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Abstract. Algebraic side-channel attack (ASCA) is a powerful crypt-
analysis technique different from conventional side-channel attacks. This
paper studies ASCA from three aspects: enhancement, analysis and
application. To enhance ASCA, we propose a generic method, called
Multiple Deductions-based ASCA (MDASCA), to cope the multiple de-
ductions caused by inaccurate measurements or interferences. For the
first time, we show that ASCA can exploit cache leakage models. We
analyze the attacks and estimate the minimal amount of leakages re-
quired for a successful ASCA on AES under different leakage models. In
addition, we apply MDASCA to attack AES on an 8-bit microcontroller
under Hamming weight leakage model, on two typical microprocessors
under access driven cache leakage model, and on a 32-bit ARM micro-
processor under trace driven cache leakage model. Many better results
are achieved compared to the previous work. The results are also consis-
tent with the theoretical analysis. Our work shows that MDASCA poses
great threats with its excellence in error tolerance and new leakage model
exploitation.

Keywords: Algebraic side-channel attack, Multiple deductions, Ham-
ming weight leakage, Cache leakage, AES.

1 Introduction

How to improve the efficiency and feasibility of side-channel attacks (SCAs) has
been widely studied in recent years. The objective is to fully utilize the leakage
information and reduce the number of measurements. This can be achieved from
two directions. One is to find new distinguishers for key recovery [3, 8, 34]. The
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other is to combine SCA with the mathematical techniques, such as differen-
tial based [17], linear based [30], collision based [31], cube based [11], algebraic
based [16, 27–29] SCAs. This paper studies algebraic based SCAs.

Algebraic cryptanalysis converts the key recovery into a problem of solving a
boolean equation system. The main idea was proposed by Shannon [32] and first
applied to block ciphers by Courtois et al. in ASIACRYPT 2002 [9]. However, the
complexity of algebraic cryptanalysis increases exponentially with the number of
rounds. As a result, it is mainly effective to the reduced-round block ciphers. SCA
can derive additional equations by analyzing the physical leakages (e.g., timing,
power, EM, cache, etc) and help to solve the equation system. The combination
of two techniques leads to Algebraic side-channel attacks (ASCA) [16, 24, 27–29].

In ASCA, the targeted cipher is first represented with a system of alge-
braic equations. The adversary chooses a leakage model and several interme-
diate states, according to his measurement capability and attack strategy. After
that, the physical leakages are measured and used to deduce the output val-
ues of the leakage function (model) for these targeted states. Then additional
equations representing these values are derived and added into the equation sys-
tem. Finally, the equations system is solved with the solvers, such as Gröbner
basis-based [12] or SAT-based [33] solvers, to recover the key bits.

1.1 Related Work

In the original ASCA [27, 28], the key recovery was converted to a Boolean sat-
isfiability (SAT) problem and the zChaff solver was used. It has been shown that
ASCA can exploit the Hamming weight (HW) leakages in all rounds and recover
the key with a single trace even when both the plaintexts and the ciphertexts are
unknown [27, 28]. Further research on ASCA has been focused on three aspects.

The first is to leverage error tolerant ASCA to improve its practicability. The
work in [27, 28] was mainly based on an error-free assumption. Although it was
mentioned that a pair of HWs can be used to build the algebraic equations
even if one of them is incorrect, the error must be small. The details of the
method and the error rates in practice were not discussed. In CHES 2010, an
error tolerant ASCA (TASCA) [24] was proposed based on a pseudo-Boolean
optimization (PBOPT) problem. The SCIP solver [5] was used to handle the
wrong HW deductions. TASCA works on Keeloq when the error rate is less than
20% but fails on AES. Designing an error tolerant ACSA on AES is a challenge.

The second is to analyze the dependencies of ASCA. In ACNS 2010, it was
shown in [29] that the success rate of ASCA depends on the representations,
leakages and ciphers. However, it is difficult to predict the success rate because
of numerous parameters. At least 252 consecutive HW leakages are required in
ASCA on AES in [29], but the reason was not given. In COSADE 2011, the work
in [16] showed that the success rate highly depends on the algebraic immunity
and the distribution of leakage information. Still, it remains as an open problem
to estimate the number of leakages required for a specific cipher.

The third is to exploit new leakage models in ASCA. Previous work has stud-
ied the combination of algebraic cryptanalysis with fault attacks, e.g, attacks on
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DES in eSmart 2010 [10] and Trivium in COSADE 2011 [21]. The data com-
plexity required in the attacks [10, 21] can be further reduced. As addressed
in [27, 28], ASCA is a generic framework and can be applied to more leakage
models. However the diversity, error, and complexity of leakage models make it
difficult to adopt new models in ASCA.

1.2 Our Work

In this paper, we study ASCA in three aspects.

Enhancement.We initiate our work by addressing the error tolerance in ASCA.
We observe that not only the errors but also the leakage models may cause multi-
ple results when inferring the output value of the leakage function for a targeted
state. The ability of handling such multiple values for a state is critical to im-
proving the error tolerance and extending the applications of ACSA. In Section
2, we introduce an enhanced ASCA technique named as Multiple Deductions-
based ASCA (MDASCA) and propose a generic method to represent multiple
values.

Analysis. In Section 3, we analyze the possible application scenarios ofMDASCA.
For the first time, we can exploit cache leakage models, which are widely studied
in recent years [1, 2, 4, 6, 7, 13–15, 20, 22, 25]. More specifically, we use MDASCA
to exploit access driven [2, 22, 25] and trace driven [1, 6, 7, 13–15, 20] cache leakage
models. In Section 4, we take another approach to evaluate ASCA different from
[16, 29]. We estimate the minimal amount of leakages required for ASCA on AES.
Many new and better results are given based on theoretical analysis, and later
confirmed by experiments. For example, in HW-based ASCA on AES (standard
NIST implementation in [23]), we show that: under known plaintext/ciphertext
scenario, only one round of HW leakages is required instead of three rounds in
[28]; under unknown plaintext/ciphertext scenario, only two rounds of HW leak-
ages are required instead of three rounds in [28].

Application. To demonstrate the excellent error tolerance and new leakage
model exploiting ability of MDASCA, in Section 5, we conduct a series of physical
experiments on AES under different leakage models. Under the HW leakage
model, AES implemented on an 8-bit microcontroller can be broken even when
the HW deduction has 80% errors with a single power trace or 100% errors with
two traces, which is better than previous results in CHES 2009 [28] and CHES
2010 [24]. Under the access driven cache leakage model, AES implemented on
two typical microprocessors can be broken with only 1 and 36 cache traces,
respectively, compared with 100 in IEEE S&P 2011 [2] and 300 in CT-RSA
2006 [25]. Under the trace driven cache leakage model, AES implemented on a
32-bit ARM microprocessor can be broken with only 5 cache traces instead of
30 in COSADE 2011 [15]. Moreover, all the experimental results of MDASCA
are consistent with our theoretical analysis.

We describe the impacts of MDASCA in Section 7 and conclude this paper
in Section 8.
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2 MDASCA: Multiple Deductions-Based ASCA

2.1 Notations

To make our discussions concise and consistent, we first clarify some notations.

Deduction. In SCA, the output value of the leakage function for the targeted
state obtained from side-channel leakages is called deduction, denoted as d. The
specific meaning of the deduction highly depends on the leakage model.

Multiple Deductions. Due to the inaccurate measurements or the interfer-
ences from other components in the cryptosystem, the deduction from SCA is
not always equal to the correct value. Instead, multiple values are obtained dur-
ing the process, which are also referred to as multiple deductions.

Deduction Set. Multiple deductions are placed in a set, which is referred to
as deduction set, denoted as D. Note that in the attack, the adversaries may
also exploit the complement of the deduction set, denoted as D̄, which includes
the impossible values. The size of D (D̄) is denoted as Sp (Sn) and is very
important to the efficiency of ASCA. The elements in D (D̄) are denoted as di
(d̄i), 1 ≤ i ≤ Sp(Sn). We assume that the correct deduction d is always in D
and not in D̄ throughout this paper.

Deduction Offset. The distance between the deductions di and the correct one
d is referred to as deduction offset, denoted as oi, oi = di − d. The value of oi is
very important when choosing the solving strategies (solvers) in ASCA.

Error Rate. In ASCA, the number of the targeted states where deductions are
made is denoted as NT . As to the possible deduction set D, the number of the
targeted states where deductions are wrong is denoted as NE . We define the
error rate e as e = NE

NT
.

2.2 MDASCA

Existing ASCAs [27, 28] add only a few equations to the algebraic system, as-
suming the deduction from leakages is single and correct. As a result, they are
sensitive to errors and likely to fail in practical attacks. In this section, we pro-
pose an enhanced ASCA technique, named Multiple Deductions-based ASCA
(MDASCA), in which a deduction set of multiple values is created and con-
verted into a constraint equation set. As long as the deductions are enumerable,
the whole equation system can be solved by a SAT solver in a reasonable amount
of time. Next, we describe the core of MDASCA, the representation of multiple
deductions with algebraic equations.

Suppose a targeted state X can be represented with m one-bit variables xj ,
j=1..m. φ(X) denotes the output value of the leakage function for X . If the
correct deduction d can be deduced accurately, d can be calculated as in Eq. (1).

d = φ(X), X = x1x2 . . . xm (1)

Representing multiple deductions can be divided into the following two steps.
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1. Building equations for the deduction set D or D̄. di ∈ D, 1 ≤ i ≤ Sp,
is a “possible deduction” on X . New variables Bi are introduced to represent
X ’s value that generates di. Each Bi is represented as m one-bit variables bji .
New equations can be built as shown in Eq. (2).

Bi = b1i b
2
i . . . b

m
i , di = φ(Bi), 1 ≤ i ≤ Sp (2)

Also, each d̄i ∈ D̄ is an “impossible deduction”. Similar to Eq. (2), new variables
B̄i and b̄ji are introduced. New equations can be built as in Eq. (3).

B̄i = b̄1i b̄
2
i ...b̄

m
i , d̄i = φ(B̄i), 1 ≤ i ≤ Sn (3)

Which set to use (D, D̄, or both) is highly dependent on the leakage model and
the adversaries’ ability. Typically, if Sp < Sn, D is used because it leads to a less
complicated equation system. Otherwise, D̄ is preferred.

2. Building equations for the relationship between d and D (or D̄).
Note that if Bi is equal to X , di=d. m× Sp one-bit variables ei

j are introduced
to represent whether bi

j is equal to xj . ei
j=1 if bi

j = xj ; otherwise ei
j=0. Sp

one-bit variables ci are introduced to represent whether di is correct or not. ci=1
if di=d; otherwise ci=0. ci can be represented by Eq. (4), where ¬ denotes the
NOT operation.

ei
j = ¬(xj ⊕ bi

j), ci =

m∏

j=1

ei
j (4)

Since only one element inD is equal to d, only one ci is 1. This can be represented
as:

c1 ∨ c2 ∨ . . . ∨ cSp = 1, ¬ci ∨ ¬cj = 1, 1 ≤ i < j ≤ Sp (5)

As for the impossible deductions, none of the elements in D̄ is the correct de-
duction d. This can be represented by Eq. (6).

ei
j = ¬(xj ⊕ bi

j), ci =

m∏

j=1

ei
j = 0 (6)

Let nv,φ and ne,φ denote the number of the newly introduced variables and
ANF equations in representing one deduction di (d̄i). nv,φ and ne,φ depend
on φ. According to Equations (2), (4), (5), (1 + 2m + nv,φ)Sp variables and

1 + (1 + m + ne,φ)Sp +
(
Sp

2

)
ANF equations are introduced to represent D.

According to Equations (3), (6), (1+2m+nv,φ)Sn variables and (1+m+ne,φ)Sn

ANF equations are introduced to represent D̄.
The new constraint equations mentioned above are quite simple. They can

be easily fed into the SAT solver [33] to accelerate the key search. To launch
MDASCA, it is important to choose φ and determine the deduction set D/D̄
under different models, which is addressed in Section 3.
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3 Analysis of Leakage Models in MDASCA

3.1 Hamming Weight Leakage Model with Errors

MDASCA can improve the error tolerance of ASCAs based on HW leakage
model (HWLM). In such attacks, the adversaries try to deduce the HW of the
targeted state X from measurements. In practice, due to noise, the adversaries
may get wrong values of HW (X) that are close to the correct one. For those
implementations on some devices such as microcontrollers, the deduction offset
for HW leakage is small and approximately ±1 away from HW (X), which is also
addressed in [24]. Therefore, the possible HW deduction set D can be written as

D = {HW (X)− 1, HW (X), HW (X) + 1} (7)

MDASCA can handle the deduction offset easily by setting φ=HW (),
d=HW (X). For example, if d=3, D = {2, 3, 4}.

3.2 Cache Leakage Models

Cache in the microprocessors can leak the secret information about the indexes
of table(S-Box) lookups and compromise the cryptosystems. Numerous cache
attacks on AES have been published. There are three leakage models in cache
attacks: time driven (TILM) [4], access driven (ACLM) [2, 22, 25], and trace
driven (TRLM) [1, 6, 7, 13–15, 20]. Under TILM, only the overall execution
time is collected and it is difficult to deduce the internal states from few traces.
Under ACLM and TRLM, adversaries can measure the cache-collisions and infer
internal states with a single cache trace. Now we discuss how to use these two
models in MDASCA.

Suppose a table has 2m bytes and a cache line has 2n bytes (m > n). The whole
table will fill 2m−n cache lines. A cipher process V performs k table lookups,
denoted as l1, l2, . . . , lk. For each lookup li, the corresponding table index is Xi.
Assume lt is the targeted table lookup.

1.Access driven leakage model. Under ACLM [2, 22, 25], the cache lines
accessed by V can be profiled by a malicious process S and used to deduce lt. S
first fills the cache with its own data before V performs the lookups, and accesses
the same data after the lookups are done. S can tell whether a datum is in cache
or not by measuring its access time. A shorter access time indicates a cache hit.
A longer access time is a cache miss, implying that V already accessed the same
cache line. If S knows which cache line that lt accessed, he knows the higher
m − n bits of Xt. Let 〈X〉 denote the function that extracts the higher m − n
bits of X . Then the correct deduction for lt is 〈Xt〉.

In practice, S observes many cache misses from two sources. Some are from
the k − 1 lookups other than lt. Some are from interfering processes that run
in parallel with V. Assume the interfering processes have accessed g different
cache lines, which can be considered as g more “lookups” at Xk+1, ...Xk+g . All
the possible values of 〈Xt〉 form a collection L. Without loss of generality, we



MDASCA: An Enhanced Algebraic Side-Channel Attack 237

assume the first Sp values of L are distinct and Sp ≤ k+g. The possible deduction
set D can be written as:

D = {d1, .., dSp}, di = 〈Xi〉, 0 ≤ di < 2m−n (8)

Note that the impossible deduction set D̄ can also be obtained, Sn=2m−n −Sp.
So ACLM can be easily interpreted with multiple deductions by setting φ = 〈·〉,
d = 〈Xt〉 and di = 〈Xi〉. The values of elements in D or D̄ are known to
adversaries after deductions.

2.Trace driven leakage model. Under TRLM [1, 6, 7, 13–15, 20], S can
keep track of the cache hit/miss sequence of all lookups to the same table of V via
power or EM probes. Suppose there are r misses before lt. Let SM (X) be the set
of lookup indexes corresponding to the r misses, SM (X) = {Xt1, Xt2, . . . , Xtr}.

If lt is a cache hit, the data that Xt tries to access have been loaded into the
cache by previous lookups. The possible deduction set D for Xt can be written
as in Eq. (9) where Sp = r.

D = 〈SM (X)〉 = {〈Xt1〉, 〈Xt2〉, . . . , 〈Xtr〉} (9)

If a cache miss happens at lt, the impossible deduction set D̄ for Xt can be
written as in Eq. (10) where Sn = r.

D̄ = 〈SM (X)〉 = {〈Xt1〉, 〈Xt2〉, . . . , 〈Xtr〉} (10)

So TRLM can also interpreted under MDASCA by setting φ = 〈·〉, d = 〈Xt〉
and di = 〈Xti〉. Different from ACLM, the elements in D or D̄ are among the
set of higher m − n bits of table lookup indexes that cause cache misses. The
exact value is unknown to adversaries even after the deductions.

4 Evaluation of MDASCA on AES

It is desirable to know howmany leakages or traces are required in MDASCA. We
take AES-128 as an example to evaluate it under HWLM, ACLM and TRLM.
Suppose the master key is denoted as K, and the plaintext/ciphertext as P/C.
We use ξ(x) to denote the key search space for a variable x which is key depen-
dent. Ai,Bi,Ci,Di stand for the states after the AddRoundKey (AKi), SubBytes
(SBi), ShiftRows (SRi) and MixColumns (MCi) in the i-th round.

4.1 HWLM Based MDASCA

Under both known P/C and unknown P/C scenarios, the attacks in [28, 29]
require about 252 known HW leakages in three consecutive rounds to recover K.
They assume there are 84 HW leakages in each round (16 in AK, 16 in SB, and
52 in MC) and the deduction offset is 0. However, the number of HW leakages
that required can be less.

Consider a byte x, if its HW is leaked, we can calculate that ξ(x)=50.27=25.65.
It is equivalent to say that ξ(x) is reduced by about 28−5.65=22.35. If bothHW (x)
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and HW (S[x]) are leaked in SubByte, ξ(x)=10.69=23.42. These numbers are
calculated by an algorithm in Appendix 1.

Taking the assumptions as in [28, 29], we evaluate MDASCA on AES under
unknown P/C scenarios.With 16 bytes leaked in AK1 and SB1, ξ(B1)=23.42×16=
254.72. In MC1, four bytes in a column can be calculated with 13 steps [28, 29].
Simply considering the last four steps which write the output to D1, we estimate
that each column can reduce ξ(D1) for about 22.35×4. Taking all four columns
into account, ξ(D1) should be reduced to 254.72−2.35×4×4 ≈ 217.12 approximately.
ξ(D1) can be further reduced to 1 if other nine leakages can be utilized. We be-
lieve 84 HW leakages can obtain A1,B1,D1, which also applies to A2,B2,D2.

We verify this with a C program and later with experiments in Section 5.2.
Two rounds of leakages can obtain the second round key by XORing D1 and
A2. Then the master key K can be recovered via solving the equations on the
key schedule of AES. Note that the known P/C scenario is just a special case
of above. One round of leakages should be enough to recover the first round key
K since both A1 and P are known.

4.2 ACLM Based MDASCA

ACLM based cache attacks on AES have been widely studied [2, 22, 25]. This
paper takes AES implementations in OpenSSL1.0.0d as the target, where n=6
and m=11,10,8 for table with the size of 2KB, 1KB or 256 bytes. Accordingly,
the leakages (i.e., ε = m−n) are the higher 5, 4 and 2 bits of table lookup index,
respectively. This is equivalent to say that one leakage reduces ξ(K) about 2ε.
We consider two typical ACLM models.

1.Bangerter model.Bangerter et al. [2] launched attacks on AES in OpenSSL
1.0.0d with one 2KB table and 100 encryptions, assuming S can profile the ac-
cessed cache lines per lookup. In the attack, the CFS Scheduler of Linux and
Hyper thread techniques are required. We refer to their work as Bangerter model.

In the attack, there are 16 leakages of table lookups in each round. After the
first round analysis, ξ(K) can be reduced to 2(8−ε)×16. After the second round
analysis, ξ(K) can be approximately reduce to 2(8−2ε)×16. As to ε=4 or 5, two
rounds of leakages from one cache trace are enough to recoverK. As to ε=2, after
the first round analysis, ξ(K) can be reduced to 26×16. After the second round
analysis, three cache traces are enough to recover ξ(K) into 2(6−2×3)×16 = 1.

2.Osvik model. Osvik et al. [25] and Neve et al. [22] conducted ACLM based
cache attacks on AES in OpenSSL 0.9.8a, assuming S can profile the accessed
cache lines per encryption. We refer to their work as Osvik model.

In OpenSSL0.9.8a, four 1KB tables (T0, T1, T2, T3, m=10) are used in the first
nine rounds, and a table T4 is used in the last round. The attacks in [25] can
succeed with 300 samples by utilizing the 32 table lookups in the first two rounds
of AES. The attack in [22] can break AES with 14 samples by utilizing the 16 T4

table lookups in the final round of AES. AES in OpenSSL1.0.0d removes T4 and
uses T0, T1, T2, T3 throughout the encryption. As a result, it is secure against
[22] and increase the difficulties of [25].
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We implemented AES in OpenSSL1.0.0d with m=10, n=6 and ε=4. In total,
there are 40 cache accesses to the same table in one encryption. Under Osvik
model [25], 16 × (1516 )

40 ≈ 1.211 cache lines will not be accessed by S, which
means on average there are 1.211 elements in the impossible deduction set for
the table lookup indexes. Theoretically speaking, around 15

1.211 ≈ 12.386 traces
with one round of leakages can recover the high 4-bit of table lookup indexes,
which reduces ξ(K) to 264. Utilizing the 16 table lookups in the second round,
ξ(K) can be further reduced to 1. In practice, the number of traces required will
increase a little bit, as shown in Section 5.3.

4.3 TRLM Based MDASCA

The first TRLM based cache attack on AES was proposed by Bertoni et al. [6]
and later improved in [13] through real power analysis. More simulation results
with 1KB table were proposed in [1, 6, 7, 20]. Recently, several real-world attacks
were proposed in [14, 15] on AES with 256B table on a 32-bit ARM micropro-
cessor. In [14], the cache events are detected with a power probe and only the
first 18 lookups are analyzed. 30 traces reduce ξ(K) to 230. In [15], the attacks
are done with an EM probe and ξ(K) is further reduced to 10 when two more
lookups are considered.

Let pi and ki be the i-th byte of the plaintext and the master key. The
i-th lookup index is pi ⊕ ki. In TRLM, the XOR between two different lookup
indexes (pi ⊕ ki and pj ⊕ kj) can be leaked. From the 16 leakages in the first
round, 〈pi ⊕ ki ⊕ pj ⊕ kj〉 can be recovered, 1≤ i < j ≤16. ξ(K) can be reduced
to 2128−15∗ε and further reduced to 1 by analyzing leakages in the later rounds.

(a) #� (b) Nl

Fig. 1. Estimations in TRLM based MDASCA on AES

To calculate N�, the number of cache traces required for a successful attack,
we need to know #�, the expected number of cache lines that are updated by
S after the first l lookups. Let Nc=2m−n be the number of cache lines that
one table can fill. The probability for one cache line not updated by S after l
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table lookups is (Nc−1
Nc

)�. And #� = Nc(1− (Nc−1
Nc

)�). Let y� be the �-th lookup
index, and ρ� be the reduced percentage of ξ(y�) due to the �-th lookup. Then
ρ� = (#�

Nc
)2 + (1− #�

Nc
)2, as also shown in [1]. Let Nc × (ρ�)

Nl ≤ 1, N� ≈ −logNc
ρ�

.
In [14, 15], Nc=16. Fig. 1(a) shows how #� changes with �. It’s clear to see

that even after 48 table lookups, #� < 16 and ρ� < 1, which means there are
still some cache misses that could be used for deductions. Fig. 1(b) shows how
N� changes with �, where the minimal of N� is 4, and the maximal is 22.24. If
N� is 5 or 6, ξ(K) can be reduced to 276.10 and 274.13, respectively.

Using the leakages in the second round, if N� is 5 or 6, ξ can be further
reduced to 276.10−48.80=227.30, and 274.13−54.78=219.35 approximately. After the
third round, ξ(K) can be reduced to 1 with a high probability. So approximately
5 or 6 cache traces are enough to launch a successful TRLM based attacks on
AES. As it is really hard to analyze the third round leakages manually, we will
just verify it through MDASCA experiments, as shown in Section 5.4.

5 Application of MDASCA on AES

5.1 Experiment Setup

We conduct attacks under HWLM, ACLM and TRLM. Table 1 presents the
experiment setups.

Table 1. Experiment setup of MDASCA on AES

Leakage Model Targeted platform AES Implementation Note

HWLM 8-bit microcontroller ATMEGA324P AES with compact table
ACLM Intel Pentium 4 processor1, Fedora 8 Linux AES in OpenSSL 1.0.0d Bangerter model [2]
ACLM Athlon 64 3000+ processor2, Windows XP SP2 AES in OpenSSL 1.0.0d Osvik model [25]
TRLM 32-bit ARM microprocessor NXP LPC2124 AES with compact table

We adopt the technique in [19] to build the equation set for AES. Each S-Box
can be represented by 254 ANF equations with 262 variables. The full AES-128
including both encryption and key scheduling can be described by 58288 ANF
equations with 61104 variables. MDASCA does not require the full round of
AES, as analyzed in Section 4. We choose the CryptoMiniSat 2.9.0 solver [33]
to solve the equations. The solver is running on an AMD Athlon 64 Dual core
3600+ processor clocked at 2.0GHz. We consider that a trial of MDASCA fails
when no solution is found within 3600 seconds.

5.2 Case Study 1: HWLM Based MDASCA on AES

As shown in Fig. 2(a), the instant power of AES-128 running on ATMEGA324P
is highly correlated to the HW of the data. Similar to [24], we deduce the HW
for 84 intermediate states in each round. According to Section 4.1, our attacks
only require a few rounds of HW leakages. We calculate the Pearson correlation
factor [8] when deducing the HWs from power traces.

1 L1 Cache setting: 16KB cache size, 8 way associative, 64B cache line size.
2 L1 Cache setting: 64KB cache size, 2 way associative, 64B cache line size.
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Fig. 2. HW deductions in MDASCA on AES

Fig. 2(b) shows the AddRoundKey of the first round in a single power trace
where the offset is one. In this example, from Section 2.1, the error rate e is
9
16 = 56.25%. The deduction set for the 8−th byte is D={2, 3, 4}, Sp = 3.
To represent each HW deduction in D, 99 new variables (not including the
8 variables in Eq. (2)) and 103 equations are required(see Appendix 2). So,
nv,φ = 99, ne,φ = 103. According to Section 2.2, we use 348 new variables and
340 ANF equations to represent D.

As in [28], we considered several attack scenarios: known or unknown P/C,
consecutive or random distributions of correct HW deduction. Since the PBOPT
solver used in [24] fails on AES even when there is no error, we only compare
our results with [28]. We repeat the experiment for each scenario 100 times and
compute the average time. Our results indicate that, although the SAT solver has
some smart heuristics, most of the trials (more than 99%) succeed in reasonable
time with small variation.

Table 2 lists how many rounds are required for different scenarios. With one
power trace, when leakages are consecutive, and if P/C is known, only one round
is required instead of 3 in [28]; if P/C is unknown, 2 rounds are required instead
of 3 in [28]. The results are consistent with the analysis in Section 4.1.

Table 2. Comparisons of HWLM based MDASCA on AES with previous work

Scenarios error type leakage type [28] MDASCA

known P/C error free consecutive 3 rounds 1 round(10 seconds)
known P/C error free random 8 rounds 5 rounds (120 seconds)

unknown P/C error free consecutive 3 rounds 2 rounds (10 seconds)
unknown P/C error free random 8 rounds 6 rounds (100 seconds)
known P/C 80% error rate consecutive - 3 rounds (600 seconds)
known P/C 100% error rate consecutive - 2 rounds (120 seconds, 2 power traces)
known P/C 100% error rate consecutive - 1 rounds (120 seconds, 3 power traces)
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Under HWLM, the average HW deduction error rate of a single power traces
is about 75%, which is also indicated in [27, 28]. MDASCA can succeed even
with 80% error rate by analyzing 3 consecutive rounds in a single trace within 10
minutes. Even when the error rate is 100% (the number of all the HW deductions
is 3), AES can still be broken by analyzing two consecutive rounds of two power
traces within 2 minutes, or one round of three traces with 2 minutes. From
the above, we can see that MDASCA has excellent error tolerance and can
significantly increase the robustness and practicability of ASCA.

Note that MDASCA can also exploit larger number of HW deductions, e.g, 4.
If the HW leakages are not enough for the solver to find the single and correct
solution, a full AES encrypt procedure of an additional P/C can be added into
the original equation set to verify the correctness of all the possible solutions.
The time complexity might be a bit higher without increase the data complexity.

5.3 Case Study 2: ACLM Based MDASCA on AES

We conduct ACLM based MDASCA on AES under both Bangerter [2] and
Osvik [25] model. The comparisons of MDASCA with previous work are listed
in Table 3. The results are consistent with the analysis in Section 4.2.

Under Bangerter model, we apply MDASCAs to three AES implementations
in OpenSSL1.0.0d with 2KB, 1KB or 256B table. Fig. 3(a) shows the cache
events of 16 lookups in the first round with four 1KB tables. According to our
experience, there are 1-4 cache misses during each lookup due to the noises from
other system processes. Take the third column of Fig. 3(a) as an example. We
have 3 possible deductions on 〈X3〉, and D={4,11,13}, Sp = 3. To represent each
deduction in D, no new variables are introduced and 4 assignment equations are
required, nv,φ = 0, ne,φ = 4. In total, 31 ANF equations with 27 additional
variables are introduced.

Table 3. Comparisons of ACLM based MDASCA with previous work

Attacks AES implementation Leakage model Scenarios samples time

[2] 2KB table Bangerter known P (unknown P/C) 100 3 minutes
MDASCA 2KB table Bangerter known P 1 6 seconds
MDASCA 2KB table Bangerter unknown P/C 2 60 seconds
MDASCA 1KB table Bangerter known P 1 15 seconds
MDASCA 1KB table Bangerter unknown P/C 2 120 seconds
MDASCA 256B table Bangerter known P 3 60 seconds

[25] 1KB table Osvik known P 300 65 milliseconds
MDASCA 1KB table Osvik known P 36 1 hour

As shown in Table 3, only up to three traces are required in MDASCA, in
contrast to 100 samples in [2]. In particular, when AES is implemented with
256B table, the attacks in [2] failed. This is because the leakages (the high 2-bit
of the lookup index) is small and the number of rounds that can be analyzed is
limited. MDASCA can utilize leakages of all rounds and only three cache traces
are required, which is the first successful ACLM based cache attack on AES with
a compact table.
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(a) Cache events sampled after each table
lookup

(b) Cache events sampled after one en-
cryption

Fig. 3. Profiled ACLM based leakages of V by S

Under Osvik model, we apply MDASCAs to AES implementation in OpenSSL
1.0.0d with four 1KB tables (such implementation can well defend attack in [22]).
Fig. 3(b) shows the events of 16 cache lines in 10 encryptions related for T0 in
real system. About 13-16 cache lines (colored in cyan) have misses, which means
that there are about 0-3 impossible deductions for the high 4-bit of every table
lookup index 〈Xi〉. Take the first column as an example, there are 3 impossible
deductions for 〈X2〉, D̄={9,10,15}, Sn = 3. Therefore, 27 ANF equations with
27 variables are introduced.

From Table 3, 36 traces can recover the full key comparing to the 300 traces
in [25] (in fact, to attack the same AES implementation in OpenSSL 0.9.8.a as
in [25], only 30 traces are required by MDASCA). In the attack, we first try
to directly use the equations generated by ACLM based leakages. Experimental
results show that the whole system cannot be solved even within one day. Then,
to accelerate the equation solving process, we iterate the values of several key
bits into the equation system besides the equations generated from leakages. For
example, four key bits need 16 enumerations. The results show that if the 4 key
bits of the input value are correct, it can be solved in 40 minutes. Otherwise,
the solver will output “unsatisfiable” within 10-20 seconds. We repeat the tests
for about 100 times. On average one hour is enough to recover the AES-128 key.

5.4 Case Study 3: TRLM Based MDASCA on AES

In TRLM based MDASCA, we implement AES on an 32-bit ARM microproces-
sor NXP LPC2124 with a direct mapped cache, and profile the cache events via
EM probes, as in [15]. The cache line size is 16 bytes. The table size is 256 bytes
and can fill up with 16 cache lines (ε=4, Nc=16). According to the analysis in
Section 4.3, the cache events of the first three rounds are utilized in the attack.
In an EM trace, the cache miss has a distinct peak. Thus cache hit/miss events
can be easily distinguished.
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(a) Cache events in five encryptions (b) Deduction set size

Fig. 4. Profiled Cache trace in TRLM Based MDASCA

Fig. 4(a) shows the cache events of the first 48 lookups (first 3 rounds) in 5
cache traces. The table lookups in the first round are more likely to cause misses.
The probabilities of cache hit increase in following rounds. However, even after
48 lookups, there is still high probability that full 16 cache lines on the 256B
table have not been updated yet, consistent with the analysis in Section 4.3.
Let the table lookup index be yi (1 ≤ i ≤ 48). Fig. 4(b) shows the number of
deductions for 48 table lookup indexes of the 5 cache traces. This number is
increased with the table lookup number, and the range is 0-15 for these 5 traces.

Take the 8-th and 9-th lookups (also l8 and l9) of the first sample in Fig. 4(a)
as examples. As to l8, a cache miss is observed. Then the impossible deduction
set of 〈y8〉 is D̄ = {〈y1〉, 〈y2〉, 〈y3〉, 〈y5〉, 〈y6〉, 〈y7〉}, Sn = 6. Note that all the
variables of D̄ have already been represented in the AES algebraic equation
system, and nv,φ = 0, ne,φ = 0. We only needs to compute the new intro-
duced variables and equations by Eq. (6). According to Section 2.2, 30 ANF
equations with 30 variables can be generated. As to l9, a cache hit happens.
From Section 2.2, the possible deduction set of 〈y9〉 (higher four bits of y9) is
D = {〈y1〉, 〈y2〉, 〈y3〉, 〈y5〉, 〈y6〉, 〈y7〉, 〈y8〉}, Sp = 7. As all the variables of D have
been represented in the AES system, according to Section 2.2, 57 ANF equations
with 35 variables can be added to the equation system.

For some table lookups, it is hard to tell whether they are cache miss or hit
because the peak is not high enough. In our MDASCA, we treat uncertain cache
events as cache hits. In some other scenarios, partially preloaded cache is also
considered and more cache hits are observed. Our MDASCA only utilizes cache
misses and still works in this case.

As in [15], we conduct several TRLM based MDASCAs on AES considering
three scenarios: with both cache hit and miss events, with cache miss events only,
with cache miss events and four preloaded cache lines. Each attack in the three
cases is repeated for 100 times. To accelerate the equation solving procedure,
we also input the candidates of 4 key bits into the equation system and launch
16 ASCA instances corresponding to 16 possible candidates. The comparisons
of our results with previous work are listed in Table 4.
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Table 4. Comparisons of TRLM based MDASCA on AES with previous work

Attacks Utilized collisions Collision type Preloaded cache lines Sample size Key space time

[13] 16 lookups H/M 0 14.5 268 -
[14] 18 lookups H/M 0 30 230 -
[15] 20 lookups H/M 0 30 10 -

MDASCA 48 lookups H/M 0 5 (6) 1 1 hour(5 minutes)
[15] 20 lookups M 0 61 - -

MDASCA 48 lookups M 0 10 1 1 hour
[15] 20 lookups M 4 119 - -

MDASCA 48 lookups M 4 24 1 1 hour

From Table 4, TRLM based MDASCA can exploit cache behaviors of three
AES rounds (48 table lookups) and achieve better results than previous work
[14, 15]. At least five cache traces are able to recover 128-bit AES key within
an hour. The complexity for both online (number of measurements) and offline
(recovering the key from the measurements) phases has been reduced. Moreover,
the results are also consistent with the theoretical analysis in Section 4.3.

6 Impact of MDASCA

The impacts of MDASCA in this paper can be understood as follows.
The first impact is on error tolerance. Providing error tolerance can increase

the robustness and practicability of ASCA. This can be addressed with two
approaches. One is to embed the error toletance into the solver, as in TASCA [28].
The SCIP solver [5] used in [28] requires the small errors continuously distributed
around the correct value (e.g., under HWLM), and might not work under ACLM
and TRLM, where the error offset is discrete, unpredictable and large. The
diversities among different leakage models play as the major barrier. The other
approach is what MDASCA does. The errors are preprocessed and represented
with new equations. The overhead of the approach includes new variables and
equations. However, the cryptanalysts can now focus on the leakage utilization
and reduce the affects from the solver. Moreover, our results of MDASCA show
that the complexity of solving equations is not prohibitively high and most of
the instances can be solved within reasonable times with a small variance..

The second impact is on application of attacks. Previous ASCAs [24, 27, 28]
work well on some small devices (e.g., microcontroller), where the power is highly
correlated to the HW and easy to measure. How can we adopt ACSA under
different scenarios, such as ACLM and TRLM, where those advantages never
exist? For the first time MDASCA extends the applications of ASCA to more
complicated models. Considering the widely used microprocessors in common PC
and embedded devices, it is difficult to launch HWLM based ASCA on them.
Cache attacks are more practical. Previous attacks [1, 2, 4, 6, 7, 13–15, 20, 22, 25]
on AES can only use the leakages in the first two rounds due to the complexity
of representing the cache leakages of the targeted states. MDASCA can exploit
the cache leakages in more rounds, even in all the rounds. Thus the complexity
of the attack and the required measurements are dramatically reduced.
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7 Conclusion and Future Work

Due to the existence of noises and the intrinsic feature of leakage models, cor-
rect deductions in ASCA are often hidden in multiple candidates. This paper
proposes an enhanced ASCA attack called Multiple Deductions-based ASCA
(MDASCA) to exploit these candidates. A generic method is described to repre-
sent multiple deductions with algebraic equations. Several leakage models suit-
able for MDASCA are analyzed and the details of the leakage exploitation are
also provided. For the first time, we evaluate the minimal amount of leakages for
MDASCA on AES under these models. To verify the practicality and theoretical
analysis, we have successfully launched real MDASCA attacks under different
models, and achieved better results.

From this paper, MDASCA attests again that combining algebraic techniques
with SCA is a promising way to fully utilize the leakages. Future works of
MDASCA consequently include the solver improvement (try different solvers
for better performances and solving capabilities), application extension (to dif-
ferent ciphers, leakage models and implementations) and security evaluation (as
a benchmark to evaluate the physical security of ciphers).
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Appendix 1: Algorithm to Calculate ξ(x) under HWLM

Algorithm 1 computes ξ(x) from two input parameters. The first is n, the number
of bits in x. The second is m. If m is 1, the algorithm outputs ξ(x) for the cases
that HW (x) is known. Otherwise, it outputs ξ(x) for the cases that both HW (x)
and HW (S(x)) are known, where S(x) is the S-Box result of x.

Algorithm 1. Compute the search space of x
1: Inputs: n,m
2: Output: ξ(x) the expected search space of x
3: int i, j, sum=0;
4: for i=0 to 2n do
5: for j=0 to 2n do
6: if(HW (i) == HW (j))
7: if(m == 1 or HW (S(i)) == HW (S(j)))
8: sum++;
9: end if
10: end if
11: end for
12: end for
13: return ξ(x) = ( float)sum/2n;

Appendix 2: Hamming Weight Representation of a Byte

Suppose X is a byte,containing 8 bits (x7 . . . x0). HW (X) can be represented
with a 4-bit value Y=(y3 . . . y0). x0 and y0 denote the LSBs. Bits in Y can be
calculated as:

y3 =

7∏

i=0

xi, y2 =
∑

xixjxmxn(0 ≤ i < j < m < n ≤ 7),

y1 =
∑

xixj(0 ≤ i < j ≤ 7), y0 =

7∑

i=0

xi

(11)
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