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The side-channel cube attack (SCCA)is a powerful cryptanalysis technique that combines the side-channel
and cube attack. This paper proposes several advanced techniques to improve the Hamming weight-
based SCCA (HW-SCCA) on the block cipher PRESENT. The new techniques utilize non-linear equations
and an iterative scheme to extract more information from leakage. The new attacks need only 289 chosen
plaintexts to recover 72 key bits of PRESENT-80 and 2°78 chosen plaintexts to recover 121 key bits of
PRESENT-128. To the best of our knowledge, these are the most efficient SCCAs on PRESENT-80/128. To
show the feasibility of the proposed techniques, real attacks have been conducted on PRESENT on an
8-bit microcontroller, which are the first SCCAs on PRESENT on a real device. The proposed HW-SCCA can
successfully break PRESENT implementations even if they have some countermeasures such as random
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1. Introduction

The side-channel cube attack (SCCA) is a powerful attack pro-
posed by Dinur and Shamir (2009). It combines the side-channel
attack (SCA) (Kocher et al., 1999) and cube attack (Dinur and
Shamir, 2008, 2009). The cube attack can break any cryptosystem
where a bit in the ciphertext can be represented by a low degree
multivariate polynomial composed of public and key variables. In
practice, however, the cube attack can only break variants of ciphers
with reduced rounds because the degrees of polynomials are very
high in well designed ciphers. To reduce the complexity, SCA can
be utilized to obtain information from the leakage (e.g., timing
(Kocher, 1996), power (Kocher et al., 1999), and electromagnetic
radiation (Quisquater and Samyde, 2000)) about the intermediate
states of the cipher, where the polynomials have lower degrees.
The combination of the two types of attacks results in SCCA (Dinur
and Shamir, 2009).

Currently, there are two leakage models suitable for SCCA. A
common one is single bit leakage model (SBLM), which targets only
one bit each time. Due to the difficulties in obtaining the value of
a single bit in a real experiment, current SBLM based SCCAs (SB-
SCCAs) (Abdul-Latip et al., 2010, 2011; Bard et al., 2010; Dinur and
Shamir, 2009; Yang et al., 2009; Zhao et al., 2011) are normally done
with simulations. A more practical model is the Hamming weight
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leakage model (HWLM), which has been studied in many SCAs. The
HWLM based SCCA (HW-SCCA) (Abdul-Latip et al., 2011) targets
multiple bits (e.g., one byte). Compared with SBLM, the measure-
ment cost of HWLM is much lower. As multiple bits are involved,
more information from the leakage is available to adversaries in
HWLM than in SBLM. Thus more key bits can be retrieved, even
with fewer chosen plaintexts.

Since the first SCCA (Dinur and Shamir, 2009), many block
ciphers have been analyzed, such as PRESENT (Abdul-Latip et al.,
2011; Yang et al., 2009; Zhao et al., 2011), NOEKEON (Abdul-Latip
etal.,2010), KATAN (Bard etal.,2010) and Hummingbird-2 (Fan and
Gong, 2011). Most of the literature is based on SBLM. Only the work
in Abdul-Latip et al. (2011) is based on a 64-bit HWLM. Meanwhile,
there has been no physical experiment of SCCA. This paper proposes
several enhancements to HW-SCCA and confirms the results with
real experiment on a lightweight block cipher PRESENT (Bogdanov
et al,, 2007) implemented on an 8-bit processor. PRESENT has two
versions: PRESENT-80 and PRESENT-128, which use 80 and 128 bits
keys, respectively. The new techniques in this paper can break both.
The new attacks are also effective on PRESENT implementations
with some countermeasures such as random delay and masking.

1.1. Related work and motivations

Yang et al. (2009) proposed the first SB-SCCA on PRESENT-80.
They extracted the linear equations of key variables from a single bit
leakage in round 3. With 215 chosen plaintexts, they extracted 48
key bits and reduced the key search space to 232, Zhao et al. (2011)
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improved the attacks. Using the same leakage location in Yang et al.
(2009), they showed that 48 key bits can be extracted with only
21192 chosen plaintexts. To recover more key bits, they also tar-
geted a leakage bit in round 4. Abdul-Latip et al. (2011) studied
HW-SCCA on PRESENT. Assuming that the 64-bit Hamming weight
(HW) of the output of the first round is available, they exploited
the non-linear equations of key variables besides the linear ones.
Using about 213 chosen plaintexts, they can recover 64 key bits for
both PRESENT-80 and 128.

All of the previous SCCAs on PRESENT (Abdul-Latip et al., 2011;
Yang et al.,2009; Zhao et al.,2011) are based on theoretical analysis
and simulation. SB-SCCAs require the correct value of a single bit,
which is difficult to achieve in practice. The work in Abdul-Latip
et al. (2011) assumes accurate deductions of 64-bit HW from leak-
age, which is difficult in practice, too. In addition, the 64-bit value is
usually produced by several sequential operations, and thus cannot
be deduced by a single measurement.

We develop two techniques that allow us to improve HW-
SCCAs, proposed in Abdul-Latip et al. (2011). The first is to exploit
leakage states of smaller sizes, such as a byte (8-bit) or a nibble
(4-bit), allowing for good measurements in real attacks and mak-
ing the attacks applicable to more implementations. The second is
to exploit the states in deeper rounds, which provide more infor-
mation to recover more key bits. This paper exploits the HW of a
byte instead of a 64-bit value, and studies the leakages in the third
round instead of those in the first round. The reason that we choose
to exploit the HW of a byte is that the 4-bit hardware platform
is rarely in use. The example implementation of PRESENT is also
written for 8-bit processors (Klose, 2011). The improved attacks are
demonstrated on an 8-bit microcontroller ATMEGA324P, where the
power consumption is highly correlated to the HW of the targeted
state.

1.2. Contributions and organization

The main contribution of this paper is twofold.

On the theoretical side, the paper presents a framework of
HW-SCCA, proposes several techniques to enhance HW-SCCA, and
applies them to PRESENT. Section 3 describes the five major steps
in HW-SCCA. Section 4 describes an efficient HW-SCCA on PRESENT
under HW-HWLM in round 3. Firstly, the basic linear HW-SCCA is
considered and it is shown that 2890 chosen plaintexts are required
to reveal 48 key bits of PRESENT. We observe that many cho-
sen plaintexts for different cubes are duplicated and the results
in previous work (Abdul-Latip et al., 2011; Yang et al., 2009; Zhao
et al, 2011) are inaccurate. Then, two techniques are introduced
to enhance HW-SCCA by exploiting non-linear equations of
key variables and recovering key bits iteratively. The improved
attacks require 289> chosen plaintexts to recover 72 key bits of
PRESENT-80. Finally, the attacks are also extended to PRESENT-
128 where 121 key bits can be recovered with only 2978 chosen
plaintexts.

On the experimental side, the paper reports the results of real
attacks on PRESENT and demonstrates the advantages of HW-
SCCA over correlation power analysis (CPA) (Brier et al., 2004).
Section 5 presents the results of HW-SCCAs on PRESENT imple-
mented on an 8-bit microcontroller, which are the first SCCAs on
block ciphers on a physical device. A new method is proposed
to improve the accuracy and practicality of HW deductions. The
results also show that with accurate HW deductions, HW-SCCA
outperforms CPA especially when some countermeasures, such as
random delay and masking, are used. Section 6 compares SCCA
with other SCA techniques and discusses the limitations of HW-
SCCA on PRESENT, further enhancements, and impacts on cipher
designs.

2. Preliminaries
2.1. Cube attack

The cube attack (Aumasson et al., 2009; Dinur and Shamir,
2008, 2009; Lai, 1994; Vielhaber, 2007; Zhang et al., 2009) can be
divided into several phases. The preprocessing phase determines
what queries should be sent to a black-box oracle. The online phase
deduces the values of the low-degree equations of key variables by
querying a polynomial oracle with chosen public variables. Finally,
solving a system of low-degree equations recovers the key.

A bit of an intermediate state in ciphers can be represented as
a multivariate polynomial of public variables (e.g., plaintext vari-
ables in block ciphers and MACs, initial vector variables in stream
ciphers) and key variables. Assume a cipher has m public variables
V={v1, ..., vm} and n key variables K={k1, .. ., kn}. Each variable is a
single bit. Let X=V U K. An intermediate bit can be described as a mul-
tivariate master-polynomial f{X). Let the degree of f{X) be Deg(f). In
the preprocessing phase, the adversary randomly chooses t;, a prod-
uct of the selected public variables. Then f{X) can be represented
as

fX)=f(n,.. - kn) = tipsgy + qi(X) (1)

I, called a cube, is a set of indexes of public variables. An index
in Iis a cube index. t; is a maxterm denoting the product of all public
variables included in I. pgy is called a superpoly of I. q; contains
all monomials that are not divisible by t;. For example, consider a
polynomial f{X) of degree 4 with 8 variables and 14 monomials:

L Um, k1, ..

F(X) = v1vgky + v1vaks + vavgkg + V304K + V1K1 k2 + @
v1koks +v1ky + Vv + V304 + koks + kokg + 13 + 14+ 1
If we merge monomials that have the same public variables, f{X)
can be written as
f(X) = v1V4(kq + k3) + 1vov4(kg + 1) + v304(ky + 1)+ 3)
U](k1 + k] k2 + I€2]€3) + k2k3 + k2k4 +V3+V4+ 1
If I={1, 4}, it is a cube of size 2. Then t;j=viv4, ps=ki +ks,
qi=ov4(kg + 1)+ ...+ v4 + 1. Assume all public variables not in t;
are 0. For an assignment a to the public variables in ¢, f{X) becomes
fa(K). The sum of f5(K) over GF(2) for all assignments is exactly pg.
When v,=v3=0, there are four assignments to v; and v4. The sum of
the four f,(K)(0 <a< 3) is kq + k3, which is the superpoly of I={1, 4}.
If fo(K) can be deduced from SCA, k; + k3 is known. Repeating the
process with other cubes can obtain more information about key
bits.

2.2. The PRESENT algorithm

PRESENT is a 31-round block cipher with an SPN structure. The
block size is 64 bits. The input to the first round is the plaintext and
the ciphertext is the output of the 31st round XORed with the post-
whitening key K32. Each round consists of three major operations:

1 addRoundKey (AK). The 64-bit input is XORed with the round
key.

2 sBoxlayer (SL). 16 identical 4 x 4 S-boxes are used in parallel.

3 player (PL). Bit i is moved to position P(i), as specified in a per-
mutation table P.

Below is the description of the key schedule for PRESENT-80
(For PRESENT-128, please refer to Bogdanov et al. (2007)). The 80-
bit key is stored in a register K=ksg9k7g .. .kg. Then the round key
Kii (1 <i<31) and the post-whitening key K32 are generated by
extracting the 64 leftmost bits of K. After each generation, K is
rotated by 61 bits to the left. Then, an S-box operation is applied
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to the 4 leftmost bits of K. Finally, a round-counter i is XORed with
bits k1g9k1gk17k1gk15 of K.
Table 1 defines the notations used in HW-SCCA on PRESENT.

3. The framework of HW-SCCA

In HW-SCCA, SCA measures the side-channel leakage, deduces
the HW of the targeted state, and obtains the value of a single bit
fiX) while the cube attack uses f{X) to recover the key. This section
describes the framework of HW-SCCA.

3.1. Preprocessing phase

3.1.1. Identify the targeted state

The location of the targeted state is very important to HW-SCCA.
A good location covers all the key variables while minimizing the
complexity of the polynomial f{X). We use three criteria from our
empirical experiences to select the state.

(1) Ni(X), the number of key variables that appear in f{X). At the
selected state, N(X) should be as large as possible, to recover more
key bits.

(2) Deg(X), the polynomial degree of f{X). At the selected state,
Deg(X) should be as small as possible. Since Deg(X) increases expo-
nentially with the rounds, a state in deeper rounds is not preferred.

(3) Nmo(X), the number of monomials in f{X). At the selected
state, Nmo(X) should be minimized to reduce the length of the
extracted superpolys and the complexity of merging monomials.

3.1.2. Represent the Hamming weight

In SB-SCCA, the deduced value from leakage is either O or 1,
which can be used as the value of f{X). In HW-SCCA, however, it
is necessary to explore how H(X) should be used. Take one byte
X =(X7X6X5X4X3X2X1X0) as an example. H(X) can be described as a
4-bit value Y=(y3y2y1¥o)- Xo and yq are the least significant bits
(LSBs). The bits in Y can be calculated as:

7
y3 = Hx,-, V2 = inxjxmxn(o <i<j<m<n<7),
i=0

7
= inxj(o <i<j=<7), Yo= in
i=0

Any one of the bits in Yis dependent on all eight bits in X and can
be utilized in cube attacks. Since the degree of y is 1, yq is the best
option. Although y4, ¥,, y3 can also be utilized, they lead to much
larger complexities.

(4)

3.1.3. Extract superpolys

In white-box attack scenarios as in Yang et al. (2009), the adver-
saries know the detail of the cipher design and can represent the
polynomial f{X) with the public and key variables. They can merge
the monomials that have the same public variables and extract the
cubes and corresponding superpolys. To accelerate the search for
superpolys,acommon method is to merge the monomials that have
at most one key variable (i.e., one key variable and some public
variables or public variables only). However, this method does not
work well when the cube size is large. New techniques are needed
for extracting superploys.

3.2. Online phase

3.2.1. Deduce the Hamming weight

In this step, the values of H(X) are deduced from the leakage.
Firstly, a HW model is established to describe the leakage patterns
for different HWs of the targeted state. Secondly, leakage traces are

collected when chosen plaintexts are encrypted on the device with
the unknown key. Finally, the correlations between leakages traces
and the HW model are examined to obtain the correct HW.

3.2.2. Recover the secret key

In this step, the value of the superpolys is computed from the
symbolic sums of yg in H(X) over GF(2). Many low-degree equations
on the key bits are obtained. Then existing tools, such as zChaff
(Princeton University, 2007), MiniSat (Een and Sorensson, 2005),
and CryptoMiniSat (Soos et al., 2011), can be leveraged to solve the
equations and retrieve the involved key bits. If necessary, a brute-
force search can be invoked to recover the full key.

4. Efficient HW-SCCA on PRESENT

This section introduces the preprocessing phase of efficient HW-
SCCA on PRESENT. The HWLM used here is different from that in
Abdul-Latip et al. (2011). The targeted state is a byte, not a 64-bit
value and the byte is in the third round, not in the first round. As
listed in Table 1, L/ , denotes a bit in the HW, where ie[1...31]
is the round number, j € {AK, SB, PL} is the operation, me[1...8]
is the index of the targeted byte, and n<[0... 3] is the bit index in
the HW representation.

4.1. Identify the targeted byte

In PRESENT, the output of PL in the second round is the place
where all 64 bits of K are involved in one byte for the first time.
In this paper, the targeted PRESENT implementation is written by
Klose Klose (2011). In this implementation, deducing the HW of the
output of AK is easier than the output of PL. So one byte after the
AK step in the third round, Lfn’AK, will be the targeted state.

Fig. 1(a) shows how Deg(Lﬁ;ﬁK) changes with m and n after the

AK step in round 3. Among the choices for n, Deg(L;’%K) is the small-

est. Among the values of m, Deg(Lf:gK) and Deg(ngéK) are relatively
small. Fig. 1(b) shows how the number of monomials changes with
m. Since Nmo(L?’SK) and Nmo(Lg’gK) are small, L':”QK and Lg’gK are
identified as the targeted byte. ' ’

4.2. HW-SCCA with linear superpolys

We start our search for the superpolys using the common
method mentioned in Section 3. We choose n=0 and consider only
the linear part of a HW representation. A basic HW-SCCA on both
L?:'SK and ng’gk are performed. The result for L%:’SK islisted in Table 2,
which has 56 linear superpolys. In comparison, the estimated value
ofNCp(nggK) is 24 x 22 +32 x 25 ~ 21013 The result for L?:'SK is listed
in Table 7.

4.3. New observations on the number of chosen plaintexts

In the attack, we observed that when the plaintexts are chosen
based on the cubes listed in Table 2, many of them are actually
duplicated. Recall the simple example in Section 2. Four cubes can
be identified {1, 4},{2, 4},{3, 4},{1}. An assignment v; =1, =v3 =
v4 = 0 can be used as a chosen plaintext for all four cubes. After
removing the duplicated chosen plaintexts in Table 2, Ncp(Lg’:gK)
can be further reduced from 21913 down to 2890=477.

All existing analyses of SCCAs have simply counted the number
of chosen plaintexts based on the sizes of cubes. Our observations
reduce the number of chosen plaintexts actually needed in practice.
Table 3 lists the updated number of chosen plaintexts for some
existing SCCAs on PRESENT.



X. Zhao et al. / The Journal of Systems and Software 86 (2013) 728-743 731
Table 1
Notations used in this paper.
Variable Notations Variable Notations
Ng; Cube size of I L’m’ The m-th byte of the _j_—th operation in round i
ki The i-th bit of master key L, The n-th HW bit of L,/
K Subkey in round i fiX) Polynomial representation of X
K1 Superpoly of I Ni(X) Number of key variables in f{X)
Ky New key deductions Deg(X) Polynomial degree of f(X)
H(X) HW of X Nmo(X) number of Monomials in f{X)
Hp(X) Deduction of H(X) Nep(X) Number of chosen plaintexts for X
80 ‘ ' ' ' 21 . . . ; . .
m2f =0l ) 5
—4—n=1 20 > il a 1
4 —o—r=2 1 N
o 561 —8—n=3 ] 2 has
@ E
a 2 18 &
o 48+ 1 =
= £ 17 :
T 40 1 5 /
E & & o & 4 S 16 /’ ]
c 32t 1 £ /
8 244 1ot / y
Ao 2 /
16+ T i b b v h = 14 / J
4 ) ) ) ) ) -
8L —— t t t 1 13} J
(-
0 1 L L L L 12 I L I L 1 I
1 2 7 8 1 2 3 4 5 6 7 8

Table 2

Cube indexes and superpolys for Nk(Lg:

3 4 5 6
8 bytes addRoundKey output in round 3

(8) Deg(L3HEY in round 3

8 bytes addRoundKey output in round 3

(b) Nmo(L? AK) in round 3

)
m,0

Fig. 1. Deg(Ly) and Nino(Lyy) in round 3. (a) Deg(Ly/y) in round 3; (b) Nmo(L>4) in round 3.

AK

o ) (linear equations).

I Ksy I Ksi I Ksy 1 Ksi

1,2 1+kie 32,33 1+kso 4,5,6,9,10 1+kos 36, 37,40, 41,43 1+ksa
0,2 k17 45, 46 1+keo 4,5,7,8,10 kos 36, 37,40, 41, 42 ksq +kss
0,1 1+kg 44, 46 ke1 4,5,7,8,9 1+ky 36,37, 38,41, 42 1+kse
13,14 1+ kzg 44, 45 1+ ksz 4,5,6,8,9 kzs + k27 36, 37, 39, 40, 42 k57
12,14 ka9 49, 50 1+kea 21, 22,24, 25,26 1+ksg 36, 37, 39, 40, 41 1+ksg
12,13 1+k3p 48, 50 kes 20,22, 24, 25,27 k37 36, 37, 38, 40, 41 Kksg +ksg
17,18 1+ks 48,49 1+kes 20, 21, 24, 25, 27 1+ksg 53, 54, 56, 57, 58 1+kes
16,18 k33 61,62 1+kve 20, 21, 24, 25, 26 k3g + k3o 52,54, 56, 57, 59 Keo
16,17 1+kay 60, 62 k77 20, 21,22, 25, 26 1+kgo 52,53, 56, 57,59 1+kso
29,30 1+kas 60, 61 1+kss 20, 21, 23, 24,26 ka1 52,53, 56,57,58 k70 + k71
28,30 kas 5,6,8,9,10 1+kao 20,21, 23,24,25 1+ka 52,53,54,57,58 1+ks
28,29 1+kse 4,6,8,9,11 k21 20, 21,22, 24,25 kap + ka3 52,53, 55, 56, 58 k73
33,34 1+kasg 4,5,8,9,11 1+ka 37,38,40,41, 42 1+ks; 52,53, 55, 56,57 1+ks4
32, 34 k49 4, 5, 8, 9, 10 1(22 +k23 36, 38, 40, 4], 43 k53 52, 53, 54, 56, 57 k74 + k75

Table 3

New chosen plaintext number of SCCAs on PRESENT.

Ref. Previous chosen plaintext number New chosen plaintext number
Yang et al. (2009) 215 21250
Zhao et al. (2011) 211.92 21088
Abdul-Latip et al. (2011) 213 21227
Section 4.2 21013 28.90

Table 4

Cube indexes and superpolys for Nk(LiQK) (non-linear superploys).
I Ksi Ky I Ky Kq
1 1+ki6 +kio +kig +kigkis k1o 33 1+ kag +ks1 + kso + kagkso ks
13 1+kag +k3q +kso + kagkso k31 45 1 +kgo + kg3 + kea + keokez Kes
17 1+ksp +kas +ksg +kaoksg k3s 49 1+keq +ke7 + kes + keakss ke7
29 1+Kkaa +kaz +kag + kaakas ka7 61 1 +kyg +kyg + k7g + k7gkos k7o
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4.4. Enhanced HW-SCCA with non-linear superpolys

Section 4.2 only explores the linear superpolys. In fact, we can
utilize non-linear superpolys with quadratic terms to improve HW-
SCCAs (Abdul-Latip et al., 2011; Zhang et al., 2009). Unlike the
basic HW-SCCA, we now merge the monomials that have at most
two (instead of one) key variables for each cube. The best result
for L;:’SK is listed in Table 4, which has eight non-linear super-
polys. Take the first row of the left half of Table 4 as an example.
When I={1}, the non-linear superpoly 1 + kg + k19 + k18 + k1gk1g can
be extracted. Since both kg and k;g are already recovered in Table 2,
k19 can be determined.

Since all the cube indexes in Table 4 already appear in
Tables 2 and 4 does not introduce any new chosen plaintexts. The
results of HW-SCCA with non-linear terms for L?:’SK can be found
in Table 8.

4.5. Enhanced HW-SCCA with iterative scheme

To further reduce the key search space, we propose an enhanced
SCCA scheme, called the iterative SCCA. The main idea is to substi-
tute the key variables with the recovered key bits, update f, Vand K,
and repeat the standard SCCA. As fewer unknown key variables are
in f, both Deg and Ny, are reduced. More maxterms and superpolys
can then be retrieved. Note that in the iterative SCCA, some of the
chosen public variables may have minor changes.

As shown in Tables 2 and 4, ifL;:‘gK is selected, we can extract 64

key bits of K! (i.e., k79 . . . k1 in the master key). To obtain ks . . . kg,
we substitute K! in f with the key bits already recovered. The 64
bits at the output of round 1 (PL(SL(AK(P, K1)))) are used as new
public variables, as shown in the iterative place 2 in Fig. 2. Then the
previous three-round HW-SCCA on PRESENT-80 becomes a new
two-round HW-SCCA. The complexity of fis reduced significantly.

Table 5 shows that 2° chosen plaintexts can recover 8 more key
bits, thus reducing the key space to 28. Considering the duplicated
chosen plaintexts, only 18 more plaintexts are actually required.
Combining the results above, in total, 495 (289°) chosen plaintexts
are enough to recover 72 key bits. The results of iterative HW-SCCA
on L?:’SK can be found in Table 9.

5. Physical experiments

This section presents the online phase of HW-SCCA on PRESENT.
The power leakage of PRESENT implemented on an 8-bit microcon-
troller is collected to deduce the values of the superpolys extracted
in previous sections. To improve the practicality of HW-SCCA, an
accurate HW deduction method based on Pearson correlation factor
is proposed.

In traditional SCAs, DPA (Kocher et al., 1999) and CPA (Brier
et al., 2004) are two techniques that are widely used. When attack-
ing the implementations on microcontrollers, CPA is more effective
than DPA (Coron and Kizhvatov, 2009, 2010; Kocher et al., 2011).
Therefore, we use CPA to evaluate the resistance of PRESENT against
SCAs and compare it with HW-SCCA. To fully investigate the advan-
tages of HW-SCCA, we conduct CPAs and HW-SCCAs on both
unprotected and protected implementations of PRESENT-80. The
protected implementations have two types of countermeasures:
random delay and masking.

5.1. Implementations of PRESENT on an 8-bit microcontroller

The targeted device is the AMTEL ATMEGA324P 8-bit microcon-
troller. It runs at 8 MHz. A digital oscilloscope MSO6012A measures
the voltage drop on a resistor connected to ATMEGA324P. The

oscilloscope communicates with a PC via a USB interface. The samp-
ling rate is 100M points/s.

Our attacks are performed on an 8-bit implementation of
PRESENT written by Klose (2011). Both the size optimized and
speed optimized implementations use the same C code for the AK
operation, which updates one byte (instead of a nibble) of the state
at a time. The results in this section are from the attacks on the size
optimized version of PRESENT-80, targeting a byte after the AK step
in round 3.

5.2. Enhanced HW-SCCA with accurate HW deduction

In practice, the measured power traces come with a lot of noise,
which makes obtaining accurate HW deductions difficult. Any error
in the value of H(X) may cause the cube attack to fail. In this section,
we introduce new techniques that can deduce the HW value from
physical traces with a very high accuracy.

A HW power model must be built first, which normally depends
on the targeted operations. To build the power model, we randomly
choose pairs of plaintext and key, and collect power traces of the
entire encryption for each pair. We separate all the traces into nine
categories based on the HW of the first output byte of AK in round
3. The power profile for each HW value is shown on the left side of
Fig. 3 and each curve is the average of 1000 traces.

To deduce the HW, adversaries calculate the correlation
coefficients of two vectors(e.g., the measured trace and the power
model). The Pearson correlation factor is widely used in SCAs (Brier
etal., 2004; Mayer-Sommer, 2000; Standaert et al.,2004). However,
this method does not work very well in deducing the HW from a
small number of power traces. For example, four power traces are
shown on the right part of Fig. 3, where four different plaintexts
are XORed with the same key and the results have different HWs.
The correct values are 3, 2, 2 and 3. The deduced values Hp(X) by
Pearson correlation factor are 4, 1, 1 and 3, which have +1 errors.

We propose a new technique to improve the HW deduction.
We introduce a new parameter g, a metric of the vertical voltage
variance in addition to the horizontal phase offset. Suppose Py is
the model and Py, is the measured trace. The new correlation factor
P(Pg, Pyp) is shown in Eq. 5.

8'Eprng,pmepM(pr — Pg).(pm — Pum)

IO(PR? Pl\/l) = — —
(\/ZPrEPR(pm _PM)Z'EPmEPM(pm _PM)Z) )
%{;’\3, if max(Pg) > max(Py)
= max(Pg) .
m, if max(Pgr) < max(Py)

To improve the success rate, we collect the power traces n times
for the same plaintext, and obtain n HW deductions. We calculate
the frequency of each possible HW value in the deductions and
select the one with the maximal frequency. In our experiments, if
n > 6, the probability of getting the correct value is 100%.

5.3. Attacks on unprotected PRESENT

5.3.1. CPA on PRESENT

CPA is a variant of DPA. It guesses the values of some key bits
and calculates the HW of the targeted state. The guess is verified
with the Pearson correlation factors between the measured trace
and the computed HW from the guess.

We choose the first nibble of the output of S-box in the first
round as our target in CPA. Fig. 4(a) shows the CPA results for the
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Table 5
Cube indexes and superpolys for N(L}'5) (SCCA with iterations).
1 Ksi 1 Ksi 1 Ks; I Ks;
32,46 1+ko 32,50 1+ka 32,54 1+ks 32,58 1+kq2
32,45 kq 32,49 ks 32,53 ko 32,57 ki3

correct and wrong key guesses. The red curve for the correct key
guess has a much higher peak than those in the blue curves (for
wrong guesses). Fig. 4(b) shows how the correlation coefficient for
the correct key guess changes with the number of power traces.
Fig. 4 shows that for the unprotected PRESENT implementation,
200 power traces are enough to recover the first nibble of K!. To
recover all 16 nibbles, our CPA needs 1024 traces.

5.3.2. HW-SCCA on PRESENT
In HW-SCCA on PRESENT, we choose L;”SK as the targeted byte.
We first generate the plaintexts according to the extracted cubes in

Real HW 3
Pearson 4
3

This paper
200

Tables 2, 4 and 5, then deduce the HW with the method in Section
5.2,and finally recover the values of the superpolys by the symbolic
sum over GF(2).

Take Fig. 5 as an example. Fig. 5 (a)-(d) shows the four power
traces for encrypting different plaintexts for the cube I={1, 2} and
the superpoly Kg=1 +kq6. The key is fixed in four encryptions. We
can deduce four HWs, 4, 4, 6, and 4, from the traces. The LSBs of the
four HW values are 0. Since 1+k;5=0+0+0+0=0, we can deduce
kig=1. Using the techniques described in Section 4, we have con-
ducted successful attacks on PRESENT implemented on the 8-bit
processor. The results show that 72 key bits of PRESENT-80 can be
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recovered with 2895 chosen plaintexts and 2114 =6 x 2895 power
traces.

5.4. Attacks on PRESENT protected with random delays
Inserting random delays (Coron and Kizhvatov, 2009, 2010)

can change the execution time of the encryption. The ran-
domized delays introduce more noise and make the analysis,

such as data alignment and trace average, more difficult.
This technique can be used to defeat many SCAs includ-
ing CPA. It has been widely adopted in many embedded
systems.

In most cases, the random delays are implemented with specific
numbers of NOP loops. As a result, the delays consume less power
than normal operations, and can be identified if the delay is long
enough.
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Fig. 5. HW-SCCA on PRESENT without countermeasures.
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The effects of random delays depend on the amount of the delays
and the way they are added. Suppose the lengths of the delays
follow a normal distribution. A simple way to accomplish this is
to add a delay with large mean and variance at one location. A
more advanced way is to introduce delays at many locations (dif-
ferent operations, different rounds), where each delay has a smaller
mean and variance (Coron and Kizhvatov, 2009, 2010). The latter is
normally combined with a dummy round to introduce more ran-
domness, although it also causes more performance degradation.

In our experiments, we insert two delays before and after the
first AK in the first round. The total delay is approximately 3r cycles
where r is uniformly distributed in [0...d] and d is a parameter.
Three experiments are conducted with different values of d.

5.4.1. CPA on PRESENT

Fig 6(a) shows the results for 0 <d < 7. 3000 traces are required
in CPA to reveal nibble 1. Fig 6(b) shows the results for 0 <d < 15.
6000 traces are required. Fig 6(c) shows the results for 0 <d < 127.
We are not able to guess the correct value of nibble 1 even with
32,768 traces. It is clear to see that CPA can be defeated by random
delays.

5.4.2. HW-SCCA on PRESENT

As many block ciphers adopt an iterative structure, the power
consumption for different rounds and operations can be easily iden-
tified, as noted in Kocher et al. (1999). In our implementation with
random delays, the power pattern for the leakage byte in the third
round does not change by much. It is easy to identify that pattern
and deduce the HW leakage from a single power trace. The data
alignment is not required.

Fig. 7 shows the four power traces on L;”SK when encrypting
different plaintexts for the cube I={1, 2} and superpoly Kg=1+ k6.
Random delays are added into the implementation. It is clear to see
that although the horizontal time position of L;:QK is different in
the four traces, the HWs can still be easily deduced and the values
are 4, 4, 6, and 4. 72 key bits of PRESENT can also be recovered with
2892 chosen plaintexts and 2114 (n=6) power traces.

5.5. Attacks on PRESENT protected with masking

Masking (Akkar and Giraud, 2001; Chari et al., 1999; Goubin and
Patarin, 1999; Mangard et al., 2007) is another solution to prevent
SCAs. It randomizes the sensitive data and minimizes the correla-
tions between data and leakages. This paper will focus on Boolean
masking (Akkar and Giraud, 2001; Chari et al., 1999; Goubin and
Patarin, 1999; Mangard et al., 2007).

We implement PRESENT with a masked substitution table pro-
posed by Akkar and Giraud (2001). For each encryption, a 64-bit
mask u is randomly generated for the input of AK. The mask v for
the output of SBis chosenas v = PL~!(u).InFig. 8(a), p; and k; are two
inputs of AK, and p; @ k; and S(p; @ k;) are the output of the AK and
SB.The masked table §' is defined as S'(p; @ k; @ u;) = S(p; @ ki) ® v;,
where u; and v; are the masks of the i-th nibble of the S-box input
and output. p;, k;, u;, v; € GF(24), 0 <i < 15. In this implementation,
the same masks u and v are used in all rounds of one PRESENT exe-
cution because recalculation of S’ for each new pair (u, v) is too
expensive. The values of u; for the 16 S-boxes are different in the
same round.

5.5.1. CPA on PRESENT

Fig. 8(b) shows the CPA coefficient curves for 16 key guesses
on the first nibble of K! with the increase of the number of power
traces. The CPA does not work on implementations with random
masking.

5.5.2. HW-SCCA on PRESENT

In HW-SCCA on the same implementation, we measure the
HW leakage of L% and L3, We choose the leakage bit as
{Liﬁ,’( @ L;‘fg(}, instead of L;‘fg(. As the same u is applied to both
round 2 and 3, the new targeted bit is independent of u. Since the
polynomial of this bit is slightly different from that in Section 4,
we need to update the cubes and superpolys to be extracted. The
results of SCCA on {L%QK ® Lf:’(;”( } and {L%:’SK ® nggK} are listed in
Tables 20-25, respectively.

Fig. 9 displays the power traces of L%’AK and LS’AK for the cube
I={1,2} and the superpoly pg;)=1 + k1 (listed in Table 23 for masked
implementations). Using the method in Section 4, the HW values of
L%'AK and Lg”AK for four chosen plaintexts are {4, 2, 5,2} and {6, 3, 5,

3} respectively. We can compute the four values of {L%:’SK @ Lg:g’( }
as {0, 1, 0, 1}, and then deduce that ki6=1. 72 key bits of PRESENT
can still be recovered with 2892 chosen plaintexts and 211-54(n=6)
power traces.

6. Discussions
6.1. Comparison of HW-SCCA, DPA, and ASCA

HW-SCCA, DPA (CPA), and recently proposed ASCA (algebraic
side-channel attack (Renauld and Standaert, 2009; Renauld et al.,
2009; Zhao et al., 2012)), have different assumptions, thus resulting
in different strengths.

6.1.1. DPA(CPA)

This type of attack leverages statistical techniques to identify the
relation between data and leakage. It requires few assumptions and
is applicable to many platforms. The attack targets the first or last
round of ciphers. A divide-and-conquer strategy is usually adopted
for the key recovery. The full key is recovered in a byte-by-byte,
or nibble-by-nibble manner. Recovering one byte or one nibble of
the key requires relatively large numbers of traces although the
numbers are highly dependent on the targeted implementations.
In addition, the attack is much less effective when countermeasures
are present.

6.1.2. ASCA

ASCA can utilize the leakage in all rounds and even break
a system with a single trace. In ASCA, all the key bits can be
recovered at the same time. The attack can work under unknown
plaintext/ciphertext scenarios and defeat certain masking counter-
measures. ASCA has strong assumptions on the leakage model and
the capability of the adversaries (e.g., the HWs of the intermedi-
ate states can be deduced accurately). ASCA needs to profile and
analyze many leakages in a single trace. More efforts are spent in
building templates for every leakage location.

6.1.3. SCCA

Both SCCA and ASCA have strong assumptions on the leakage
model and the capability of the adversaries. Different from DPA
(CPA), SCCA deduces the intermediate states from a single power
trace. As a result, some countermeasures like random delays are
less effective in defeating SCCA. Similar to ASCA, SCCA uses the
leakage in deeper rounds. Both SCCA and DPA (CPA) rely on the
divide-and-conquer strategy and SCCA recovers one key bit each
time. On average, SCCA requires fewer traces than DPA (CPA). As
only one leakage in a trace is utilized (templates for single leak-
ages are required), profiling is easier in SCCA than in ASCA. Both
SCCA and ASCA can break some masking schemes while it is more
difficult for CPA. Most importantly, inheriting the advantages of
cube attacks, SCCA can work under black-box settings where nei-
ther ASCA nor DPA can. This is a new threat to the security of cipher
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Table 6
Comparisons between SCCA and SCAs.
Comparisons DPA (CPA) ASCA SCCA
Assumptions Weak Strong Strong
Leakages Measurement location First or last round Any round Deeper round
Number Medium per trace Maximized per trace Single per trace
Difficulty Easy Difficult Medium
Key recovery Byte (nibble) by Byte (nibble) Full key at a time Bit by bit
Data complexity High Low Medium
Scenarios Random delays X - J
Masking x Vv N
White-box attack N Vv i
Black-box attack X x Vv
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implementations. The detailed comparisons among SCCA, DPA
(CPA) and ASCA are shown in Table 6.

6.2. Limitations, extensions and impacts of HW-SCCA

This paper shows that the HW-SCCA works well on the soft-
ware implementation of PRESENT on microcontrollers, where the
HW of intermediate states can be accurately deduced. Our HW-
SCCA might not work when many small random delays are inserted
before and after each operation in the first 3 rounds of PRESENT
(if the adversary cannot identify the leakage trace of the targeted
operation from the delays in the whole power trace), when differ-
ent masks are utilized in different rounds of PRESENT, or when the
byte-oriented computations in either AK or SB are executed in a
random order (Oswald and Schramm, 2005). For hardware imple-
mentations, our attacks do not work if the HW of the targeted state
cannot be deduced.

HW=4 (01005) HW=2 (0010y)

The technique of this paper can be easily extended to HW-SCCA
on PRESENT with 4-bit implementations or other lightweight block
ciphers, especially to some PRESENT-like ciphers such as SmallPre-
sent (Leander, 2010) and EPCBC (Yap et al., 2011).

In the schemes proposed in this paper, the extracted cube size
is very small (<5) and the superpolys are simple (linear or quadric,
with the number of key variables <3). In the black-box SCCA on
block ciphers with an iterated structure (e.g., PRESENT), the power
pattern for different rounds and operations can be easily identified.
The adversary can select some leakage locations and deduce the
HWs at those locations. If the HW deduction is accurate, the adver-
saries can enumerate all the cubes and superpolys, and then test
their relations with cube attacks. If the relations hold, the key can
be recovered bit by bit. PRESENT can be broken by HW-SCCA under
a black-box setting without a prohibitively high data complexity.

The cryptologists should carefully consider HW-SCCA during
the cipher design and evaluation phases. Some recent lightweight
ciphers took three approaches to mitigate HW-SCCA: (1) increase
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the degree of equations of each output bit, e.g., Klein (Gong et al.,
2010), Piccolo (Shibutani et al., 2011); (2) make the linear terms
in the equations more complicated (not just simple permutations),
e.g.,Klein (Gongetal.,2010), Piccolo (Shibutani et al.,2011)and LED
(Guoetal.,,2011); (3)increase the number of rounds thatis required
to associate the leakage bit with all the key bits, e.g., LBlock (Wu
and Zhang, 2011).

7. Conclusions

This paper proposes several efficient SCCAs on PRESENT based
on the single byte Hamming weight leakage model. We start with
the basic HW-SCCA on PRESENT-80. Then, two new approaches are
proposed to improve SCCA. The first one leverages non-linear equa-
tions and the second is an iterative scheme. All the attacks can be
easily extended to PRESENT-128. To the best of our knowledge, the
combination of all these advanced techniques results in the most
efficient SCCA on PRESENT-80/128. The key search space can be
reduced to 28 for PRESENT-80 with 289> chosen plaintexts and to
27 for PRESENT-128 with 2978 chosen plaintexts.

Meanwhile, the attacks were verified with experiments on
PRESENT implemented on an 8-bit microcontroller, instead of
with simulations only. The results demonstrate that HW-SCCA has
advantages over CPA in some scenarios, especially when some
countermeasures such as random delays and masking are inte-
grated. The results also indicate that for implementations where
the HW can be deduced accurately, PRESENT may be broken by
HW-SCCA under a black-box setting. We hope the work can deepen

Table 7

Cube indexes and superpolys for Nk(L?’AK

"o ) (linear superploys,using yo).

our understanding of HW-SCCA, which is critical to the design of
ciphers and the evaluation of their physical security.
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Appendix A.

1. Results of HW-SCCA on PRESENT-80

Tables 7-9.

2. Results of HW-SCCA on PRESENT-128

The techniques in Section 4 can be extended to PRESENT-128.
The results on PRESENT-128 are summarized in Table 10. As shown
in row 1 and row 3 in Table 10, targeting ijg'( and Lg”gK can
recover 80 key bits with 2992 and 2899 chosen plaintexts, respec-
tively. To recover more key bits, we can target L‘;:QK and ng'gk .
As shown in row 2 and row 4 in Table 10, 38 and 41 additional
key bits can be recovered with 287! and 282 chosen plaintexts
respectively. In total, 118 and and 121 key bits can be deduced
with 2987 and 2978 chosen plaintexts, respectively. The remaining
bits in the master key can be obtained through a brute-force
search.

Tables 11-25.

3. Results of HW-SCCA on PRESENT-80 with masking.

I Ksi 1 Ks; 1 Ksi 1 Ksy
1,2 1+kie 33,34 1+kag 5,7,8,9,10 1+kao 37,38, 40,41, 42 ks>
0,1 kig + k19 32,33 kso + ks1 4,5,8,911 koo + ka3 36,37,40,42,43 ksq +Kkss
0,2 ky7 + k19 32,34 Kkao +ks1 4,6,8,9,10 ka1 + ka3 36, 38, 40, 41, 42 Kks3 +kss
13,14 1+kos 45, 46 1+keo 4,5,6,9,11 1+kog 36,37, 38,41, 42 ks
12,13 k3o + k31 44,45 keo + ke3 4,5,6,8,9 kog + ka7 36, 37, 38, 40, 41 ksg + ksg
12,14 kag + k31 44, 46 ket +kes 4,5,6,8,10 ks + ka7 36, 37, 38, 40, 42 ks7 +ksg
17,18 1+ks 49, 50 1+Kea 21,22,24,25,26 k36 53, 54, 56,57, 58 Kes
16,17 k34 + k35 48,49 kes + ke7 20, 21, 24, 26, 27 k3g + k3o 52,53, 56, 58,59 k70 + k7
16,18 k33 + k35 48, 50 Kkes +ke7 20, 22,24, 25,26 k37 +k3g 52, 54, 56, 57, 58 Kkeg + k71
29,30 1+Kkag 61,62 1+k7 20,21, 22, 25,26 kao 52,53,54,57,58 k72
28,29 kag + ka7 60, 61 k78 + k79 20, 21,22, 24,25 kaz + ka3 52,53,55,56,57 k74 + k75
28,30 Kas + ka7 60, 62 k77 + k79 20, 21, 22, 24, 26 ka1 + ka3 52,53, 55,56, 58 k73 + k75
Table 8
Cube indexes and superpolys for Ni(L}'4¥) (non-linear superploys,using yo).
I Ksi Kq 1 Ksi Kq
5,8,9,10 1+ ka3 + kaokao + kaokos koo or ka3 37,40, 41, 42 1+kss +ksaksa + ksakss ks4 o1 kss
4,5,6,9 1+ ka7 + kogkos + kagka7 ko o1 ko7 36, 37, 38, 41 1+ ksg + ksgksg + kseksg ksg or ksg
21,24, 25,26 1+ k3o + k3gksg + k3gksg k3g or ksg 53,56,57,58 1+ k71 + kegk7o + kegk71 k70 or k71
20,21,22,25 1+ ka3 + kaokao + kaokas kap or kg3 52,53,54,58 ks + k72k73 + k72k7s k73 or ks
Table 9
Cube indexes and superpolys for N(L>4“) (iteration,using yo).
I K I Ks; I Ks; I Ks;
2,13,15 1+ky7 18,29, 31 1+kss 17,18,52 Kkag 48,53 Kes
1,3,14 1+kag 17,19, 30 1+kas 32,37 Kks1 49, 51, 62 1+ks7
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Table 10
Results of HW-SCCAs on PRESENT-128.
Leakage byte Refer Nep Nk
Ne(L355) Tables 11-14 2902 80 bits
N(L206, 120€) Tables 11-15 290242871 = 2987 118 bits
Ne(L305) Tables 16-18 2899 80 bits
Ne(Ly5, 135%) Table 16-19 289942852 29978 121 bits
Table 11
Cube indexes and superpolys for Ni(L}'4“) (linear equations,using yo).
1 Ks 1 Kt 1 Kt I Ks;
1,2 1+kea 33,34 1+kos 5,7,8,9,10 1+Kkes 37,39, 40, 41, 42 k100
0,1 kes + ko7 32,33 kog +kog 4,5,8,10,11 k70 + k71 36,37,40, 42,43 k102 *+ k103
0,2 kes + kg7 32,34 kg7 + kog 4,6,8,9,10 keo + k71 36, 38, 40, 41, 42 kio1 + K103
13,14 1+k7e 45, 46 1+kios 4,5,6,9,11 1+ks, 36,37,38,41,43 k104
12,13 kg + k79 44, 45 k110 *+ k111 4,5,7,8,9 k74 + k75 36, 37, 38, 40, 41 k106 *+ K107
12,14 k77 + k79 44, 46 k100 *+ k111 4,5,7,8,10 k73 + k75 36, 37, 38, 40, 42 k105 *+ k107
17,18 1+kso 49, 50 1+ki12 21,23, 24, 25,26 ksa 53,55, 56,57, 58 k116
16,17 kso + kg3 48,49 k114 + k115 20, 21, 24, 26, 27 kge + kg7 52,53, 56, 58, 59 ki1 + k119
16,18 kg1 + kg3 48,50 k113 + k115 20,22, 24,25,26 kss +ks7 52,54,56,57,58 ki17 + k119
29,30 1+koy 61,62 1+ki24 20, 21,22, 25,27 kss 52,53, 54,57,59 k120
28,29 ko +kos 60, 61 k126 + k127 20,21,22,24,25 koo + ko1 52,53, 54,56,57 k122 *+ k123
28,30 ko3 +kos 60, 62 k125 + k127 20,21,22,24,26 kso + ko1 52,53, 54, 56, 58 k121 + k123
Table 12

Cube indexes and superpolys for Ny(L}') (non-linear equations, using yo).

I Ks; D I Ks; D
6,8,9,10 k71 + kegkeo + kegk71 Kkeo OT k71 38,40, 41,42 k103 +k100k101 + K100K103 K101 OF K103
4,5,6,9 1+k7s +k72k74 + k72k75 K74 OT k75 36,37, 38, 41 1+kq07 + k10ak106 *+ k104k107 K106 OT K107
22,24,25,26 kg7 + kgakgs + ksaks7 kgs or kg7 53,56,57,58 1+ki19 +ki1cki1s +ki16ki1o ki1s or k119
20,21, 22,25 1+koq +ksgkao + ksgkor koo OT ko1 52,54, 55,58 k123 +k120k121 + K120K123 k121 Or K123
Table 13
Cube indexes and superpolys for N, (L"0) (1st iterative SCCA, using yo).
I Ksi I K1 I Kt I Kt I Kt Ksi I Ksi I Ksi
8 1+ky 40 1+kio 9 1+koo 41 1+kog 24 1+kg 56 1+kie 25 kog 57 k32
4 k_r, 36 k13 5, kz] 37 kzg 20 kg 52 k17 21 k25 53 1(33
Table 14
Cube indexes and superpolys for Ny(L}5) (2nd iterative SCCA, using y1).
1 Ksi I K1 1 Kt 1 Kt
2,13,14 Kke7 18,29, 30 ks3 34,45, 46 koo 50, 61, 62 ki1s
1,2,14 k79 17,18, 30 Kkos 33,34,46 ki11 49, 50, 62 k127
Table 15
Cube indexes and superpolys for Nk(L;’ng) (3rd iterative SCCA, using yo).
1 Ks; 1 Ks; 1 K
1,2 1+ks 44,45 kao +kso 20, 21,22, 24,25 kog + k3o
0,1 ks +kg 44, 46 kag +kso 20, 21, 22, 24, 26 kog + k3o
0,2 ks +ke 49, 50 1+ks1 37,39, 40, 41, 42 1+k3g
13,14 1+ks 48,49 ks3 +Kksq 36,37,40,42,43 ka1 +kao
12,13 k17 +kig 48, 50 ks +ksq 36,37,40,42,43 ka0 + Kkan
12,14 kis +kig 61, 62 1 +ke3 +kes + kes + keakes 38,40, 41,42 kaz + k3gkao + k3gkao
17,18 1+kio 5,7,8,9,10 1+ky 36,37, 38,41,43 1+kss
16,17 ko1 + koo 4,5,8,10,11 ko + k1o 36, 37, 38, 40, 41 kas + kag
16,18 koo + ka2 4,6,8,9,10 ks + k1o 36, 37, 38, 40, 42 Kag +Kag
29,30 1+ksq 4,5,6,9,11 1+kiq 36,37, 38,42 kae + kazkas + kazkas
28,29 k33 +k3q 4,5,6,8,9 ki3 +k1a 53,55, 56,57,58 1+kss
28,30 k3 +k3q 4,5,6,8,10 k12 + k14 52,53, 56, 58, 59 ks7 +Kksg
33,34 1+kss 21, 23,24, 25,26 1+kos 52, 54, 56, 57, 58 kse + ksg
32,33 k37 +k3g 20, 21, 24, 26, 27 kos +kog 54,56, 57,58 ksg + kssksg + kssksg
32,34 k3 + k3g 20, 22, 24, 25, 26 koa +kog
45, 46 1+Kka7 20, 21, 22, 25,27 1+ky7
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Table 16
Cube indexes and superpolys for N(L3) (linear equations,using yo).

I Ksi I K I K I K
1,2 1+Kea 32,33 1+kog 4,5,6,9,10 1+k7 36, 37,40, 41, 43 1+ki02
0,2 Kes 45, 46 1+kios 4,5,7,8,10 k73 36, 37,40, 41, 42 k102 * k103
0,1 1+kes 44, 46 k109 4,5,7,8,9 1+ky 36,37, 38,41,42 1+kq04
13,14 1+ke 44,45 1+ki10 4,5,6,8,9 k74 + k75 36, 37, 39, 40, 42 kio0s
12,14 k77 49, 50 1+ki12 21,22, 24,25, 26 1+ksg 36, 37, 39, 40, 41 1+kio6
12,13 1+ksg 48, 50 k113 20, 22, 24, 25,27 kss 36, 37, 38, 40, 41 k106 *+ k107
17,18 1+kso 48,49 1+ki1a 20, 21, 24, 25, 27 1+kss 53, 54, 56, 57, 58 1+ki16
16,18 ks1 61,62 1+ki2a 20, 21, 24, 25, 26 kse + kg7 52, 54, 56, 57, 59 k117
16,17 1+ksy 60, 62 ki2s 20, 21, 23, 25, 26 1+Kkssg 52,53,56,57,59 1+kq1s
29,30 1+key 60, 61 1+kie 20, 22,23, 24,26 ksg 52,53,56,57,58 ki1 + k119
28,30 ko3 5,6,8,9,10 1+Kkes 20,21, 23,24,25 1+kgo 52,53, 54,57,58 1+ki20
28,29 1+Kkoy 4,6,8,9,11 keo 20,21, 22,24,25 koo + ko1 52, 53,55, 56,58 ki21
33,34 1+kog 4,5,8,9,11 1+kso 37,38, 40, 41, 42 1+ki00 52, 53,55, 56,57 1+ki22
32,34 Ko7 4,5,8,9,10 k70 + k71 36, 38, 40, 41, 43 k101 52,53, 54, 56, 57 k122 + k123
Table 17
Cube indexes and superpolys for Nk(L;gK (non-linear equations, using yo).
I Kt DI Kt D
1 ke4 + ke7 + ke + keakes ke733 ko + kag + kog + kos kag koo
13 ka6 + k79 + k7 + k76k7s k7945 k1os + k111 + k110 + k10sk110 k111
17 kso +ks3 + kg2 + ksoksa ks349 k112 + k115 + k114 +k112k114 k11s
29 koa +kos + koa + kozkoa ko561 k124 + k127 + K126 + K124K126 k127
Table 18
Cube indexes and superpolys for N(Ly5) (1st iterative SCCA, using yo).
1 K 1 Ks; 1 Ks; 1 K 1 Ks; 1 K
34 1+ksg 38 1+kao 42 1+kay 46 1+kag 50 1+ksy 54 1+kse
33 k37 37 k41 41 k45 45 ](49 49 k53 53 k57
Table 19
Cube indexes and superpolys for Ni(L;4") (2nd iterative SCCA, using yo).
1 Ks, 1 Ks, I KSI
1,2 1+ks 29 1+ks3q +k3q + k33 +k31kss 4,5,6,8,9 k13 +k1a
0,2 Kka 33,34 1+kss 22,23,25,27 ka3
0,1 1+ks 33 1+ k3s + kg + k37 + k3sks7 20, 22, 24, 25,27 kog
0 1+ky +ke +kaks 45, 46 1+ky7 20, 21, 24, 25, 27 1+kys
13,14 1+ks 45 1+ ka7 + kso + kag + ka7kao 20, 21, 24, 25, 26 kos + kog
12,14 ki 49, 50 1+ksq 21, 23, 26, 27 ka7
12,13 1+ky7 49 1+ksy +Kksg +Kks3 +ks1ks3 20, 22, 23, 24, 26 kog
13 1+kys +kig +ky7 +kiskq7 61,62 1+ kes + kes + ke + ksakes 20, 21, 23,24, 25 1+kyg
17,18 1+kio 6,7,9,11 k7 20, 21, 22, 24,25 k2o + k3o
16,18 k20 7,8,9,11 k7 +kg 38,39,41,43 k39
16,17 1+ky 4,5,8,9,11 1+kg 36, 37, 40, 41, 42 ka1 +kap
17 1+ki9 + koo + ko1 +kiokoq 4,5,8,9,10 ko + k1o 37,39,42,43 ka3
29,30 1+k3; 5,7,10,11 ki1 36, 37, 38, 40, 41 Kas +kag
28,30 k32 4,5,7,8,10 ki2 53, 54, 56, 57, 58 1+kss
28,29 1+kss3 4,5,7,8,9 1+k3 52,53,56,57,58 Kks7 +ksg
Table 20
Cube indexes and linear superpolys on L7 @ L.
I Psy 1 1250) I Psny 1 1250)
1,2 kis 33,34 1+kag 5,7,8,9,10 1+kao 37,38, 40, 41, 42 ks>
0,1 kis + k1o 32,33 kso +ks1 4,5,8,9,11 koo + ko3 36, 37,40, 42,43 ksa +kss
0,2 k17 + k19 32,34 kag + ksq 4,6,8,9,10 ko1 + ko3 36, 38, 40, 41, 42 ks3 +kss
13,14 ks 45, 46 1+keo 4,5,6,9,11 1+koa 36,37, 38,41, 42 ks
12,13 k3o + k31 44, 45 koo + ke3 4,5,6,8,9 kog + ka7 36, 37, 38, 40, 41 ksg + Kksg
12,14 kog + k31 44, 46 ket + kes 4,5,6,8,10 kos + ko7 36, 37, 38, 40, 42 ks7 +ksg
17,18 k32 49, 50 1+kea 21, 22,24, 25,26 k36 53, 54, 56, 57, 58 Kes
16,17 k34 + k35 48, 49 kes + ke7 20, 21, 24, 26, 27 k3g + k3o 52,53, 56, 58, 59 k70 + k71
16,18 k33 + k35 48,50 k55 +ke7 20, 22, 24, 25, 26 k37 +k39 52,54,56,57,58 keo + k71
29,30 kaa 61,62 1+kse 20, 21, 22, 25,26 kao 52,53, 54,57,58 k72
28,29 kag + ka7 60, 61 k78 + k79 20, 21,22, 24,25 kaz + ka3 52,53, 55, 56,57 k74 + k75
28,30 kas + ka7 60, 62 k77 + k79 20,21, 22, 24,26 ka1 +kas 52, 53,55, 56,58 k73 + k75
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Table 21
; : 2,AK . 13,AK

Cube indexes and non-linear superpolys on L"(" & Lig -
1 1250) Kq 1 Psu Kq
5,8,9,10 1+ ko3 + Kook + kaokos koo or ka3 37,40, 41,42 1+kss +ksoksg + ksakss ks4 O kss
4,5,6,9 1+ky7 +kagkas +kagka7 kag or ka7 36,37, 38,41 1+ksg + ksgksg + ksgkso ksg or ksg
21, 24, 25,26 1+ ksg + k3gksg + k3gksg k3g or ksg 53,56,57,58 1+ k71 + kegk7o + kegk71 k0 or k71
20, 21,22,25 1+ ka3 + kaokas + kaokss ko OT kg3 52,53, 54,58 ks + k72k73 + k72k75 k3 or ko5

Table 22

Cube indexes and superpolys on L20¢ & L>A¥ (iterative SCCA).
I DPsty 1 250) 1 j250) I Ds(y
1 k19 18 1+kss 52 Kkag 53 Kkes
14 1+ksq 30 1+kyq7 37 ke1

Table 23

. . 2,AK . 13,AK

Cube indexes and linear superpolys on Lyy ®Lyy -
1 Psi I Psay 1 Psu 1 Psay
1,2 1+kis 32,33 1+kso 4,5,6,9,10 1+kog 36, 37,40, 41,43 1+ksq
0' 2 k17 45, 46 k[;[) 4, 5, 7, 8, 10 kzs 36, 37, 40' 4], 42 ](54 + ](55
0,1 1+kqg 44, 46 ke 4,5,7,8,9 1+kas 36,37, 38,41,42 1+ksg
13,14 1+ kzg 44, 45 1+ ’(52 4,5,6,8,9 k26 + k27 36, 37, 39, 40, 42 k57
12,14 K29 49, 50 Kea 21,22, 24,25,26 1+kss 36, 37, 39, 40, 41 1+ksg
12,13 1+kso 48, 50 kes 20, 22, 24, 25,27 k37 36,37, 38, 40, 41 ksg +ksg
17,18 1+ks3; 48,49 1+kes 20, 21, 24, 25,27 1+ksg 53,54, 56,57,58 1+kes
16,18 k33 61, 62 k76 20, 21, 24, 25, 26 Kk3g + K39 52, 54, 56, 57,59 Keo
16,17 1+ksq 60, 62 k77 20, 21, 22, 25, 26 1+kgo 52,53, 56, 57,59 1+k7o
29,30 1+kgq 60, 61 1+kzg 20, 21, 23,24, 26 ka1 52,53, 56,57,58 k70 + k71
28,30 K45 5,6,8,9,10 1+kyo 20,21, 23,24, 25 1+kg 52,53, 54,57,58 1+k7
28,29 1+kge 4,6,8,9,11 k21 20,21, 22,24,25 Kag +Ka3 52,53, 55, 56, 58 k73
33,34 Kkag 4,5,8,9,11 1+ky 37,38, 40, 41,42 1+ks; 52,53, 55, 56,57 1+ksy
32, 34 k49 4, 5, 8, 9, 10 ’(22 +k23 36, 38, 40, 4], 43 k53 52, 53, 54, 56, 57 k74 + k75

Table 24

Cube indexes and non-linear superpolys on L20¢ @ L3¢".
I Ds(y Kq 1 Ds(y Kq
1 1+kie +kig + kg + kiskis kio 33 1+kag +ks1 +kagkso ks1
13 1+kag + ks + k3o + kagkso k31 45 1+keo + ke3 + keokez Kke3
17 1+k3p +kss +k3q +k3aksg k3s 49 1+kes + ko7 +keakss ke7
29 1+ kag + ka7 + kao + kaskas ka7 61 1+ kg6 + kg + k76k7g k79

Table 25

Cube indexes and superpolys on L3-0“ & L34 (iterative SCCA).
I Psn I DPsu 1 DPsny I 220)
46 1+ko 50 1+ky 54 1+kg 58 1+ky
45 k1 49 k5 53 I{g 57 k13
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