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a  b  s  t  r  a  c  t

The  side-channel  cube  attack  (SCCA)  is  a powerful  cryptanalysis  technique  that  combines  the  side-channel
and  cube  attack.  This  paper  proposes  several  advanced  techniques  to  improve  the  Hamming  weight-
based  SCCA  (HW-SCCA)  on  the  block  cipher  PRESENT.  The  new  techniques  utilize  non-linear  equations
and  an  iterative  scheme  to extract  more  information  from  leakage.  The  new  attacks  need  only  28.95 chosen
plaintexts  to  recover  72  key  bits  of  PRESENT-80  and  29.78 chosen  plaintexts  to  recover  121  key  bits  of
eywords:
amming weight
ide-channel cube attack
RESENT
andom delay

PRESENT-128.  To  the  best  of  our knowledge,  these  are  the  most  efficient  SCCAs  on  PRESENT-80/128.  To
show  the  feasibility  of  the  proposed  techniques,  real  attacks  have  been  conducted  on  PRESENT  on  an
8-bit  microcontroller,  which  are  the  first  SCCAs  on  PRESENT  on  a real device.  The  proposed  HW-SCCA  can
successfully  break  PRESENT  implementations  even  if  they  have  some  countermeasures  such  as  random
delay  and  masking.
asking

. Introduction

The side-channel cube attack (SCCA) is a powerful attack pro-
osed by Dinur and Shamir (2009).  It combines the side-channel
ttack (SCA) (Kocher et al., 1999) and cube attack (Dinur and
hamir, 2008, 2009). The cube attack can break any cryptosystem
here a bit in the ciphertext can be represented by a low degree
ultivariate polynomial composed of public and key variables. In

ractice, however, the cube attack can only break variants of ciphers
ith reduced rounds because the degrees of polynomials are very
igh in well designed ciphers. To reduce the complexity, SCA can
e utilized to obtain information from the leakage (e.g., timing
Kocher, 1996), power (Kocher et al., 1999), and electromagnetic
adiation (Quisquater and Samyde, 2000)) about the intermediate
tates of the cipher, where the polynomials have lower degrees.
he combination of the two types of attacks results in SCCA (Dinur
nd Shamir, 2009).

Currently, there are two leakage models suitable for SCCA. A
ommon one is single bit leakage model (SBLM), which targets only
ne bit each time. Due to the difficulties in obtaining the value of

 single bit in a real experiment, current SBLM based SCCAs (SB-

CCAs) (Abdul-Latip et al., 2010, 2011; Bard et al., 2010; Dinur and
hamir, 2009; Yang et al., 2009; Zhao et al., 2011) are normally done
ith simulations. A more practical model is the Hamming weight

∗ Corresponding author. Tel.: +86 13643319969.
E-mail address: zhaoxinjieem@163.com (X. Zhao).

164-1212/$ – see front matter ©  2012 Published by Elsevier Inc.
ttp://dx.doi.org/10.1016/j.jss.2012.11.007
© 2012 Published by Elsevier Inc.

leakage model (HWLM), which has been studied in many SCAs. The
HWLM based SCCA (HW-SCCA) (Abdul-Latip et al., 2011) targets
multiple bits (e.g., one byte). Compared with SBLM, the measure-
ment cost of HWLM is much lower. As multiple bits are involved,
more information from the leakage is available to adversaries in
HWLM than in SBLM. Thus more key bits can be retrieved, even
with fewer chosen plaintexts.

Since the first SCCA (Dinur and Shamir, 2009), many block
ciphers have been analyzed, such as PRESENT (Abdul-Latip et al.,
2011; Yang et al., 2009; Zhao et al., 2011), NOEKEON (Abdul-Latip
et al., 2010), KATAN (Bard et al., 2010) and Hummingbird-2 (Fan and
Gong, 2011). Most of the literature is based on SBLM. Only the work
in Abdul-Latip et al. (2011) is based on a 64-bit HWLM. Meanwhile,
there has been no physical experiment of SCCA. This paper proposes
several enhancements to HW-SCCA and confirms the results with
real experiment on a lightweight block cipher PRESENT (Bogdanov
et al., 2007) implemented on an 8-bit processor. PRESENT has two
versions: PRESENT-80 and PRESENT-128, which use 80 and 128 bits
keys, respectively. The new techniques in this paper can break both.
The new attacks are also effective on PRESENT implementations
with some countermeasures such as random delay and masking.

1.1. Related work and motivations
Yang et al. (2009) proposed the first SB-SCCA on PRESENT-80.
They extracted the linear equations of key variables from a single bit
leakage in round 3. With 215 chosen plaintexts, they extracted 48
key bits and reduced the key search space to 232. Zhao et al. (2011)

dx.doi.org/10.1016/,DanaInfo=ac.els-cdn.com+j.jss.2012.11.007
https://xvpn.whut.edu.cn/science/journal/,DanaInfo=www.sciencedirect.com+01641212
https://xvpn.whut.edu.cn/locate/,DanaInfo=www.elsevier.com+jss
mailto:zhaoxinjieem@163.com
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mproved the attacks. Using the same leakage location in Yang et al.
2009),  they showed that 48 key bits can be extracted with only
11.92 chosen plaintexts. To recover more key bits, they also tar-
eted a leakage bit in round 4. Abdul-Latip et al. (2011) studied
W-SCCA on PRESENT. Assuming that the 64-bit Hamming weight

HW) of the output of the first round is available, they exploited
he non-linear equations of key variables besides the linear ones.
sing about 213 chosen plaintexts, they can recover 64 key bits for
oth PRESENT-80 and 128.

All of the previous SCCAs on PRESENT (Abdul-Latip et al., 2011;
ang et al., 2009; Zhao et al., 2011) are based on theoretical analysis
nd simulation. SB-SCCAs require the correct value of a single bit,
hich is difficult to achieve in practice. The work in Abdul-Latip

t al. (2011) assumes accurate deductions of 64-bit HW from leak-
ge, which is difficult in practice, too. In addition, the 64-bit value is
sually produced by several sequential operations, and thus cannot
e deduced by a single measurement.

We  develop two techniques that allow us to improve HW-
CCAs, proposed in Abdul-Latip et al. (2011).  The first is to exploit
eakage states of smaller sizes, such as a byte (8-bit) or a nibble
4-bit), allowing for good measurements in real attacks and mak-
ng the attacks applicable to more implementations. The second is
o exploit the states in deeper rounds, which provide more infor-

ation to recover more key bits. This paper exploits the HW of a
yte instead of a 64-bit value, and studies the leakages in the third
ound instead of those in the first round. The reason that we  choose
o exploit the HW of a byte is that the 4-bit hardware platform
s rarely in use. The example implementation of PRESENT is also

ritten for 8-bit processors (Klose, 2011). The improved attacks are
emonstrated on an 8-bit microcontroller ATMEGA324P, where the
ower consumption is highly correlated to the HW of the targeted
tate.

.2. Contributions and organization

The main contribution of this paper is twofold.
On the theoretical side, the paper presents a framework of

W-SCCA, proposes several techniques to enhance HW-SCCA, and
pplies them to PRESENT. Section 3 describes the five major steps
n HW-SCCA. Section 4 describes an efficient HW-SCCA on PRESENT
nder HW-HWLM in round 3. Firstly, the basic linear HW-SCCA is
onsidered and it is shown that 28.90 chosen plaintexts are required
o reveal 48 key bits of PRESENT. We  observe that many cho-
en plaintexts for different cubes are duplicated and the results
n previous work (Abdul-Latip et al., 2011; Yang et al., 2009; Zhao
t al., 2011) are inaccurate. Then, two techniques are introduced
o enhance HW-SCCA by exploiting non-linear equations of
ey variables and recovering key bits iteratively. The improved
ttacks require 28.95 chosen plaintexts to recover 72 key bits of
RESENT-80. Finally, the attacks are also extended to PRESENT-
28 where 121 key bits can be recovered with only 29.78 chosen
laintexts.

On the experimental side, the paper reports the results of real
ttacks on PRESENT and demonstrates the advantages of HW-
CCA over correlation power analysis (CPA) (Brier et al., 2004).
ection 5 presents the results of HW-SCCAs on PRESENT imple-
ented on an 8-bit microcontroller, which are the first SCCAs on

lock ciphers on a physical device. A new method is proposed
o improve the accuracy and practicality of HW deductions. The
esults also show that with accurate HW deductions, HW-SCCA
utperforms CPA especially when some countermeasures, such as

andom delay and masking, are used. Section 6 compares SCCA
ith other SCA techniques and discusses the limitations of HW-

CCA on PRESENT, further enhancements, and impacts on cipher
esigns.
nd Software 86 (2013) 728– 743 729

2. Preliminaries

2.1. Cube attack

The cube attack (Aumasson et al., 2009; Dinur and Shamir,
2008, 2009; Lai, 1994; Vielhaber, 2007; Zhang et al., 2009) can be
divided into several phases. The preprocessing phase determines
what queries should be sent to a black-box oracle. The online phase
deduces the values of the low-degree equations of key variables by
querying a polynomial oracle with chosen public variables. Finally,
solving a system of low-degree equations recovers the key.

A bit of an intermediate state in ciphers can be represented as
a multivariate polynomial of public variables (e.g., plaintext vari-
ables in block ciphers and MACs, initial vector variables in stream
ciphers) and key variables. Assume a cipher has m public variables
V={v1, . . . , vm} and n key variables K={k1, . . .,  kn}. Each variable is a
single bit. Let X=V ∪ K. An intermediate bit can be described as a mul-
tivariate master-polynomial f(X). Let the degree of f(X) be Deg(f). In
the preprocessing phase, the adversary randomly chooses tI, a prod-
uct of the selected public variables. Then f(X) can be represented
as

f (X) = f (v1, . . . , vm, k1, . . . , kn) = tIpS(I) + qI(X) (1)

I, called a cube, is a set of indexes of public variables. An index
in I is a cube index. tI is a maxterm denoting the product of all public
variables included in I. pS(I) is called a superpoly of I. qI contains
all monomials that are not divisible by tI. For example, consider a
polynomial f(X) of degree 4 with 8 variables and 14 monomials:

f (X) = v1v4k1 + v1v4k3 + v2v4k4 + v3v4k2 + v1k1k2+
v1k2k3 + v1k1 + v2v4 + v3v4 + k2k3 + k2k4 + v3 + v4 + 1

(2)

If we merge monomials that have the same public variables, f(X)
can be written as

f (X) = v1v4(k1 + k3) + v2v4(k4 + 1) + v3v4(k2 + 1)+
v1(k1 + k1k2 + k2k3) + k2k3 + k2k4 + v3 + v4 + 1

(3)

If I={1, 4}, it is a cube of size 2. Then tI=v1v4, pS(I)=k1 + k3,
qI=v2v4(k4 + 1) + . . . + v4 + 1. Assume all public variables not in tI

are 0. For an assignment a to the public variables in tI, f(X) becomes
fa(K). The sum of fa(K) over GF(2) for all assignments is exactly pS(I).
When v2=v3=0, there are four assignments to v1 and v4. The sum of
the four fa(K)(0 ≤a≤ 3) is k1 + k3, which is the superpoly of I={1, 4}.
If fa(K) can be deduced from SCA, k1 + k3 is known. Repeating the
process with other cubes can obtain more information about key
bits.

2.2. The PRESENT algorithm

PRESENT is a 31-round block cipher with an SPN structure. The
block size is 64 bits. The input to the first round is the plaintext and
the ciphertext is the output of the 31st round XORed with the post-
whitening key K32. Each round consists of three major operations:

1 addRoundKey (AK). The 64-bit input is XORed with the round
key.

2 sBoxlayer (SL). 16 identical 4 × 4 S-boxes are used in parallel.
3 pLayer (PL). Bit i is moved to position P(i), as specified in a per-

mutation table P.

Below is the description of the key schedule for PRESENT-80
(For PRESENT-128, please refer to Bogdanov et al. (2007)).  The 80-

bit key is stored in a register K = k79k78 . . . k0. Then the round key
Kii (1 ≤ i ≤ 31) and the post-whitening key K32 are generated by
extracting the 64 leftmost bits of K. After each generation, K is
rotated by 61 bits to the left. Then, an S-box operation is applied
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o the 4 leftmost bits of K. Finally, a round-counter i is XORed with
its k19k18k17k16k15 of K.

Table 1 defines the notations used in HW-SCCA on PRESENT.

. The framework of HW-SCCA

In HW-SCCA, SCA measures the side-channel leakage, deduces
he HW of the targeted state, and obtains the value of a single bit
(X) while the cube attack uses f(X) to recover the key. This section
escribes the framework of HW-SCCA.

.1. Preprocessing phase

.1.1. Identify the targeted state
The location of the targeted state is very important to HW-SCCA.

 good location covers all the key variables while minimizing the
omplexity of the polynomial f(X). We  use three criteria from our
mpirical experiences to select the state.

(1) Nk(X), the number of key variables that appear in f(X). At the
elected state, Nk(X) should be as large as possible, to recover more
ey bits.

(2) Deg(X), the polynomial degree of f(X). At the selected state,
eg(X) should be as small as possible. Since Deg(X) increases expo-
entially with the rounds, a state in deeper rounds is not preferred.

(3) Nmo(X), the number of monomials in f(X). At the selected
tate, Nmo(X) should be minimized to reduce the length of the
xtracted superpolys and the complexity of merging monomials.

.1.2. Represent the Hamming weight
In SB-SCCA, the deduced value from leakage is either 0 or 1,

hich can be used as the value of f(X). In HW-SCCA, however, it
s necessary to explore how H(X) should be used. Take one byte

 = (x7x6x5x4x3x2x1x0) as an example. H(X) can be described as a
-bit value Y = (y3y2y1y0). x0 and y0 are the least significant bits
LSBs). The bits in Y can be calculated as:

y3 =
7∏

i=0

xi, y2 =
∑

xixjxmxn(0 ≤ i < j < m < n ≤ 7),

y1 =
∑

xixj(0 ≤ i < j ≤ 7),  y0 =
7∑

i=0

xi

(4)

Any one of the bits in Y is dependent on all eight bits in X and can
e utilized in cube attacks. Since the degree of y0 is 1, y0 is the best
ption. Although y1, y2, y3 can also be utilized, they lead to much
arger complexities.

.1.3. Extract superpolys
In white-box attack scenarios as in Yang et al. (2009),  the adver-

aries know the detail of the cipher design and can represent the
olynomial f(X) with the public and key variables. They can merge
he monomials that have the same public variables and extract the
ubes and corresponding superpolys. To accelerate the search for
uperpolys, a common method is to merge the monomials that have
t most one key variable (i.e., one key variable and some public
ariables or public variables only). However, this method does not
ork well when the cube size is large. New techniques are needed

or extracting superploys.

.2. Online phase
.2.1. Deduce the Hamming weight
In this step, the values of H(X) are deduced from the leakage.

irstly, a HW model is established to describe the leakage patterns
or different HWs  of the targeted state. Secondly, leakage traces are
nd Software 86 (2013) 728– 743

collected when chosen plaintexts are encrypted on the device with
the unknown key. Finally, the correlations between leakages traces
and the HW model are examined to obtain the correct HW.

3.2.2. Recover the secret key
In this step, the value of the superpolys is computed from the

symbolic sums of y0 in H(X) over GF(2). Many low-degree equations
on the key bits are obtained. Then existing tools, such as zChaff
(Princeton University, 2007), MiniSat (Een and Sorensson, 2005),
and CryptoMiniSat (Soos et al., 2011), can be leveraged to solve the
equations and retrieve the involved key bits. If necessary, a brute-
force search can be invoked to recover the full key.

4. Efficient HW-SCCA on PRESENT

This section introduces the preprocessing phase of efficient HW-
SCCA on PRESENT. The HWLM used here is different from that in
Abdul-Latip et al. (2011).  The targeted state is a byte, not a 64-bit
value and the byte is in the third round, not in the first round. As
listed in Table 1, Li,j

m,n denotes a bit in the HW,  where i ∈ [1 . . . 31]
is the round number, j ∈ {AK, SB,  PL}  is the operation, m ∈ [1 . . . 8]
is the index of the targeted byte, and n ∈ [0 . . . 3] is the bit index in
the HW representation.

4.1. Identify the targeted byte

In PRESENT, the output of PL in the second round is the place
where all 64 bits of K1 are involved in one byte for the first time.
In this paper, the targeted PRESENT implementation is written by
Klose Klose (2011).  In this implementation, deducing the HW of the
output of AK is easier than the output of PL.  So one byte after the
AK step in the third round, L3,AK

m , will be the targeted state.
Fig. 1(a) shows how Deg(L3,AK

m,n ) changes with m and n after the

AK step in round 3. Among the choices for n, Deg(L3,AK
m,0 ) is the small-

est. Among the values of m, Deg(L3,AK
1,0 ) and Deg(L3,AK

2,0 ) are relatively
small. Fig. 1(b) shows how the number of monomials changes with
m. Since Nmo(L3,AK

1,0 ) and Nmo(L3,AK
2,0 ) are small, L3,AK

1,0 and L3,AK
2,0 are

identified as the targeted byte.

4.2. HW-SCCA with linear superpolys

We  start our search for the superpolys using the common
method mentioned in Section 3. We choose n=0 and consider only
the linear part of a HW representation. A basic HW-SCCA on both
L3,AK

1,0 and L3,AK
2,0 are performed. The result for L3,AK

2,0 is listed in Table 2,
which has 56 linear superpolys. In comparison, the estimated value
of Ncp(L3,AK

2,0 ) is 24 × 22 + 32 × 25 ≈ 210.13. The result for L3,AK
1,0 is listed

in Table 7.

4.3. New observations on the number of chosen plaintexts

In the attack, we  observed that when the plaintexts are chosen
based on the cubes listed in Table 2, many of them are actually
duplicated. Recall the simple example in Section 2. Four cubes can
be identified {1, 4},{2, 4},{3, 4},{1}. An assignment v1 = v2 = v3 =
v4 = 0 can be used as a chosen plaintext for all four cubes. After
removing the duplicated chosen plaintexts in Table 2, Ncp(L3,AK

2,0 )

can be further reduced from 210.13 down to 28.90=477.
All existing analyses of SCCAs have simply counted the number
of chosen plaintexts based on the sizes of cubes. Our observations
reduce the number of chosen plaintexts actually needed in practice.
Table 3 lists the updated number of chosen plaintexts for some
existing SCCAs on PRESENT.
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Table 1
Notations used in this paper.

Variable Notations Variable Notations

NSI Cube size of I Li,j
m The m-th byte of the j-th operation in round i

ki The i-th bit of master key Li,j
m,n The n-th HW bit of Li,j

m

Ki Subkey in round i f(X) Polynomial representation of X
KSI Superpoly of I Nk(X) Number of key variables in f(X)
Kd New key deductions Deg(X) Polynomial degree of f(X)
H(X) HW of X Nmo(X) number of Monomials in f(X)
HD(X) Deduction of H(X) Ncp(X) Number of chosen plaintexts for X

Fig. 1. Deg(L3,AK
m,n ) and Nmo(L3,AK

m,n ) in round 3. (a) Deg(L3,AK
m,n ) in round 3; (b) Nmo(L3,AK

m,0 ) in round 3.

Table  2
Cube indexes and superpolys for Nk(L3,AK

2,0 ) (linear equations).

I KSI I KSI I KSI I KSI

1, 2 1 + k16 32, 33 1 + k50 4, 5, 6, 9, 10 1 + k24 36, 37, 40, 41, 43 1 + k54

0, 2 k17 45, 46 1 + k60 4, 5, 7, 8, 10 k25 36, 37, 40, 41, 42 k54 + k55

0, 1 1 + k18 44, 46 k61 4, 5, 7, 8, 9 1 + k26 36, 37, 38, 41, 42 1 + k56

13, 14 1 + k28 44, 45 1 + k62 4, 5, 6, 8, 9 k26 + k27 36, 37, 39, 40, 42 k57

12, 14 k29 49, 50 1 + k64 21, 22, 24, 25, 26 1 + k36 36, 37, 39, 40, 41 1 + k58

12, 13 1 + k30 48, 50 k65 20, 22, 24, 25, 27 k37 36, 37, 38, 40, 41 k58 + k59

17, 18 1 + k32 48, 49 1 + k66 20, 21, 24, 25, 27 1 + k38 53, 54, 56, 57, 58 1 + k68

16, 18 k33 61, 62 1 + k76 20, 21, 24, 25, 26 k38 + k39 52, 54, 56, 57, 59 k69

16, 17 1 + k34 60, 62 k77 20, 21, 22, 25, 26 1 + k40 52, 53, 56, 57, 59 1 + k70

29, 30 1 + k44 60, 61 1 + k78 20, 21, 23, 24, 26 k41 52, 53, 56, 57, 58 k70 + k71

28, 30 k45 5, 6, 8, 9, 10 1 + k20 20, 21, 23, 24, 25 1 + k42 52, 53, 54, 57, 58 1 + k72

28, 29 1 + k46 4, 6, 8, 9, 11 k21 20, 21, 22, 24, 25 k42 + k43 52, 53, 55, 56, 58 k73

33, 34 1 + k48 4, 5, 8, 9, 11 1 + k22 37, 38, 40, 41, 42 1 + k52 52, 53, 55, 56, 57 1 + k74

32, 34 k49 4, 5, 8, 9, 10 k22 + k23 36, 38, 40, 41, 43 k53 52, 53, 54, 56, 57 k74 + k75

Table 3
New chosen plaintext number of SCCAs on PRESENT.

Ref. Previous chosen plaintext number New chosen plaintext number

Yang et al. (2009) 215 212.50

Zhao et al. (2011) 211.92 210.88

Abdul-Latip et al. (2011) 213 212.27

Section 4.2 210.13 28.90

Table 4
Cube indexes and superpolys for Nk(L3,AK

2,0 ) (non-linear superploys).

I KSI Kd I KSI Kd

1 1 + k16 + k19 + k18 + k16k18 k19 33 1 + k48 + k51 + k50 + k48k50 k51

13 1 + k28 + k31 + k30 + k28k30 k31 45 1 + k60 + k63 + k62 + k60k62 k63

17 1 + k32 + k35 + k34 + k32k34 k35 49 1 + k64 + k67 + k66 + k64k66 k67

29 1 + k44 + k47 + k46 + k44k46 k47 61 1 + k76 + k79 + k78 + k76k78 k79
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.4. Enhanced HW-SCCA with non-linear superpolys

Section 4.2 only explores the linear superpolys. In fact, we can
tilize non-linear superpolys with quadratic terms to improve HW-
CCAs (Abdul-Latip et al., 2011; Zhang et al., 2009). Unlike the
asic HW-SCCA, we now merge the monomials that have at most
wo (instead of one) key variables for each cube. The best result
or L3,AK

2,0 is listed in Table 4, which has eight non-linear super-
olys. Take the first row of the left half of Table 4 as an example.
hen I={1}, the non-linear superpoly 1 + k16 + k19 + k18 + k16k18 can

e extracted. Since both k16 and k18 are already recovered in Table 2,
19 can be determined.

Since all the cube indexes in Table 4 already appear in
ables 2 and 4 does not introduce any new chosen plaintexts. The
esults of HW-SCCA with non-linear terms for L3,AK

1,0 can be found
n Table 8.

.5. Enhanced HW-SCCA with iterative scheme

To further reduce the key search space, we propose an enhanced
CCA scheme, called the iterative SCCA. The main idea is to substi-
ute the key variables with the recovered key bits, update f, V and K,
nd repeat the standard SCCA. As fewer unknown key variables are
n f, both Deg and Nm are reduced. More maxterms and superpolys
an then be retrieved. Note that in the iterative SCCA, some of the
hosen public variables may  have minor changes.

As shown in Tables 2 and 4, if L3,AK
2,0 is selected, we can extract 64

ey bits of K1 (i.e., k79 . . . k16 in the master key). To obtain k15 . . . k0,
e substitute K1 in f with the key bits already recovered. The 64

its at the output of round 1 (PL(SL(AK(P, K1)))) are used as new
ublic variables, as shown in the iterative place 2 in Fig. 2. Then the
revious three-round HW-SCCA on PRESENT-80 becomes a new
wo-round HW-SCCA. The complexity of f is reduced significantly.

Table 5 shows that 25 chosen plaintexts can recover 8 more key
its, thus reducing the key space to 28. Considering the duplicated
hosen plaintexts, only 18 more plaintexts are actually required.
ombining the results above, in total, 495 (28.95) chosen plaintexts
re enough to recover 72 key bits. The results of iterative HW-SCCA
n L3,AK

1,0 can be found in Table 9.

. Physical experiments

This section presents the online phase of HW-SCCA on PRESENT.
he power leakage of PRESENT implemented on an 8-bit microcon-
roller is collected to deduce the values of the superpolys extracted
n previous sections. To improve the practicality of HW-SCCA, an
ccurate HW deduction method based on Pearson correlation factor
s proposed.

In traditional SCAs, DPA (Kocher et al., 1999) and CPA (Brier
t al., 2004) are two techniques that are widely used. When attack-
ng the implementations on microcontrollers, CPA is more effective
han DPA (Coron and Kizhvatov, 2009, 2010; Kocher et al., 2011).
herefore, we use CPA to evaluate the resistance of PRESENT against
CAs and compare it with HW-SCCA. To fully investigate the advan-
ages of HW-SCCA, we conduct CPAs and HW-SCCAs on both
nprotected and protected implementations of PRESENT-80. The
rotected implementations have two types of countermeasures:
andom delay and masking.

.1. Implementations of PRESENT on an 8-bit microcontroller
The targeted device is the AMTEL ATMEGA324P 8-bit microcon-
roller. It runs at 8 MHz. A digital oscilloscope MSO6012A measures
he voltage drop on a resistor connected to ATMEGA324P. The
nd Software 86 (2013) 728– 743

oscilloscope communicates with a PC via a USB interface. The samp-
ling rate is 100M points/s.

Our attacks are performed on an 8-bit implementation of
PRESENT written by Klose (2011).  Both the size optimized and
speed optimized implementations use the same C code for the AK
operation, which updates one byte (instead of a nibble) of the state
at a time. The results in this section are from the attacks on the size
optimized version of PRESENT-80, targeting a byte after the AK step
in round 3.

5.2. Enhanced HW-SCCA with accurate HW deduction

In practice, the measured power traces come with a lot of noise,
which makes obtaining accurate HW deductions difficult. Any error
in the value of H(X) may  cause the cube attack to fail. In this section,
we introduce new techniques that can deduce the HW value from
physical traces with a very high accuracy.

A HW power model must be built first, which normally depends
on the targeted operations. To build the power model, we  randomly
choose pairs of plaintext and key, and collect power traces of the
entire encryption for each pair. We  separate all the traces into nine
categories based on the HW of the first output byte of AK in round
3. The power profile for each HW value is shown on the left side of
Fig. 3 and each curve is the average of 1000 traces.

To deduce the HW,  adversaries calculate the correlation
coefficients of two vectors(e.g., the measured trace and the power
model). The Pearson correlation factor is widely used in SCAs (Brier
et al., 2004; Mayer-Sommer, 2000; Standaert et al., 2004). However,
this method does not work very well in deducing the HW from a
small number of power traces. For example, four power traces are
shown on the right part of Fig. 3, where four different plaintexts
are XORed with the same key and the results have different HWs.
The correct values are 3, 2, 2 and 3. The deduced values HD(X) by
Pearson correlation factor are 4, 1, 1 and 3, which have ±1 errors.

We propose a new technique to improve the HW deduction.
We introduce a new parameter ı, a metric of the vertical voltage
variance in addition to the horizontal phase offset. Suppose PM is
the model and PR is the measured trace. The new correlation factor
�(PR, PM) is shown in Eq. 5.

�(PR, PM) =
ı.

∑
pr∈PR,pm∈PM

(pr − PR).(pm − PM)

(
√∑

pr∈PR
(pm − PM)2 ·

∑
pm∈PM

(pm − PM)2) (5)

ı =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max(PM)
max(PR)

,  if max(PR) > max(PM)

max(PR)
max(PM)

,  if max(PR) ≤ max(PM)

To improve the success rate, we collect the power traces n times
for the same plaintext, and obtain n HW deductions. We  calculate
the frequency of each possible HW value in the deductions and
select the one with the maximal frequency. In our experiments, if
n ≥ 6, the probability of getting the correct value is 100%.

5.3. Attacks on unprotected PRESENT

5.3.1. CPA on PRESENT
CPA is a variant of DPA. It guesses the values of some key bits

and calculates the HW of the targeted state. The guess is verified

with the Pearson correlation factors between the measured trace
and the computed HW from the guess.

We choose the first nibble of the output of S-box in the first
round as our target in CPA. Fig. 4(a) shows the CPA results for the
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Fig. 2. Locations of the public variables in two iterative SCCAs.

Table  5
Cube indexes and superpolys for Nk(L3,AK

2,0 ) (SCCA with iterations).

I KSI I KSI I KSI I KSI

c
g
w
t
F
2
r

5

W

32, 46 1 + k0 32, 50 1 + k4

32, 45 k1 32, 49 k5

orrect and wrong key guesses. The red curve for the correct key
uess has a much higher peak than those in the blue curves (for
rong guesses). Fig. 4(b) shows how the correlation coefficient for

he correct key guess changes with the number of power traces.
ig. 4 shows that for the unprotected PRESENT implementation,
00 power traces are enough to recover the first nibble of K1. To
ecover all 16 nibbles, our CPA needs 1024 traces.
.3.2. HW-SCCA on PRESENT
In HW-SCCA on PRESENT, we choose L3,AK

2,0 as the targeted byte.
e first generate the plaintexts according to the extracted cubes in

Fig. 3. Hamming weight d
32, 54 1 + k8 32, 58 1 + k12

32, 53 k9 32, 57 k13

Tables 2, 4 and 5, then deduce the HW with the method in Section
5.2,  and finally recover the values of the superpolys by the symbolic
sum over GF(2).

Take Fig. 5 as an example. Fig. 5 (a)–(d) shows the four power
traces for encrypting different plaintexts for the cube I = {1, 2} and
the superpoly KSI=1 + k16. The key is fixed in four encryptions. We
can deduce four HWs, 4, 4, 6, and 4, from the traces. The LSBs of the

four HW values are 0. Since 1 + k16 = 0 +0 + 0 +0 = 0, we can deduce
k16 = 1. Using the techniques described in Section 4, we have con-
ducted successful attacks on PRESENT implemented on the 8-bit
processor. The results show that 72 key bits of PRESENT-80 can be

eductions in SCCA.
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ig. 4. CPA on PRESENT without Countermeasures (Nibble 1 of K1). (a) Different ke
n  this figure legend, the reader is referred to the web  version of the article.)

ecovered with 28.95 chosen plaintexts and 211.54 = 6 ×28.95 power
races.

.4. Attacks on PRESENT protected with random delays
Inserting random delays (Coron and Kizhvatov, 2009, 2010)
an change the execution time of the encryption. The ran-
omized delays introduce more noise and make the analysis,

Fig. 5. HW-SCCA on PRESENT w
sses; (b) different plaintexts number. (For interpretation of the references to color

such as data alignment and trace average, more difficult.
This technique can be used to defeat many SCAs includ-
ing CPA. It has been widely adopted in many embedded
systems.
In most cases, the random delays are implemented with specific
numbers of NOP loops. As a result, the delays consume less power
than normal operations, and can be identified if the delay is long
enough.

ithout countermeasures.
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The effects of random delays depend on the amount of the delays
nd the way they are added. Suppose the lengths of the delays
ollow a normal distribution. A simple way to accomplish this is
o add a delay with large mean and variance at one location. A

ore advanced way is to introduce delays at many locations (dif-
erent operations, different rounds), where each delay has a smaller

ean and variance (Coron and Kizhvatov, 2009, 2010). The latter is
ormally combined with a dummy  round to introduce more ran-
omness, although it also causes more performance degradation.

In our experiments, we insert two delays before and after the
rst AK in the first round. The total delay is approximately 3r cycles
here r is uniformly distributed in [0 . . . d] and d is a parameter.

hree experiments are conducted with different values of d.

.4.1. CPA on PRESENT
Fig 6(a) shows the results for 0 ≤ d ≤ 7. 3000 traces are required

n CPA to reveal nibble 1. Fig 6(b) shows the results for 0 ≤ d ≤ 15.
000 traces are required. Fig 6(c) shows the results for 0 ≤ d ≤ 127.
e are not able to guess the correct value of nibble 1 even with

2,768 traces. It is clear to see that CPA can be defeated by random
elays.

.4.2. HW-SCCA on PRESENT
As many block ciphers adopt an iterative structure, the power

onsumption for different rounds and operations can be easily iden-
ified, as noted in Kocher et al. (1999).  In our implementation with
andom delays, the power pattern for the leakage byte in the third
ound does not change by much. It is easy to identify that pattern
nd deduce the HW leakage from a single power trace. The data
lignment is not required.

Fig. 7 shows the four power traces on L3,AK
2,0 when encrypting

ifferent plaintexts for the cube I = {1, 2} and superpoly KSI=1 + k16.
andom delays are added into the implementation. It is clear to see
hat although the horizontal time position of L3,AK

2,0 is different in
he four traces, the HWs  can still be easily deduced and the values
re 4, 4, 6, and 4. 72 key bits of PRESENT can also be recovered with
8.92 chosen plaintexts and 211.54 (n = 6) power traces.

.5. Attacks on PRESENT protected with masking

Masking (Akkar and Giraud, 2001; Chari et al., 1999; Goubin and
atarin, 1999; Mangard et al., 2007) is another solution to prevent
CAs. It randomizes the sensitive data and minimizes the correla-
ions between data and leakages. This paper will focus on Boolean

asking (Akkar and Giraud, 2001; Chari et al., 1999; Goubin and
atarin, 1999; Mangard et al., 2007).

We implement PRESENT with a masked substitution table pro-
osed by Akkar and Giraud (2001).  For each encryption, a 64-bit
ask u is randomly generated for the input of AK.  The mask v for

he output of SB is chosen as v = PL−1(u). In Fig. 8(a), pi and ki are two
nputs of AK,  and pi ⊕ ki and S(pi ⊕ ki) are the output of the AK and
B.  The masked table S′ is defined as S′(pi ⊕ ki ⊕ ui) = S(pi ⊕ ki) ⊕ vi,
here ui and vi are the masks of the i-th nibble of the S-box input

nd output. pi, ki, ui, vi ∈ GF(24), 0 ≤ i ≤ 15. In this implementation,
he same masks u and v are used in all rounds of one PRESENT exe-
ution because recalculation of S′ for each new pair (u, v) is too
xpensive. The values of ui for the 16 S-boxes are different in the
ame round.

.5.1. CPA on PRESENT

Fig. 8(b) shows the CPA coefficient curves for 16 key guesses

n the first nibble of K1 with the increase of the number of power
races. The CPA does not work on implementations with random

asking.
nd Software 86 (2013) 728– 743 735

5.5.2. HW-SCCA on PRESENT
In HW-SCCA on the same implementation, we measure the

HW leakage of L2,AK
m and L3,AK

m . We  choose the leakage bit as
{L2,AK

m,0 ⊕ L3,AK
m,0 }, instead of L3,AK

m,0 . As the same u is applied to both
round 2 and 3, the new targeted bit is independent of u. Since the
polynomial of this bit is slightly different from that in Section 4,
we need to update the cubes and superpolys to be extracted. The
results of SCCA on {L2,AK

1,0 ⊕ L3,AK
1,0 } and {L2,AK

2,0 ⊕ L3,AK
2,0 } are listed in

Tables 20–25, respectively.
Fig. 9 displays the power traces of L2,AK

2 and L3,AK
2 for the cube

I={1, 2} and the superpoly pS(I)=1 + k16 (listed in Table 23 for masked
implementations). Using the method in Section 4, the HW values of
L2,AK

2 and L3,AK
2 for four chosen plaintexts are {4, 2, 5, 2} and {6, 3, 5,

3} respectively. We  can compute the four values of {L2,AK
2,0 ⊕ L3,AK

2,0 }
as {0, 1, 0, 1}, and then deduce that k16=1. 72 key bits of PRESENT
can still be recovered with 28.92 chosen plaintexts and 211.54(n = 6)
power traces.

6. Discussions

6.1. Comparison of HW-SCCA, DPA, and ASCA

HW-SCCA, DPA (CPA), and recently proposed ASCA (algebraic
side-channel attack (Renauld and Standaert, 2009; Renauld et al.,
2009; Zhao et al., 2012)), have different assumptions, thus resulting
in different strengths.

6.1.1. DPA (CPA)
This type of attack leverages statistical techniques to identify the

relation between data and leakage. It requires few assumptions and
is applicable to many platforms. The attack targets the first or last
round of ciphers. A divide-and-conquer strategy is usually adopted
for the key recovery. The full key is recovered in a byte-by-byte,
or nibble-by-nibble manner. Recovering one byte or one nibble of
the key requires relatively large numbers of traces although the
numbers are highly dependent on the targeted implementations.
In addition, the attack is much less effective when countermeasures
are present.

6.1.2. ASCA
ASCA can utilize the leakage in all rounds and even break

a system with a single trace. In ASCA, all the key bits can be
recovered at the same time. The attack can work under unknown
plaintext/ciphertext scenarios and defeat certain masking counter-
measures. ASCA has strong assumptions on the leakage model and
the capability of the adversaries (e.g., the HWs  of the intermedi-
ate states can be deduced accurately). ASCA needs to profile and
analyze many leakages in a single trace. More efforts are spent in
building templates for every leakage location.

6.1.3. SCCA
Both SCCA and ASCA have strong assumptions on the leakage

model and the capability of the adversaries. Different from DPA
(CPA), SCCA deduces the intermediate states from a single power
trace. As a result, some countermeasures like random delays are
less effective in defeating SCCA. Similar to ASCA, SCCA uses the
leakage in deeper rounds. Both SCCA and DPA (CPA) rely on the
divide-and-conquer strategy and SCCA recovers one key bit each
time. On average, SCCA requires fewer traces than DPA (CPA). As
only one leakage in a trace is utilized (templates for single leak-
ages are required), profiling is easier in SCCA than in ASCA. Both

SCCA and ASCA can break some masking schemes while it is more
difficult for CPA. Most importantly, inheriting the advantages of
cube attacks, SCCA can work under black-box settings where nei-
ther ASCA nor DPA can. This is a new threat to the security of cipher
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Fig. 6. CPA on PRESENT with random delay countermeasures (Nibble 1 of K1). (a) 0 ≤ d ≤ 7; (b) 0 ≤ d ≤ 15; (c) 0 ≤ d ≤ 127.

Fig. 7. HW-SCCA on PRESENT with random delay countermeasures.

Table 6
Comparisons between SCCA and SCAs.

Comparisons DPA (CPA) ASCA SCCA

Assumptions Weak Strong Strong
Leakages Measurement location First or last round Any round Deeper round

Number Medium per trace Maximized per trace Single per trace
Difficulty Easy Difficult Medium

Key  recovery Byte (nibble) by Byte (nibble) Full key at a time Bit by bit
Data  complexity High Low Medium

Scenarios Random delays × -
√

Masking × √ √
White-box attack

√ √ √
Black-box attack × × √
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Fig. 8. CPA on protected PRESENT with masking. (a) M

mplementations. The detailed comparisons among SCCA, DPA
CPA) and ASCA are shown in Table 6.

.2. Limitations, extensions and impacts of HW-SCCA

This paper shows that the HW-SCCA works well on the soft-
are implementation of PRESENT on microcontrollers, where the
W of intermediate states can be accurately deduced. Our HW-
CCA might not work when many small random delays are inserted
efore and after each operation in the first 3 rounds of PRESENT
if the adversary cannot identify the leakage trace of the targeted
peration from the delays in the whole power trace), when differ-
nt masks are utilized in different rounds of PRESENT, or when the

yte-oriented computations in either AK or SB are executed in a
andom order (Oswald and Schramm, 2005). For hardware imple-
entations, our attacks do not work if the HW of the targeted state

annot be deduced.

Fig. 9. HW-SCCA on protected
 implementation; (b) CPA on PRESENT with masking.

The technique of this paper can be easily extended to HW-SCCA
on PRESENT with 4-bit implementations or other lightweight block
ciphers, especially to some PRESENT-like ciphers such as SmallPre-
sent (Leander, 2010) and EPCBC (Yap et al., 2011).

In the schemes proposed in this paper, the extracted cube size
is very small (≤5) and the superpolys are simple (linear or quadric,
with the number of key variables ≤3). In the black-box SCCA on
block ciphers with an iterated structure (e.g., PRESENT), the power
pattern for different rounds and operations can be easily identified.
The adversary can select some leakage locations and deduce the
HWs  at those locations. If the HW deduction is accurate, the adver-
saries can enumerate all the cubes and superpolys, and then test
their relations with cube attacks. If the relations hold, the key can
be recovered bit by bit. PRESENT can be broken by HW-SCCA under

a black-box setting without a prohibitively high data complexity.

The cryptologists should carefully consider HW-SCCA during
the cipher design and evaluation phases. Some recent lightweight
ciphers took three approaches to mitigate HW-SCCA: (1) increase

 PRESENT with masking.
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he degree of equations of each output bit, e.g., Klein (Gong et al.,
010), Piccolo (Shibutani et al., 2011); (2) make the linear terms

n the equations more complicated (not just simple permutations),
.g., Klein (Gong et al., 2010), Piccolo (Shibutani et al., 2011) and LED
Guo et al., 2011); (3) increase the number of rounds that is required
o associate the leakage bit with all the key bits, e.g., LBlock (Wu
nd Zhang, 2011).

. Conclusions

This paper proposes several efficient SCCAs on PRESENT based
n the single byte Hamming weight leakage model. We  start with
he basic HW-SCCA on PRESENT-80. Then, two new approaches are
roposed to improve SCCA. The first one leverages non-linear equa-
ions and the second is an iterative scheme. All the attacks can be
asily extended to PRESENT-128. To the best of our knowledge, the
ombination of all these advanced techniques results in the most
fficient SCCA on PRESENT-80/128. The key search space can be
educed to 28 for PRESENT-80 with 28.95 chosen plaintexts and to
7 for PRESENT-128 with 29.78 chosen plaintexts.

Meanwhile, the attacks were verified with experiments on
RESENT implemented on an 8-bit microcontroller, instead of
ith simulations only. The results demonstrate that HW-SCCA has

dvantages over CPA in some scenarios, especially when some

ountermeasures such as random delays and masking are inte-
rated. The results also indicate that for implementations where
he HW can be deduced accurately, PRESENT may  be broken by
W-SCCA under a black-box setting. We  hope the work can deepen

able 7
ube indexes and superpolys for Nk(L3,AK

1,0 ) (linear superploys,using y0).

I KSI I KSI I 

1, 2 1 + k16 33, 34 1 + k48 5, 7, 8, 9, 1
0, 1 k18 + k19 32, 33 k50 + k51 4, 5, 8, 9, 1
0, 2 k17 + k19 32, 34 k49 + k51 4, 6, 8, 9, 1
13, 14 1 + k28 45, 46 1 + k60 4, 5, 6, 9, 1
12, 13 k30 + k31 44, 45 k62 + k63 4, 5, 6, 8, 9
12, 14 k29 + k31 44, 46 k61 + k63 4, 5, 6, 8, 1
17, 18 1 + k32 49, 50 1 + k64 21, 22, 24
16, 17 k34 + k35 48, 49 k66 + k67 20, 21, 24
16, 18 k33 + k35 48, 50 k65 + k67 20, 22, 24
29, 30 1 + k44 61, 62 1 + k76 20, 21, 22
28, 29 k46 + k47 60, 61 k78 + k79 20, 21, 22
28, 30 k45 + k47 60, 62 k77 + k79 20, 21, 22

able 8
ube indexes and superpolys for Nk(L3,AK

1,0 ) (non-linear superploys,using y0).

I KSI Kd

5, 8, 9, 10 1 + k23 + k20k22 + k20k23 k22 or k23

4, 5, 6, 9 1 + k27 + k24k26 + k24k27 k26 or k27

21, 24, 25, 26 1 + k39 + k36k38 + k36k39 k38 or k39

20, 21, 22, 25 1 + k43 + k40k42 + k40k43 k42 or k43

able 9
ube indexes and superpolys for Nk(L3,AK

1,0 ) (iteration,using y0).

I KSI I KSI

2, 13, 15 1 + k17 18, 29, 31 1 + k33

1, 3, 14 1 + k29 17, 19, 30 1 + k45
nd Software 86 (2013) 728– 743

our understanding of HW-SCCA, which is critical to the design of
ciphers and the evaluation of their physical security.
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Appendix A.

1. Results of HW-SCCA on PRESENT-80
Tables 7–9.
2.  Results of HW-SCCA on PRESENT-128
The techniques in Section 4 can be extended to PRESENT-128.

The results on PRESENT-128 are summarized in Table 10.  As shown
in row 1 and row 3 in Table 10,  targeting L3,AK

1,0 and L3,AK
2,0 can

recover 80 key bits with 29.02 and 28.99 chosen plaintexts, respec-
tively. To recover more key bits, we  can target L4,AK

1,0 and L4,AK
2,0 .

As shown in row 2 and row 4 in Table 10,  38 and 41 additional
key bits can be recovered with 28.71 and 28.52 chosen plaintexts
respectively. In total, 118 and and 121 key bits can be deduced
with 29.87 and 29.78 chosen plaintexts, respectively. The remaining

bits in the master key can be obtained through a brute-force
search.

Tables 11–25.
3. Results of HW-SCCA on PRESENT-80 with masking.

KSI I KSI

0 1 + k20 37, 38, 40, 41, 42 k52

1 k22 + k23 36, 37, 40, 42, 43 k54 + k55

0 k21 + k23 36, 38, 40, 41, 42 k53 + k55

1 1 + k24 36, 37, 38, 41, 42 k56

 k26 + k27 36, 37, 38, 40, 41 k58 + k59

0 k25 + k27 36, 37, 38, 40, 42 k57 + k59

, 25, 26 k36 53, 54, 56, 57, 58 k68

, 26, 27 k38 + k39 52, 53, 56, 58, 59 k70 + k71

, 25, 26 k37 + k39 52, 54, 56, 57, 58 k69 + k71

, 25, 26 k40 52, 53, 54, 57, 58 k72

, 24, 25 k42 + k43 52, 53, 55, 56, 57 k74 + k75

, 24, 26 k41 + k43 52, 53, 55, 56, 58 k73 + k75

I KSI Kd

37, 40, 41, 42 1 + k55 + k52k54 + k52k55 k54 or k55

36, 37, 38, 41 1 + k59 + k56k58 + k56k59 k58 or k59

53, 56, 57, 58 1 + k71 + k68k70 + k68k71 k70 or k71

52, 53, 54, 58 k75 + k72k73 + k72k75 k73 or k75

I KSI I KSI

17, 18, 52 k49 48, 53 k65

32, 37 k61 49, 51, 62 1 + k77
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Table 10
Results of HW-SCCAs on PRESENT-128.

Leakage byte Refer Ncp Nrk

Nk(L3,AK
1,0 ) Tables 11–14 29.02 80 bits

Nk(L3,AK
1,0 , L4,AK

1,0 ) Tables 11–15 29.02 + 28.71 = 29.87 118 bits
Nk(L3,AK

2,0 ) Tables 16–18 28.99 80 bits
Nk(L3,AK

2,0 , L4,AK
2,0 ) Table 16–19 28.99 + 28.52 = 29.78 121 bits

Table 11
Cube indexes and superpolys for Nk(L3,AK

1,0 ) (linear equations,using y0).

I KSI I KSI I KSI I KSI

1, 2 1 + k64 33, 34 1 + k96 5, 7, 8, 9, 10 1 + k68 37, 39, 40, 41, 42 k100

0, 1 k66 + k67 32, 33 k98 + k99 4, 5, 8, 10, 11 k70 + k71 36, 37, 40, 42, 43 k102 + k103

0, 2 k65 + k67 32, 34 k97 + k99 4, 6, 8, 9, 10 k69 + k71 36, 38, 40, 41, 42 k101 + k103

13, 14 1 + k76 45, 46 1 + k108 4, 5, 6, 9, 11 1 + k72 36, 37, 38, 41, 43 k104

12, 13 k78 + k79 44, 45 k110 + k111 4, 5, 7, 8, 9 k74 + k75 36, 37, 38, 40, 41 k106 + k107

12, 14 k77 + k79 44, 46 k109 + k111 4, 5, 7, 8, 10 k73 + k75 36, 37, 38, 40, 42 k105 + k107

17, 18 1 + k80 49, 50 1 + k112 21, 23, 24, 25, 26 k84 53, 55, 56, 57, 58 k116

16, 17 k82 + k83 48, 49 k114 + k115 20, 21, 24, 26, 27 k86 + k87 52, 53, 56, 58, 59 k118 + k119

16, 18 k81 + k83 48, 50 k113 + k115 20, 22, 24, 25, 26 k85 + k87 52, 54, 56, 57, 58 k117 + k119

29, 30 1 + k92 61, 62 1 + k124 20, 21, 22, 25, 27 k88 52, 53, 54, 57, 59 k120

28, 29 k94 + k95 60, 61 k126 + k127 20, 21, 22, 24, 25 k90 + k91 52, 53, 54, 56, 57 k122 + k123

28, 30 k93 + k95 60, 62 k125 + k127 20, 21, 22, 24, 26 k89 + k91 52, 53, 54, 56, 58 k121 + k123

Table 12
Cube indexes and superpolys for Nk(L3,AK

1,0 ) (non-linear equations, using y0).

I KSI D I KSI D

6, 8, 9, 10 k71 + k68k69 + k68k71 k69 or k71 38, 40, 41, 42 k103 + k100k101 + k100k103 k101 or k103

4, 5, 6, 9 1 + k75 + k72k74 + k72k75 k74 or k75 36, 37, 38, 41 1 + k107 + k104k106 + k104k107 k106 or k107

22, 24, 25, 26 k87 + k84k85 + k84k87 k85 or k87 53, 56, 57, 58 1 + k119 + k116k118 + k116k119 k118 or k119

20, 21, 22, 25 1 + k91 + k88k90 + k88k91 k90 or k91 52, 54, 55, 58 k123 + k120k121 + k120k123 k121 or k123

Table 13
Cube indexes and superpolys for Nk(L3,AK

1,0 ) (1st iterative SCCA, using y0).

I KSI I KSI I KSI I KSI I KSI I KSI I KSI I KSI

8 1 + k4 40 1 + k12 9 1 + k20 41 1 + k28 24 1 + k8 56 1 + k16 25 k24 57 k32

4 k5 36 k13 5, k21 37 k29 20 k9 52 k17 21 k25 53 k33

Table 14
Cube indexes and superpolys for Nk(L3,AK

1,0 ) (2nd iterative SCCA, using y1).

I KSI I KSI I KSI I KSI

2, 13, 14 k67 18, 29, 30 k83 34, 45, 46 k99 50, 61, 62 k115

1, 2, 14 k79 17, 18, 30 k95 33, 34, 46 k111 49, 50, 62 k127

Table 15
Cube indexes and superpolys for Nk(L4,AK

1,0 ) (3rd iterative SCCA, using y0).

I KSI I KSI I KSI

1, 2 1 + k3 44, 45 k49 + k50 20, 21, 22, 24, 25 k29 + k30

0, 1 k5 + k6 44, 46 k48 + k50 20, 21, 22, 24, 26 k28 + k30

0, 2 k4 + k6 49, 50 1 + k51 37, 39, 40, 41, 42 1 + k39

13, 14 1 + k15 48, 49 k53 + k54 36, 37, 40, 42, 43 k41 + k42

12, 13 k17 + k18 48, 50 k52 + k54 36, 37, 40, 42, 43 k40 + k42

12, 14 k16 + k18 61, 62 1 + k63 + k65 + k66 + k64k65 38, 40, 41, 42 k42 + k39k40 + k39k42

17, 18 1 + k19 5, 7, 8, 9, 10 1 + k7 36, 37, 38, 41, 43 1 + k43

16, 17 k21 + k22 4, 5, 8, 10, 11 k9 + k10 36, 37, 38, 40, 41 k45 + k46

16, 18 k20 + k22 4, 6, 8, 9, 10 k8 + k10 36, 37, 38, 40, 42 k44 + k46

29, 30 1 + k31 4, 5, 6, 9, 11 1 + k11 36, 37, 38, 42 k46 + k43k44 + k43k46

28, 29 k33 + k34 4, 5, 6, 8, 9 k13 + k14 53, 55, 56, 57, 58 1 + k55

28, 30 k32 + k34 4, 5, 6, 8, 10 k12 + k14 52, 53, 56, 58, 59 k57 + k58

33, 34 1 + k35 21, 23, 24, 25, 26 1 + k23 52, 54, 56, 57, 58 k56 + k58

32, 33 k37 + k38 20, 21, 24, 26, 27 k25 + k26 54, 56, 57, 58 k58 + k55k56 + k55k58

32, 34 k36 + k38 20, 22, 24, 25, 26 k24 + k26

45, 46 1 + k47 20, 21, 22, 25, 27 1 + k27
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Table 16
Cube indexes and superpolys for Nk(L3,AK

2,0 ) (linear equations,using y0).

I KSI I KSI I KSI I KSI

1, 2 1 + k64 32, 33 1 + k98 4, 5, 6, 9, 10 1 + k72 36, 37, 40, 41, 43 1 + k102

0, 2 k65 45, 46 1 + k108 4, 5, 7, 8, 10 k73 36, 37, 40, 41, 42 k102 + k103

0, 1 1 + k66 44, 46 k109 4, 5, 7, 8, 9 1 + k74 36, 37, 38, 41, 42 1 + k104

13, 14 1 + k76 44, 45 1 + k110 4, 5, 6, 8, 9 k74 + k75 36, 37, 39, 40, 42 k105

12, 14 k77 49, 50 1 + k112 21, 22, 24, 25, 26 1 + k84 36, 37, 39, 40, 41 1 + k106

12, 13 1 + k78 48, 50 k113 20, 22, 24, 25, 27 k85 36, 37, 38, 40, 41 k106 + k107

17, 18 1 + k80 48, 49 1 + k114 20, 21, 24, 25, 27 1 + k86 53, 54, 56, 57, 58 1 + k116

16, 18 k81 61, 62 1 + k124 20, 21, 24, 25, 26 k86 + k87 52, 54, 56, 57, 59 k117

16, 17 1 + k82 60, 62 k125 20, 21, 23, 25, 26 1 + k88 52, 53, 56, 57, 59 1 + k118

29, 30 1 + k92 60, 61 1 + k126 20, 22, 23, 24, 26 k89 52, 53, 56, 57, 58 k118 + k119

28, 30 k93 5, 6, 8, 9, 10 1 + k68 20, 21, 23, 24, 25 1 + k90 52, 53, 54, 57, 58 1 + k120

28, 29 1 + k94 4, 6, 8, 9, 11 k69 20, 21, 22, 24, 25 k90 + k91 52, 53, 55, 56, 58 k121

33, 34 1 + k96 4, 5, 8, 9, 11 1 + k70 37, 38, 40, 41, 42 1 + k100 52, 53, 55, 56, 57 1 + k122

32, 34 k97 4, 5, 8, 9, 10 k70 + k71 36, 38, 40, 41, 43 k101 52, 53, 54, 56, 57 k122 + k123

Table 17
Cube indexes and superpolys for Nk(L3,AK

2,0 ) (non-linear equations, using y0).

I KSI DI KSI D

1 k64 + k67 + k66 + k64k66 k6733 k96 + k99 + k98 + k96k98 k99

13 k76 + k79 + k78 + k76k78 k7945 k108 + k111 + k110 + k108k110 k111

17 k80 + k83 + k82 + k80k82 k8349 k112 + k115 + k114 + k112k114 k115

29 k92 + k95 + k94 + k92k94 k9561 k124 + k127 + k126 + k124k126 k127

Table 18
Cube indexes and superpolys for Nk(L3,AK

2,0 ) (1st iterative SCCA, using y0).

I KSI I KSI I KSI I KSI I KSI I KSI

34 1 + k36 38 1 + k40 42 1 + k44 46 1 + k48 50 1 + k52 54 1 + k56

33 k37 37 k41 41 k45 45 k49 49 k53 53 k57

Table 19
Cube indexes and superpolys for Nk(L4,AK

2,0 ) (2nd iterative SCCA, using y0).

I KSI I KSI I KSI

1, 2 1 + k3 29 1 + k31 + k34 + k33 + k31k33 4, 5, 6, 8, 9 k13 + k14

0, 2 k4 33, 34 1 + k35 22, 23, 25, 27 k23

0, 1 1 + k5 33 1 + k35 + k38 + k37 + k35k37 20, 22, 24, 25, 27 k24

0 1 + k4 + k6 + k4k5 45, 46 1 + k47 20, 21, 24, 25, 27 1 + k25

13, 14 1 + k15 45 1 + k47 + k50 + k49 + k47k49 20, 21, 24, 25, 26 k25 + k26

12, 14 k16 49, 50 1 + k51 21, 23, 26, 27 k27

12, 13 1 + k17 49 1 + k51 + k54 + k53 + k51k53 20, 22, 23, 24, 26 k28

13 1 + k15 + k18 + k17 + k15k17 61, 62 1 + k63 + k65 + k66 + k64k65 20, 21, 23, 24, 25 1 + k29

17, 18 1 + k19 6, 7, 9, 11 k7 20, 21, 22, 24, 25 k29 + k30

16, 18 k20 7, 8, 9, 11 k7 + k8 38, 39, 41, 43 k39

16, 17 1 + k21 4, 5, 8, 9, 11 1 + k9 36, 37, 40, 41, 42 k41 + k42

17 1 + k19 + k22 + k21 + k19k21 4, 5, 8, 9, 10 k9 + k10 37, 39, 42, 43 k43

29, 30 1 + k31 5, 7, 10, 11 k11 36, 37, 38, 40, 41 k45 + k46

28, 30 k32 4, 5, 7, 8, 10 k12 53, 54, 56, 57, 58 1 + k55

28, 29 1 + k33 4, 5, 7, 8, 9 1 + k13 52, 53, 56, 57, 58 k57 + k58

Table 20
Cube indexes and linear superpolys on L2,AK

1,0 ⊕ L3,AK
1,0 .

I pS(I) I pS(I) I pS(I) I pS(I)

1, 2 k16 33, 34 1 + k48 5, 7, 8, 9, 10 1 + k20 37, 38, 40, 41, 42 k52

0, 1 k18 + k19 32, 33 k50 + k51 4, 5, 8, 9, 11 k22 + k23 36, 37, 40, 42, 43 k54 + k55

0, 2 k17 + k19 32, 34 k49 + k51 4, 6, 8, 9, 10 k21 + k23 36, 38, 40, 41, 42 k53 + k55

13, 14 k28 45, 46 1 + k60 4, 5, 6, 9, 11 1 + k24 36, 37, 38, 41, 42 k56

12, 13 k30 + k31 44, 45 k62 + k63 4, 5, 6, 8, 9 k26 + k27 36, 37, 38, 40, 41 k58 + k59

12, 14 k29 + k31 44, 46 k61 + k63 4, 5, 6, 8, 10 k25 + k27 36, 37, 38, 40, 42 k57 + k59

17, 18 k32 49, 50 1 + k64 21, 22, 24, 25, 26 k36 53, 54, 56, 57, 58 k68

16, 17 k34 + k35 48, 49 k66 + k67 20, 21, 24, 26, 27 k38 + k39 52, 53, 56, 58, 59 k70 + k71

16, 18 k33 + k35 48, 50 k65 + k67 20, 22, 24, 25, 26 k37 + k39 52, 54, 56, 57, 58 k69 + k71

29, 30 k44 61, 62 1 + k76 20, 21, 22, 25, 26 k40 52, 53, 54, 57, 58 k72

28, 29 k46 + k47 60, 61 k78 + k79 20, 21, 22, 24, 25 k42 + k43 52, 53, 55, 56, 57 k74 + k75

28, 30 k45 + k47 60, 62 k77 + k79 20, 21, 22, 24, 26 k41 + k43 52, 53, 55, 56, 58 k73 + k75
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Table 21
Cube indexes and non-linear superpolys on L2,AK

1,0 ⊕ L3,AK
1,0 .

I pS(I) Kd I pS(I) Kd

5, 8, 9, 10 1 + k23 + k20k22 + k20k23 k22 or k23 37, 40, 41, 42 1 + k55 + k52k54 + k52k55 k54 or k55

4, 5, 6, 9 1 + k27 + k24k26 + k24k27 k26 or k27 36, 37, 38, 41 1 + k59 + k56k58 + k56k59 k58 or k59

21, 24, 25, 26 1 + k39 + k36k38 + k36k39 k38 or k39 53, 56, 57, 58 1 + k71 + k68k70 + k68k71 k70 or k71

20, 21, 22, 25 1 + k43 + k40k42 + k40k43 k42 or k43 52, 53, 54, 58 k75 + k72k73 + k72k75 k73 or k75

Table 22
Cube indexes and superpolys on L2,AK

1,0 ⊕ L3,AK
1,0 (iterative SCCA).

I pS(I) I pS(I) I pS(I) I pS(I)

1 k19 18 1 + k35 52 k49 53 k65

14 1 + k31 30 1 + k47 37 k61

Table 23
Cube indexes and linear superpolys on L2,AK

2,0 ⊕ L3,AK
2,0 .

I pS(I) I pS(I) I pS(I) I pS(I)

1, 2 1 + k16 32, 33 1 + k50 4, 5, 6, 9, 10 1 + k24 36, 37, 40, 41, 43 1 + k54

0, 2 k17 45, 46 k60 4, 5, 7, 8, 10 k25 36, 37, 40, 41, 42 k54 + k55

0, 1 1 + k18 44, 46 k61 4, 5, 7, 8, 9 1 + k26 36, 37, 38, 41, 42 1 + k56

13, 14 1 + k28 44, 45 1 + k62 4, 5, 6, 8, 9 k26 + k27 36, 37, 39, 40, 42 k57

12, 14 k29 49, 50 k64 21, 22, 24, 25, 26 1 + k36 36, 37, 39, 40, 41 1 + k58

12, 13 1 + k30 48, 50 k65 20, 22, 24, 25, 27 k37 36, 37, 38, 40, 41 k58 + k59

17, 18 1 + k32 48, 49 1 + k66 20, 21, 24, 25, 27 1 + k38 53, 54, 56, 57, 58 1 + k68

16, 18 k33 61, 62 k76 20, 21, 24, 25, 26 k38 + k39 52, 54, 56, 57, 59 k69

16, 17 1 + k34 60, 62 k77 20, 21, 22, 25, 26 1 + k40 52, 53, 56, 57, 59 1 + k70

29, 30 1 + k44 60, 61 1 + k78 20, 21, 23, 24, 26 k41 52, 53, 56, 57, 58 k70 + k71

28, 30 k45 5, 6, 8, 9, 10 1 + k20 20, 21, 23, 24, 25 1 + k42 52, 53, 54, 57, 58 1 + k72

28, 29 1 + k46 4, 6, 8, 9, 11 k21 20, 21, 22, 24, 25 k42 + k43 52, 53, 55, 56, 58 k73

33, 34 k48 4, 5, 8, 9, 11 1 + k22 37, 38, 40, 41, 42 1 + k52 52, 53, 55, 56, 57 1 + k74

32, 34 k49 4, 5, 8, 9, 10 k22 + k23 36, 38, 40, 41, 43 k53 52, 53, 54, 56, 57 k74 + k75

Table 24
Cube indexes and non-linear superpolys on L2,AK

2,0 ⊕ L3,AK
2,0 .

I pS(I) Kd I pS(I) Kd

1 1 + k16 + k19 + k18 + k16k18 k19 33 1 + k48 + k51 + k48k50 k51

13 1 + k28 + k31 + k30 + k28k30 k31 45 1 + k60 + k63 + k60k62 k63

17 1 + k32 + k35 + k34 + k32k34 k35 49 1 + k64 + k67 + k64k66 k67

29 1 + k44 + k47 + k46 + k44k46 k47 61 1 + k76 + k79 + k76k78 k79

Table 25
Cube indexes and superpolys on L2,AK

2,0 ⊕ L3,AK
2,0 (iterative SCCA).

I pS(I) I pS(I) I pS(I) I pS(I)

46 1 + k0 50 1 + k4 54 1 + k8 58 1 + k12

45 k1 49 k5 53 k9 57 k13
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