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Abstract—GOST is a well-known block cipher as the
official encryption standard for the Russian Federation.
A special feature of GOST is that its eight S-boxes can
be secret. However, most of the researches on GOST
assume that the design of these S-boxes is known. In
this paper, the security of GOST against side-channel
attacks is examined with algebraic fault analysis (AFA),
which combines the algebraic cryptanalysis with the
fault attack. Three AFAs on GOST, which have different
attack goals in different scenarios, are investigated. The
results show that 8 fault injections are required to
recover the secret key when the full design of GOST is
known, which is less than 64 fault injections required
in previous work. 64 fault injections are required to
recover the eight unknown S-boxes assuming the key
is known. 270 fault injections are required to recover
the key and the eight S-boxes when both are unknown.
The results prove that AFA is very effective and keeping
some components in a cipher secret cannot guarantee its
security against fault attacks.

Keywords-algebraic cryptanalysis; differential fault
analysis; GOST; key recovery; reverse engineering.

I. INTRODUCTION

Fault attacks [5] retrieve secret information in a

crypto system by injecting computational faults and

exploiting incorrect output. The most widely studied

method of fault analysis is differential fault analysis

(DFA) [4]. DFA derives information about the secret

key by examining the differences between the correct

and the faulty ciphertexts. Currently, DFA has been

successfully applied to many block ciphers [23], [24],

[29], [30], [35]. In DFA, adversaries knowing the

cipher design need to manually compute the fault

propagation path and patterns. Algebraic cryptanaly-

sis [7] transforms ciphers into algebraic equations and

recovers the secret key with automatic tools such as

SAT solver [38]. Combining algebraic methods with

fault attacks is a promising way to improve DFA. Such

techniques are called “algebraic fault analysis” (AFA).

In 2010, Courtois et al. [9] first proposed AFA and

applied it to DES. They showed that DES can be

broken with a single fault injection if two bits in the

13th round are altered. In 2011, AFA [31] was used

to improve DFA on the stream cipher Trivium [19],

[20]. The inner state of Trivium can now be recovered

using only two fault injections and 420 key stream

bits. Recently, AFA [25], [42] was used to improve

DFA on the lightweight block cipher LED [22], [24].

LED can be broken within three minutes on a PC

with a single fault injection, this is more efficient
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than standard DFAs [22], [24]. Moreover, the work

in [42] showed that AFA can be used to evaluate the

reduced key search space for a given fault model. In

2013, AFA [40] was used to improve DFA on Piccolo,

DES and only one fault injection is required. From the

findings so far, we can see that, as to some ciphers,

AFA is more effective than DFA considering the data

complexity. Meanwhile, AFA can leverage automatic

tools and does not require the manual analysis in DFA,

which limits the number of rounds and propagation

paths that can be analyzed. Adversaries only need to

build algebraic equations for the cipher and faults.

Further investigations on AFA (e.g., AFA for reverse

engineering) are important to understand the threats of

fault attacks. This is also a motivation of this paper.

This paper studies AFA on the GOST block ci-

pher [32], which is a Soviet and Russian government

standard. Its large key size of 256 bits makes it a

plausible alternative to AES-256 and Triple-DES. In

2010, GOST was submitted to ISO to become an

international standard [16]. Assuming that the S-boxes

are public, a lot of work has been done in recent years

to analyze the security of GOST with the traditional

cryptanalysis techniques [10], [12], [13], [15], [21],

[26]. Recently, the security of GOST against fault

attacks was studied with standard DFA in 2013 [27].

Based on a random nibble fault model in the right input

register of round 25,27,29,31, the work in [27] can

recover the key of GOST with 64 fault injections (16

fault injections for each round). The general design

of GOST was published in 1994, but some of the

crucial elements (such as the choice of eight S-boxes)

remained confidential even today. These secret S-boxes

can be considered as a secondary key, thus extending

the key size to more than 700 bits.

In this paper, we study AFAs on GOST in three

scenarios with different assumptions in order to recover

the secret key, the contents of the eight S-boxes, or

both. Based on a random byte fault model in the right

input register of round 24, 26, 28, 30, 8 fault injections

(2 faults for each fault position) are required to recover

the secret key when the full design of GOST is known,

which is less than 64 fault injections required in [27].

The results show that AFA on GOST can succeed

under deep fault model and requires smaller numbers

of fault injections than DFA on GOST. Based on a

random byte fault model in the right input register

of round 30, 31, 64 fault injections (32 faults for

each fault position) are required to recover the eight

unknown S-boxes assuming the key is known. Based

on a random byte fault model in the right input register

of round 23 to 31, 270 fault injections (30 faults for

each fault position) are required to recover the key and

the eight S-boxes when both are unknown. For the first

time, we show that both the secret key and the eight

secret S-boxes of GOST can be recovered by AFA at

the same time in one attack.

The rest of this paper is organized as follows. Sec-

tion II briefly describes the general design of GOST.

Section III describes the targeted attack scenarios in

this paper. Section IV presents the attack framework

and fault models of AFA on GOST and Section V de-

scribes the detailed attack procedure. algebraic Section

VI provides the experimental results and Section VII

concludes the paper.

II. THE GOST BLOCK CIPHER

This section briefly describes the GOST block ci-

pher. The notations used in this paper are listed as

follows.

• Li: the left half of the data block in the i-th round

(1 ≤ i ≤ 32).

• Ri: the right half of the data block in the i-th
round(1 ≤ i ≤ 32).

• Ki: the round key in the i-th round (1 ≤ i ≤ 32).

• �: addition modulo 232.

• <<< n: left rotation by n bits.

A. Encryption

The general design of GOST [32] was published

in 1994, but even today the design of the eight S-

boxes remained confidential. One set of S-boxes was

published in 1994 as a part of the Russian standard

hash function specification GOST R 34.11-94 and used

by the Central Bank of the Russian Federation. This

specific version of GOST 28147-89 block cipher is the

most popular one, and it is commonly called just “the

GOST cipher” in the cryptographic literature.

The overall design of GOST is similar to that of

DES, which is also a Feistel network using 64-bit

blocks. In each round (Fig. 1), the cipher processes

the right half of the data block using the function f ,

XORs the result from f with the left half, and swaps

the two halves.
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Li+1 = Ri

Ri+1 = Li ⊕ f(Ri,Ki)
(1)

Li Ri

Li�1 Ri�1

�

Ki
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S8

≪ 11
�

Figure 1. One round of GOST

The f function in GOST consists of three steps.

1) adding round key (AK): the right half of the

block, Ri, is added (modulo 232) with the round

key Ki.

2) S-box look-up (SL): the 32-bit output of AK
goes through eight different 4× 4 S-boxes.

3) rotating bits to the left (RL): the output of SL
is rotated to the left by 11 bits.

B. Key Scheduling

The full GOST has 32 rounds and uses 256-bit

keys. The key schedule is extremely simple. First,

the 256-bit key is divided into eight 32-bit words

(k1, k2, k3, k4, k5, k6, k7, k8). GOST then uses one of

these words as a round key. In the first 24 rounds, the

words are used sequentially and repeated three times.

In the final 8 rounds (25-32), the words are used in the

reverse order.

Ki = k(i−1) mod 8 +1, i ∈ [1, 24]

Ki = k32−i+1, i ∈ [25, 32]
(2)

III. TARGETED ATTACK SCENARIOS

Three attack scenarios are investigated in this paper.

The attacks have different goals because of different

assumptions.

A. Scenario 1

The complete design of GOST is known and the

goal is to recover the 256-bit secret key. In particular,

we conduct AFA on GOST with eight S-boxes used

by the Central Bank of the Russian Federation.

B. Scenario 2

The general design of GOST is known, but the

design of the eight S-boxes is kept secret. The secret

key is known to the adversaries and the goal is to

recover the secret S-boxes, which is the same as the

widely used assumptions in side-channel based reverse

engineering [6], [14], [18], [33] and fault based reverse

engineering [34].

C. Scenario 3

Both the secret key and the eight S-boxes are un-

known. The goal is to recover both of them with AFA,

which has not been studied in previous fault attacks.

IV. OVERVIEW OF ALGEBRAIC FAULT ANALYSIS

(AFA) ON GOST

A. Framework

The framework of AFA on GOST is shown in Fig. 2.

An AFA attack consists of three steps.

1. Fault injection. Suppose Pm and Cm denote the

m-th correct plaintext and ciphertext encrypted with

the secret key K, respectively. Tm denotes the correct

value of the targeted intermediate state in fault attacks.

When encrypting Pm with K, the adversary injects a

fault into Tm by changing the power supply voltage ,

changing the frequency of the external clock, or using

laser attack [1], [2], [3]. Then, Tm becomes the faulty

value T ∗m and the resulting faulty ciphertext is C∗m.

Note that the correct ciphertext Cm is also available to

the adversary. In this paper, the position refers to the

round where faults are injected and the location refers

to the location of the faulty byte in the targeted state.

The position, location, and value (differences of Tm

and T ∗m) of faults depend on the fault model, which

will be described in Section V.

2. Fault exploitation. It consists of three substeps.

Substep1: The operations from the faulty state to the

ciphertext for both the correct and faulty encryptions

are represented with a system of equations. How to

represent the nonlinear components of GOST, such as

addition modulo 232 and S-box lookup, is the most

crucial part in this substep.
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Figure 2. Framework of AFA on GOST

Substep2: Additional algebraic equations can be

built to represent the difference of the correct and the

faulty intermediate states. In practice, the location and

value of the injected faults might not be known. This

representation is very important for AFA.

Substep3: A set of new equations that describes

a full encryption of GOST given a pair of known

plaintext and ciphertext is built to verify the correctness

of the recovered key.

Note that the key techniques in Substep1 and Sub-

step3 are identical: representing a GOST round with

algebraic equations, which will be discussed in detail

in Section V. The difference between the two substeps

is the number of rounds that are considered.

3. Equation solving. Finally, equations representing

the cipher and the faults are combined into a larger

equation system, which can be solved for secret vari-

ables by an equation solving tool (e.g., SAT solver).

Breaking the cipher is equivalent to solving the equa-

tions.

B. Fault Model

Let Rj
i and Rj∗

i denote the j-th correct and faulty

bytes, respectively, in the right half of the data block in

the i-th round (1 ≤ i ≤ 32, 1 ≤ j ≤ 4 ). �Rj
i denotes

the fault difference of Rj
i and Rj∗

i . Our proposed fault

model includes the following assumptions.

1) The attacker has the capability to choose one

plaintext Pm to encrypt with an unknown/given

secret key K and to obtain the correct ciphertext

Cm.

2) There is one random fault in byte Rj
i modifying

all later operations depending on this Rj
i when

encrypting the same Pm with K, which can

be generated by injecting one byte fault into

Rj
i or Lj

i−1. The attacker can obtain the faulty

ciphertext C∗m. It is called a fault injection.

3) The attacker can repeat the fault injection many

times when encrypting N different plaintexts

with the fixed key K. N depends on the attack

and can be used to evaluate the data complexity

of the attacks.

4) In a fault injection, fault is only injected into one

round. The fault position i (the round number)

is known, but both the fault location (j) and the

fault difference (�Rj
i ) are not known.

V. PROCEDURE OF AFA ON GOST

A. Converting GOST into Algebraic Equations

In this section, we first describe how to represent

the nonlinear functions (� and S-box) and the linear

function (left rotation), then give the equation set for

partial and full GOST.

1) Representing AK: Suppose X =
(x1, x2, ..., x32) and Y = (y1, y2, ..., y32) are the two

32-bit input of the � function. Z = (z1, z2, ..., z32)
is the output of the � function and Z = X � Y .

We employ the techniques in [11] to represent Z, as

shown in Eq.(3). Only 31 extra binary variables ti
(1 ≤ i ≤ 31) are introduced for the carry bits in �.
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z32 = x32 + y32

t31 = x32y32

z31 = x31 + y31 + t31

t30 = x31y31 + x31t31 + y31t31

z30 = x30 + y30 + t30

t29 = x30y30 + x30t30 + y30t30

z29 = x29 + y29 + t29

t28 = x29y29 + x29t29 + y29t29

. . .

z2 = x2 + y2 + t2

t1 = x2y2 + x2t2 + y2t2

z1 = x1 + y1 + t1

(3)

2) Representing SL: Suppose (x1, x2, x3, x4) and

(y1, y2, y3, y4) are the input and output of a 4-bit S-

box. We build the representation of the S-box in two

different cases.

Case 1: The S-box is public. We employ the tech-

niques in [28] to represent every S-box output bit

with high-degree equations from the four S-box input

bits. Four equations can be generated for one S-box

of GOST. For other techniques to representing one S-

box with many more cubics than four equations, please

refer to [8]. Take the S-box S1 in the Central Bank of

the Russian Federation [32] as an example. S1 can be

denoted as:

y1 = x2 + x3 + x4 + x1x2 + x1x3+

x2x4 + x1x2x4 + x2x3x4

y2 = 1 + x3 + x4 + x3x4 + x1x2x3+

x1x2x4 + x1x3x4 + x2x3x4

y3 = x1 + x4 + x1x3 + x1x4 + x2x4+

x1x2x4 + x2x3x4

y4 = x2 + x3 + x1x4 + x2x4 + x3x4+

x1x2x3 + x1x3x4

(4)

Case 2: The S-box is secret. S1 can be denoted as

in Eq.(5). 64 extra binary variables ai (1 ≤ i ≤ 64) are

introduced as the secret parameters for each S-box.

y1 = a1 + a2x1 + a3x2 + a4x3 + a5x4+

a6x1x2 + a7x1x3 + a8x1x4+

a9x2x3 + a10x2x4 + a11x3x4+

a12x1x2x3 + a13x1x2x4 + a14x1x3x4+

a15x2x3x4 + a16x1x2x3x4

y2 = a17 + a18x1 + a19x2 + a20x3 + a21x4+

a22x1x2 + a23x1x3 + a24x1x4+

a25x2x3 + a26x2x4 + a27x3x4+

a28x1x2x3 + a29x1x2x4 + a30x1x3x4+

a31x2x3x4 + a32x1x2x3x4

y3 = a33 + a34x1 + a35x2 + a36x3 + a37x4+

a38x1x2 + a39x1x3 + a40x1x4+

a41x2x3 + a42x2x4 + a43x3x4+

a44x1x2x3 + a45x1x2x4 + a46x1x3x4+

a47x2x3x4 + a48x1x2x3x4

y4 = a49 + a50x1 + a51x2 + a52x3 + a53x4+

a54x1x2 + a55x1x3 + a56x1x4+

a57x2x3 + a58x2x4 + a59x3x4+

a60x1x2x3 + a61x1x2x4 + a62x1x3x4+

a63x2x3x4 + a64x1x2x3x4

(5)

3) Representing RL: Suppose X = (x1, x2, ..., x32)
and Y = (y1, y2, ..., y32) are the 32-bit input and output

of the left rotation function in GOST. yi can be denoted

as

yi = x((i+9) mod 32)+1 (6)

4) Building the equation set of GOST: Combining

the representation of AK,SL,RL, the equation sets

for partial GOST can be built to represent the last few

rounds of the correct and faulty encryptions starting

from the position of fault injection. Similarly, the

equation set for full GOST can be built from the known

plaintext and ciphertext to verify the recovered key. S-

ince fault attacks start with analyzing the ciphertext, we

will first build the equation set for GOST decryption.

This can accelerate the speed of solving the algebraic

equations, which is also noted in [42]. Building the

equation set for r decryption rounds (1 ≤ r ≤ 32) of

GOST is illustrated in Algorithm 1.
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Algorithm 1. Building the equation set for

r rounds decryption of GOST

1: C ←− [c1, c2, ..., c64]

2: L33 ←− [c1, c2, ..., c32]

3: R33 ←− [c33, c34, ..., c64]

4: L32 ←− L33 ⊕RL(SL(RL(R33,K32)))
5: R32 ←− R33

6: for i =31 to 32− r (i > 0) do
7: Li ←− Ri+1

8: Ri ←− Li+1 ⊕RL(SL(RL(Ri+1,Ki)))
9:end for

Using Algorithm 1, each round of GOST can be

represented with 429 variables and 777 CNF equations

when the S-boxes are known, 949 variables and 2353

CNF equations when the S-boxes are unknown.

B. Converting Faults into Algebraic Equations

When a fault is injected into Ri, the standard D-

FAs [23], [24], [29], [30], [35] have to deduce the ac-

curate location of the faulty byte in Ri by analyzing the

fault propagation pattern. And all previous AFAs [9],

[25], [42] assumed the fault location is known. Inspired

by the work in [41], this section describes a new

method to convert faults into algebraic equations when

both the fault location and fault value are unknown.

Suppose the correct input to the right register

of the i-th round of GOST is denoted as X =
(x1, x2, . . . , x32). The faulty input after the fault injec-

tion is denoted as Y = (y1, y2, . . . , y15). Let Z denote

the fault difference of X and Y . Z can be computed

by

Z = (z1, z2, . . . , z32), zi = xi ⊕ yi, 1 ≤ i ≤ 32 (7)

Z can be considered as the concatenation

of four bytes Z1||Z2||Z3||Z4, where Zi =
(z8i−7, z8i−6, . . . , z8i) (1 ≤ i ≤ 4). Four one-bit

variables ui are introduced to represent whether Zi is

faulty or not.

ui = (1⊕ z8i−7)∧ (1⊕ z8i−6)∧ (. . .)∧ (1⊕ z8i) (8)

where ui is zero if Zi is faulty. Since there is only

one fault injected, only one of ui (1 ≤ i ≤ 4) is zero.

The constraint can be represented as

(1− u1) ∨ (1− u2) ∨ (1− u3) ∨ (1− u4) = 1,

ui ∨ uj = 1, 1 ≤ i < j ≤ 4
(9)

The injected fault can be represented with the

Eq(7)(8)(9) whose representations are quite simple and

straightforward. Note that the technique of this section

is very important for fault attacks with multiple fault

injections when the accurate fault location is difficult

to be deduced from the ciphertext differences.

C. Solving the Equations

The problem of searching for the master key is

now transformed into solving the merged equation

system. Many automatic tools, such as Gröbner basis-

based [17] and SAT-based solver [38], can be lever-

aged. We choose CryptoMiniSAT [38] as the solver in

our analysis. The readers can refer to [37] for details

of how to generate equations and how to feed them to

the solver.

VI. EXPERIMENT RESULTS

To prove the feasibility of AFA on GOST, we

conducted extensive experiments in all three scenarios

described in Section III.

A. Experiment Setup

How to inject faults has been discussed in [1], [2],

[3] and is out of the scope of this paper. In our exper-

iment, we simulated the fault injection with computer

software and used CryptoMiniSat v2.9.4 [38] to solve

the combined algebraic equations. The PC that runs

CryptoMiniSAT has the following configuration: Intel

Core I7-2640M, 2.80 GHZ, and 4G bytes memory. The

operating system is 64-bit Windows 7. In this section,

an instance refers to one run of our AFA on a set of

correct plaintexts, correct and faulty ciphertexts and a

fixed key.

In the attack, several different parameters are con-

sidered, which is partially referred from [39].

• N : the number of fault injections, which is used

to evaluate the data complexity of AFA on GOST.

• V (N): the number of variables in representing the

equations of GOST and N faults.

• A(N): the number of ANF equations in represent-

ing GOST and N faults.

• υ(N): the size of the generated scripts in repre-

senting the equations of GOST and N faults.

• t(N): the time complexity (seconds) required in

solving the algebraic equations of AFA for a given

value of N .

34



Table I
N = 8 PAIRS OF CORRECT AND FAULTY CIPHERTEXTS

m Pm Cm C∗
m i

1 0x287d14432765f03d 0x25ce9927f052a780 0x619989d703b98b08 24
2 0x8b100cea6ce4ded1 0x9a4a57d15eb00228 0x71aae71e4822279a 24
3 0x7efda7963d01c081 0xff240d1e54c7f45b 0x2d5f4ea945cb0615 26
4 0xdaba6447681dc833 0x17e7d15d13393b0b 0x99d864f232a2b556 26
5 0xff1dd1c07d6050d6 0x8af39ce68950b222 0x7af69ce2f968b202 28
6 0x9c09c3f2bc9bfe26 0x58cee80c516767b7 0x7d720e6389185d9f 28
7 0x520e7f84154eccab 0xfbaf17fd782e58f6 0xcb5be7ab784842de 30
8 0x65b3a38cbbf5fe79 0x024fe23051aef23f 0x5a3c44b0f1ae9608 30

• τ : the threshold of the time complexity (seconds)

required in a successful AFA.

• φ(N, τ): the success rate of the key recovery in

AFA for a given value of N and τ .

• λ(N): the entropy of the secret key in AFA on

GOST for a given value of N under Scenario 1.

In this scenario, the plaintexts are unknown and

the ciphertexts are known.

B. Results of AFA on GOST in Scenario 1

In this scenario, a fault is injected in a random byte

in Ri, i ∈ {24, 26, 28, 30}, when N random plaintexts

are encrypted with a fixed secret key. The position of

the injected fault in this section is more deep than the

work in [27] (random nibble fault injected in the right

input register of round 25,27,29,31). We believe that

under our deep fault model, more subkey are involved

in the fault propagation path per fault injection and

the full master key can be recovered with less number

of fault injections. The algebraic equations for the last

33−i rounds of the correct and faulty encryptions, and

for one full correct encryption are built as described in

Section V.A. It should be noted that the S-boxes are

known in this scenario and the equations are built as the

Case 1 in Section V.A. The differences of Ri and R∗i
are converted into algebraic equations with the method

in Section V.B.

In the attack, we assume 4n random faults are

injected into Ri, i ∈ {24, 26, 28, 30} of GOST (n faults

for each value of i, N = 4n). Table I lists 8 pairs of

correct and faulty ciphertexts encrypted with key K =
0xd4d0ed83f9e0580bf473e25ddda03fb93623ff141

44fe3cb3dfd6f6c0ddee894. A correct plaintex-

t/ciphertext pair used for verification in this

Table is P = 0xa11d39c1d41da871 and

C = 0xee349c1fcdf71607.

In the solution file generated by CryptoMiniSAT,

variables No. 2 to No. 257 are the 256-bit secret

key of GOST. A key bit is 1 if the corresponding

index is positive, and is 0 otherwise. The recovered

key in AFA is the same as the correct key K. We

conducted attacks on GOST with different values of

n, n = 1, 2, 3, 4 (N = 4, 8, 12, 16). For each case, we

generated different random plaintext/key and ran 100

instances.

In the attack, when N=16, V (N) = 52, 801,

A(N) = 102, 385, υ(N) = 1999KB, 100% of the

instances can be solved within one minute, φ(16, 60) =
100%. When N=12, V (N) = 42, 857, A(N) =
83, 037, υ(N) = 1613KB, φ(12, 600) = 80%,

φ(12, 3600) = 95%, φ(12, 7200) = 100%, which

means that 80%,95%,100% of the instances can be

solved within ten minutes, one hour and two hours

respectively. When N=8, V (N) = 32, 913, A(N) =
63, 689, υ(N) = 1226KB, φ(8, 3600) = 85%,

φ(8, 7200) = 95%, φ(8, 14400) = 100%. When N=4,

V (N) = 22, 969, A(N) = 44, 341, υ(N) = 840KB,

all the instances can not be solved within 48 hours. The

results show that AFA on GOST can succeed under

deep fault model and requires smaller numbers of fault

injections than DFA on GOST in [27].

The distribution of equation solving time of N=8

and N=12 is shown in Fig. 3. we can see that the

equation solving time of CryptoMiniSAT seems to

follow an exponential distribution (as noted in [36],

[41], [42]).

Since v2.9.4, the CryptoMiniSAT solver can support

multiple solutions outputting. We are interested in

using this feature to evaluate the reduced search space

of the secret key in AFA. Under this scenario, the value

of the plaintext is not required to fed into the solver.

We conducted 100 random instances of AFA on

GOST considering four cases, N = 4, 8, 12, 16. For
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Table II
64-BIT SECRET PARAMETERS FOR THE EIGHT RECOVERED S-BOXES OF GOST (IN HEXADECIMAL)

S-box a1, a2, . . . , a64 S-box a1, a2, . . . , a64

S1 0x3e4a983e4b4a3174 S5 0x0ab8873cec12349e

S2 0xf478c97494c208a6 S6 0x1dceda3679486e34

S3 0x6986bf52669eec3c S7 0xf5c8eb982aead2b2

S4 0x5802b282ac52f22e S8 0x5c4a3b560eba85b6
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1226KB

Figure 3. Equation solving time in AFA on GOST in Scenario 1

N = 4, the solver can not output all the solutions with-

in 48 hours. For N = 8, 12, 16, the average λ(N) can

be calculated easily and λ(16) = 0.2, λ(12) = 12.2,

λ(8) = 16.7, which means that key search space of

GOST can be reduced to 20.2,212.2,216.7 after analyzing

16, 12, 8 fault injections, respectively. The reduced

entropy of the secret key is larger with the decrease

of N . For large value of λ(N) (e.g, N = 8), if

the plaintext are fed into the solver (as shown in

above), the solver has to verify the correctness of the

2λ(N) possible solutions, thus the solving time is much

longer.

C. Results of AFA on GOST in Scenario 2

In this scenario, a fault is injected in a random

byte in Ri, i ∈ {30, 31}, when N random plaintexts

are encrypted with a fixed secret key. The method of

building the algebraic equations are almost the same as

in Section VI.B except that the S-boxes are unknown

in this scenario and the S-box equations are built as

in Case 2 in Section V.A. Recall that the 256-bit key

is known and the goal is to recover the 512-bit in the

secret S-boxes.

We firstly implemented GOST with the eight S-

boxes used by the Central Bank [32], but assumed that

the contents of these S-boxes are unknown to us. The

experiment results show that if 32 random faults are

injected into R30 and R31 (64 faults in total, V (N) =
183, 553, A(N) = 467, 969, υ(N) = 9024KB), the

512-bit secret parameters for the eight S-boxes can

be recovered with on average one minute. We can

see that the number of variables and ANF equations

required in this scenario is much bigger than that in

scenario 2. This is mainly caused by the difficulty in

representing unknown S-boxes. Table II lists the output

from CryptoMiniSAT, which shows the hexadecimal

representation of the coefficients in Eq. (5) for eight

S-boxes.

For each S-box, we substitute the values of a1 to

a64 in Table II into Eq.(5). As to the first S-box S1,

we can obtain equations that are the same as Eq.(4).

Then we substitute the values of the S-box input to

the extracted four equations in Eq.(4) and recover the

S-box. The recovered eight S-boxes are the same as

the released S-boxes in [32].

To show the easy and hard cases of our AFA, we

conducted attacks under different number of faults. For

different values of N , we run 100 random instances and

calculate the solving time, the success rate. Fig. 4(a)
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Figure 4. Results of AFA on GOST in Scenario 2

shows the success rate for different N values when

the time for solving equations is limited to under

one hour. φ(N, τ) increase with the value of N .

When N=64, V (N) = 183, 553, A(N) = 467, 969,

υ(N) = 9024KB, φ(64, 3600) = 100%. The time

complexity of AFA on GOST with N=64 is shown

in Fig. 4(b). We can see that 93% of the instances can

be solved by CryptoMiniSAT within one minute.

Besides the eight S-boxes used by the Central

Bank [32], we also performed several attacks on GOST

implemented with other groups of eight unknown S-

boxes. Both the data and time complexities required in

the attacks are close, which shows the strong applica-

bility of the AFA technique.

D. Results of AFA on GOST in Scenario 3

In this scenario, we assume 9n random faults are

injected into Ri, i ∈ {23, 24, 25, 26, 27, 28, 29, 30, 31}

of GOST (n faults for each value of i) when N random

plaintexts are encrypted with a fixed secret key, N =
9n. The method of building the algebraic equations is

almost the same as in Section VI.C except that the 256-

bit key is unknown. The goal is to recover the 512-bit

for the eight S-boxes and the 256-bit key (768-bit in

total).
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Figure 5. Results of AFA on GOST in Scenario 3

We also conducted attacks under different number of

faults. We set τ=86400 seconds, which is equal to 24

hours. For different values of N , we run 100 random

instances and calculate the solving time, the success

rate. Fig. 5(a) shows the success rate for different

N . When n ≤ 25, all of the attacks failed and the

success rate φ(N, τ) is 0%. When 25 < n ≤ 35,

φ(N, τ) is increased with n, and the average solving

time is decreased. When n > 35, the CryptoMiniSAT

solver might output exceptions and the φ(N, τ) is even
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decreased. This maybe caused by the problem of large

memory requirement in SAT solver. When n > 35, the

script size of the full equation set is larger than 100 MB

(including more than five million ANF equations and

two million variables). The time complexity of AFA on

GOST with n=30 is shown in Fig. 5(b). The average

solving time when n=30 is 6.39 hours, which is larger

than 3.40 hours when n=35.

VII. CONCLUSION

This paper evaluates the security of GOST against

the algebraic fault analysis (AFA). We propose a tech-

nique to represent the secret S-boxes and the injected

faults with algebraic equations. The attacks are studied

in three scenarios with different conditions and goals.

The results show that AFA can be used for reverse

engineering and keeping some components in a cipher

secret cannot guarantee its security. Both the key and

the S-boxes can be recovered by AFA with small

numbers of faults. To the best of our knowledge, this

is the first fault attacks that can recover both the secret

key and the secret S-boxes at the same time. Future

work on the proposed AFA includes evaluating the

complexity of AFA, optimizing the equation solving

time, and investigating the attacks on real devices.
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