure against the timing attack",
Indocrypt 2000, LNCS1977, (2000),178–190.

