
China Communications • June 201533

cal information such as time, sound, power 
consumption, electromagnetic radiation etc. 
leaked from the hardware platform during en-
cryption and decryption to reveal the internal 
states of the algorithm, thus the knowledge of 
key can be inferred.

Cache timing attacks [3] are one category 
of side channel attacks. The time difference 
between Cache access and non-Cache access 
are considered as the leakage source. Typical-
ly, a spy process can be used to set the Cache 
to a known state and monitor the change of the 
state to gather the information on the Cache 
accesses of victim process. Since the proposal 
of Cache timing attack, it has been used to 
break various public-key cryptography and 
block cipher, such as RSA [4], DSA [6], El-
Gamal [14], AES [7][15][16][17].

Existing Cache timing attacks on RSA are 
divided into two categories. The first category 
is based on monitoring the specific instructions 
[5][8]. The dummy instructions of the spy 
process precisely maps to the same L1 Cache 
location with the specific instructions of vic-
tim process. In this way, the adversary creates 
a conflict between dummy instructions and the 
specific instructions. Therefore, the execution 
of the specific instructions by the victim can 
be detected. The other category is based on 
monitoring the entire L1 Cache [4][6]. The 
adversary can fill the entire L1 Cache with 

Abstract: FLUSH+RELOAD attack is recent-
ly proposed as a new type of Cache timing 
attacks. There are three essential factors in 
this attack, which are monitored instructions, 
threshold and waiting interval. However, ex-
isting literature seldom exploit how and why 
they could affect the system. This paper aims 
to study the impacts of these three parameters, 
and the method of how to choose optimal 
values. The complete rules for choosing the 
monitored instructions based on necessary 
and sufficient condition are proposed. How to 
select the optimal threshold based on Bayesian 
binary signal detection principal is also pro-
posed. Meanwhile, the time sequence model of 
monitoring is constructed and the calculation 
of the optimal waiting interval is specified. 
Extensive experiments are conducted on RSA 
implemented with binary square-and-multiply 
algorithm. The results show that the aver-
age success rate of full RSA key recovery is 
89.67%.
Keywords: side channel attack; Cache timing 
attack; RSA; square-multiply algorithm; expo-
nentiation

I. INTRODUCTION

Side Channel attacks [1][2] are kind of attacks 
target on the implementation of cryptograph-
ic systems. Such attacks exploit the physi-

Analysis on the Parameter Selection Method for 
FLUSH+RELOAD Based Cache Timing Attack on RSA
Zhou Ping1, Wang Tao1, Li Guang2, ZHANG Fan3, Zhao Xinjie2

1 Department of Information Engineering, Ordnance Engineering College, Shijiazhuang 050003, China
2 The Institute of North Electronic Equipment, Beijing 100083, China
3 Department of Information Science & Electrical Engineering, Zhejiang University, Hangzhou, 310027, China

SIDE CHANNEL ATTACKS AND COUNTERMEASURES



China Communications • June 2015 34

tions. In addition, the code of exponentiation 
of OpenSSL library has been analyzed and 
proper monitored instructions are selected.

The threshold selection method based on 
Bayesian binary signal detection principal is 
also proposed. By calculating the minimum 
cost of incorrect determination, the optimal 
threshold can be found and its value is cal-
culated. Our experiments show that, with the 
optimal threshold value, the success rate of the 
attacks can be improved and the rate of incor-
rect estimation of operation is decreased.

Meanwhile, we provide the time sequence 
model of monitoring and the formula used to 
calculate the waiting interval time. Experiment 
results show that the capture rate of the victim 
access is above 62.82% when the interval is 
within the calculated theoretical value.

With the selected optimal parameters from 
the proposed method, extensive experiments 
are conducted on the RSA decryption imple-
mented with square-multiply algorithm. The 
results show that the success rate of the pro-
posed attack is between 86% and 95%, while 
the success rate is 64% with the value of pa-
rameters used in [9].

The remainder of the paper is organized as 
follows: Section II provides background infor-
mation of RSA. Section III reviews and dis-
cusses the typical FLUSH+RELOAD attack. 
Section IV presents our methods for parameter 
selection. Section V provides the experimental 
results and discussions. Finally, Section VI 
concludes the full paper.

II. RSA ENCRYPTION AND ITS 
IMPLEMENTATION

2.1 RSA encryption

RSA [13] is the most widely used public-key 
cryptosystem. It can be used for encryption 
and digital signature. The steps of key gen-
eration for RSA public-key encryption is as 
follows:
•	 �Generate two large random primes p and q.
•	 �Calculate N = pq and φ = (p-1) (q-1).
•	 �Select a random integer e, 1 <e <φ, such 

dummy instructions to cause capacity miss, 
thus the operations executed by the victim can 
be inferred as operations have different Cache 
access patterns.

However, these attacks depend on that the 
spy process shares the same L1 Cache with the 
victim process. Therefore, it is only feasible 
for attacking RSA implemented on single-core 
processors. As to multi-core processors, the 
spy process and the victim process are like-
ly to be assigned to different cores, thus L1 
Cache can no longer be shared.

To address this issue, Yuval Yarom and Ka-
trina Falkner [9] proposed a L3 Cache timing 
attack called FLUSH+RELOAD attack. The 
method relies on the fact that the spy process 
and the victim process share the same physical 
memory pages. The spy process will flush the 
specific instructions of the victim process in 
the shared memory page from all levels of the 
Cache, then reload them into Cache and mea-
sure the time. Thus, the access of the victim 
to the specific instructions can be monitored. 
FLUSH+RELOAD attack was applied to ex-
tract private keys from GnuPG and recovered 
98% of the bits of the RSA private key.

Then, Yarom and Benger [18] applied this 
method in the case of OpenSSL’s implemen-
tation of ECDSA over binary fields. Naomi 
Benger et al. [19] combined the FLUSH+RE-
LOAD attack and the lattice techniques to 
attack the wNAF point multiplication algo-
rithm and reconstructed secret keys for 256-
bit elliptic curves after obtaining less than 256 
signatures.

However, existing studies seldom analyzed 
the impacts of the monitored instructions, the 
waiting interval and the threshold. How to 
find the optimal value of these parameters is 
not carefully discussed either. Based on [9], 
this paper provides detailed analysis for these 
previously mentioned three issues as well as 
experimental verification.

Firstly, we analyze the relationship between 
the instruction access of the victim process and 
the execution of operations. Then, we propose 
the rules of selecting monitored instructions 
based on the necessary and sufficient condi-

This paper aims to 
study the impacts of 
th ree  parameter s- 
monitored instruc-
tions, threshold and 
waiting interval, and 
the method of how 
to choose opt imal 
values. The complete 
rules for choosing the 
monitored instructions 
based on necessary 
and sufficient condi-
tion are proposed.



China Communications • June 201535

In the “left-to-right” method, each iteration 
begins with the execution of a square and a 
modulo reduce calculation. A multiplication 
and a modulo reduce calculation can follow 
them, depending on the current exponent bit 
value. This method is detailed in Algorithm 1.

We can see that the operations execut-
ed depend on exponent bits in the binary 
square multiplication algorithm. One square 
operation and one reduce operation will be 
executed when the current exponent bit is 0. 
Extra multiply and reduce operation will be 
executed when the current exponent bit is 1. 
Therefore, an adversary can exactly recover 
the exponent by tracing the execution of the 
square-and-multiply exponentiation algorithm.

III. FLUSH+RELOAD ATTACK

3.1 Attack principle

FLUSH+RELOAD is a recently proposed 
Cache attack targets on the implementation of 
public-key cryptosystem on multi-core proces-
sors.

It monitors and traces the accesses of a vic-
tim process to instructions in shared memory 
pages by a spy process. It is possible for the 
spy process to obtain the knowledge of exe-
cuting instructions by a victim process, while 
the spy process only needs read access to the 
shared memory pages. The spy process can 
infer the behavior of the victim process by 
monitoring whether a specific instruction (or 
memory line) in these pages is accessed by the 
victim process.

There are three phases in each round of 
monitoring.

Phase I: the spy process flushes the moni-
tored instructions from all levels of the Cache 
using the clflush instruction.

Phase II: the spy process waits for some 
time interval. During this moment, the victim 
process may load monitored instructions in 
shared memory pages.

Phase III: the spy process reloads the mon-
itored instructions and measures the time it 
takes.

If the victim process did not access the 

that gcd (e, φ) = 1.
•	 �Calculate the unique integer d, 1 <d<φ, 

such that ed ≡ 1 (mod φ)
•	 �The public key is (e, N) and the private key 

is d.
The integers e and d above are called en-

cryption exponent and the decryption expo-
nent respectively and N is called the modulus. 
Let m denote the message, c represents the ci-
pher text. To encrypt a message m, the sender 
should do the following:
•	 �Represent the message as integer m in the 

interval [0, n-1].
•	 �Compute c = me mod N.
To recover plaintext m from c, the receiver 
should do the following:
•	 �Compute m = cd mod N

2.2 Square-and-multiply algorithm

The most  important  ar i thmetic  opera-
tion for RSA is modular exponentiation. 
Square-and-multiply algorithm is a basic 
method for binary exponentiation. The expo-
nent is firstly represented in a binary basis: 

e =
∑t

i=0
2i ∗ ei . Then a modular exponenti-

ation is performed by scanning the bits of the 
exponent. The exponent bits can be scanned 
from the LSB to the MSB, or from the oppo-
site way. These methods are called “right-to-
left” and “left-to-right” exponentiation. With-
out loss of generality, we focus on the second 
case in this paper.

Algorithm 1  Square-and-multiply algorithm

Input: base x, modulus N, exponent e = (etet-1...e1e0)2, et = 1.
Output: y = xe mod N
Compute:
y = 1
for i from t to 0 {
	 y = Square(y)
	 y = ModReduce(y, N)
	 if ei = 1, then{
		  y = Mult(y, x)
		  y = ModReduce(y, N)
		  }
}
return(y)
�



China Communications • June 2015 36

tions may be accessed more than one time if 
the waiting interval is set too long. The spy 
cannot detect them accurately. However, if 
the waiting interval is too short, the spy will 
miss the access as the victim memory access 
overlaps the spy measurement. This is because 
that the reload time will be much longer than 
normal when overlap happens. The work in 
[9] set the waiting interval as 2048 cycles, but 
they did not explain the reason. Although it 
has been pointed out that “choosing the length 
of the time slot presents a tradeoff between 
the attack resolution and the probability of 
missing a memory access” [18], whether there 
exists upper or lower limit of waiting interval 
is still a question.

IV. PARAMETER SELECTION METHOD 
FOR FLUSH+RELOAD ATTACK

4.1 Rules for monitored instructions 
selection based on necessary and 
sufficient condition

In each round of the attack, the spy process 
monitors one instruction of each of the square, 
multiply and modulo reduce operations.

For convenience, let addr be the address of 
a monitored instruction. Let addrs, addrm and 
addrr denote the monitored instruction of the 
square, multiply and modulo reduce opera-
tions respectively. A denotes the set of all the 
addresses of instructions of victim program. s, 
m, r and e present the square, multiply, mod-
ulo reduce and other operations, while S, M, 
R and E present the set of their addresses re-
spectively. Let b be the size of a Cache block 
in byte. Obviously, we have A = SMRE 
and the right side of the equation may not be 
empty set.

The determination can be made from the 
measurement directly is whether the moni-
tored instructions are reloaded from the Cache 
or the memory, i.e., the truth of proposition p:

Proposition p: addri is cached during wait-
ing interval. (i = s, m, r)

The attacker needs to infer the truth of 
proposition q from proposition p:

monitored instructions during the second 
phase, the monitored instructions should be re-
loaded form the memory thus it takes relative-
ly longer time. Otherwise, it takes significantly 
shorter time to reload these instructions as 
they have been cached. Executing these three 
steps iteratively, the spy process can learn the 
sequence of monitored instructions performed 
by victim process.

3.2 Revisit to the attack

In FLUSH+RELOAD approach, three particu-
larly important parameters are very important 
for the success rate of the attack. Howev-
er, none of the existing literature discussed 
and analyzed how exactly these parameters 
worked and how to choose appropriate values 
for them.

The first issue is how to select the moni-
tored instructions. The spy process infers the 
sequence of operations (square, multiply and 
modular reduction) performed during decryp-
tion by capturing accesses of victim process 
to the monitored instructions. Each monitored 
instruction should be corresponding to the 
operation it presents. Besides, they should be 
chosen so that the spy process can capture the 
victim access with sufficient high probability. 
Yuval Yarom and Katrina Falkner [9] stated 
“to increase the chance of a probe capturing 
the access, we selected memory lines that are 
executed frequently during the calculation”. 
However, we find this principle cannot ensure 
the correspondence between the victim access 
to monitored instructions and the performing 
of operations. Improper selection may lead to 
incorrect operation determination.

The second issue is how to find the optimal 
threshold for the reload time. The threshold is 
used to compare with the reload time to deter-
mine whether the monitored instructions are 
reloaded from memory or Cache. The optimal 
threshold can decrease the rate of incorrect de-
termination. The work in [9] set the threshold 
as 120 cycles. In our experiment, we find it is 
not optimal.

The third issue is how to choose the waiting 
interval. In Phase II, the monitored instruc-



China Communications • June 201537

There are two reasons for addri to be 
cached indirectly. The first is that the instruc-
tions and data are cached in blocks. If addri 
and addrj are mapped into the same Cache 
block, then addri will be loaded into Cache 
together with addrj due to the execution of 
operation j. Therefore, it should be ensuring 
that there are not any instructions of other op-
erations in the range of [addri-b, addri+b]. The 
other reason is Cache prefetching. Some pro-
cessors will prefetch a pair of 2b-byte Cache 
block if the first access to one of them while it 
is in memory. Therefore, no other operations’ 
can be in the range of [addri-2b, addri+2b]. 
The former case should carefully be avoided 
while the latter one depends on the feature of 
the processor.

In addition, in order to increase the chance 
of capturing the access and improve the ca-
pacity of anti-noise, addri should try to follow 
these rules:

Rule 4: addri should be accessed more 
times than any address else.

n(addri) = max n(addr),

addr ∈ {x|p x←→ q}, (i = s,m, r)

where n(addr) denotes the time the addr is 
accessed.

In our experiment, we implement the 
square-and-multiply algorithm with OpenSSL 
library. The Figure 1 shows the main functions 
involved in exponentiation and their first ad-
dresses.

On the left side of Figure 1, the set the 
instructions belong to and the accessed time 
in each operation are marked. According 
to the above rules, instructions located in 
addrs=0x08051be5, addrm=0x08049dc8, ad-
drr=0x0804e4a0 are selected as monitored 
instructions. Note that, according to Rules 3, 
addrs and addrm take 128 bytes, i.e. the size 
of two Cache blocks, away from the first ad-
dresses of the functions respectively. In addi-
tion, although the function bn_sub_words() is 
accessed much more than 32 times, its instruc-
tions cannot be selected according to Rule 2, 
as it is called during the execution of all of the 
three operations.

Proposition q: operation i is performed. (i = 
s, m, r)

According to the attack, both of the propo-
sition p and proposition q must be true or false 
at the same time, i.e. if p then q and if ~p then 
~q. So, from this logical relationship, addri 
should be selected such that p and q are suffi-
cient and necessary condition of each other:

	     p
addri←→ q, q

addri←→ p

To ensure that addri is cached when oper-
ation i is performed during waiting interval 
(q→p), addri should be in accordance with the 
following rule:

Rule 1: addri must be accessed by victim 
process during the execution of operation i:

    addrs ∈ S , addrm ∈ M, addrr ∈ R
To ensure that addri is non-cached when 

operation i is not performed during waiting 
interval (p→q), addri should be in accordance 
with the following rules:

Rule 2: addri should not be accessed by 
victim process during the execution of any op-
eration except i:

addrs � M ∪ R ∪ E, addrm � S ∪ R ∪ E,

addrr � S ∪ M ∪ E

Rule 3: the execution of other operations 
should not lead to addri’s being cached indi-
rectly:

[addrs − 2b, addrs + 2b] � M ∪ R ∪ E,
[addrm − 2b, addrm + 2b] � S ∪ R ∪ E,
[addrr − 2b, addrr + 2b] � S ∪ M ∪ E.

Fig.1  Address allocation

bn_sub_words()

bn_mul_recursive()

BN_mul()

BN_sqr()

0x08049bac

0x08049d48

0x0804c27a

0x0804df6c

0x0804f48d

0x08051778

0x08051b65

bn_sqr_comba8()

0x0805105b

bn_div_words()
BN_div()

0x0804e4a0

R∩M∩S

M

S

R

M

M

S

M

R

bn_mul_comba8()
0x08049dc8

bn_sqr_recursive()
0x08051be5

1 times

13 times

9 times

1 times

1 times

4 times

9 times

32 times



China Communications • June 2015 38

1) is true, the result in which Hi (i=0, 1) holds. 
Corresponding determination probability is 
expressed as P(Hi|Hj) (i, j=0, 1).

The formula for computing determination 
probability is:

 P(Hi|Hj) =
∫

Ri

p(x|Hj)dx i, j = 0, 1 � (4-1)

In this formula, p(x|H0) is the probability 
density function of measured reload times 
from Cache; p(x|H1) is the probability density 
function of measured reload times from mem-
ory. Ri indicates the two subspaces of observa-
tional space of reload times that are divided by 
threshold η. Specifically, when the measured 
value is smaller than threshold η it falls into 
space R0, holds hypothesis H0; when the mea-
sured value is greater than threshold η it falls 
into R1, holds hypothesis H1.

For the four determination scenarios, when 
i=j the determination is correct, otherwise in-
correct. Cost factor cij (i, j=0, 1) is used to de-
note the cost of each determination scenario, 
meaning that if Hj (j=0, 1) is true, the cost of 
determining that Hi (i=0, 1) holds. The restric-
tions of cost factors are cjj ≥ 0, j=0, 1; cij ≥ cjj, 
i, j=0, 1, i≠j.

Then, the average cost is
C = P(H0)[c00P(H0|H0)+c10P(H1|H0)] + P(H1)		
	 [c11P(H1|H1)+c01P(H0|H1)]� (4-2)

According to Bayesian test principle, the 
optimal η minimizes the average cost C.

4.2.2 Cost factor

In our scenario, the effects of four determina-
tion results to the attack are different. When 
the determination is correct, there is no cost, 
thus c00=0, c11=0. When the determination is 
incorrect, then c01>>c10>0. It is because that in 
each operation, the monitored instruction will 
be executed multiple times (e.g., in computing 
the modulo reduce, the monitored instruction 
will be executed 32 times), detecting several 
times in them will suffice to help correctly 
determine the computation executed in the 
victim process. Therefore, the cost of (H1|H0) 
determination is not significant. On the oth-
er hand, once the reloading form memory is 
mistakenly determined as from Cache, it will 

4.2 Time threshold selection based 
on binary signal bayesian test 
principle

The time threshold is used to determine if the 
monitored instruction is reloaded from Cache 
or the memory. If the loading time is greater 
than the threshold, it will be presumed that 
the instruction was loaded from the memory 
instead of the Cache. Therefore, one can infer 
that the victim process accessed the instruction 
before the reloading of the spy process.

Due to the interference of other processes 
and the random factors of the storage, the 
spy can only measure the reloading time with 
noises. The existence of noises may lead to 
two types of determination errors. The first 
is to mistake reloading from memory for re-
loading from Cache, resulting in wrong that 
the monitored instruction is accessed by the 
victim. The second is to mistake Cache reload 
for memory reload, thus the spy will miss the 
access of the victim process. Therefore, it is 
important to select appropriate threshold, to 
minimize the effect of false determination.

The effect of different thresholds on recov-
ering the private key or operation sequence 
was not analyzed in [9]. The way to choose 
threshold in [9] is as follows: Firstly, the load-
ing times from memory and L1 Cache were 
assessed primarily in the [33, 49] and [200, 
300] intervals. Then, since the access time of 
L3 Cache is 22~39 cycles longer than access 
time of L1 Cache, “the threshold is set to 120 
cycles based on measured results and the Intel 
manual”.

4.2.1 Bayesian principles and average cost

In this paper, we adopt the binary signal 
Bayesian detection principle to select the 
threshold, which is a principle of statistical 
test for optimal signal status using minimal 
average cost as a criterion. In our scenario, 
reload has two states: the monitored instruc-
tion is reloaded from Cache, set as Hypothesis 
H0; the monitored command is reloaded from 
memory, set as Hypothesis H1. Then there are 
four possible determination results, denoted 
as (Hi|Hj) (i, j=0, 1), meaning that if Hj (j=0, 



China Communications • June 201539

4.2.3 Priori probability and probability 
density function

Since only one operation can be executed in 
a given moment for the victim process, only 
one of the three monitored instructions will 
be reloaded from Cache. Therefore, the priori 
probability of two determination hypotheses is 
P(H0)=1/3 and P(H1)=2/3, respectively.

We use the distribution of reload times from 
memory and Cache of monitored instructions 
as the probability density function for comput-
ing the average cost.

To measure the reload time of monitored 
instruction from the memory, this study did 
not execute the decryption but only the spy 
process. In this way, after each time the mon-
itored instruction is loaded into Cache, it gets 
flushed out by the spy process, ensuring that 
the instruction will be reloaded from memory 
in the next time. 300,000 reload times from 
memory was measured, whose distribution is 
displayed in Figure 2.

In Figure 2, the horizontal axis and the ver-
tical axis indicate the reload time and the per-
centage of sample in the overall sample size 
respectively. To show this figure in a proper 
scale, outliers are truncated. From Figure 2, 
we can see that all reload times from memo-
ry exceeded 189 cycles. In fact, most of the 
reload times from memory were greater than 
206 cycles.

To obtain the reload time from Cache of 
monitored instruction, we removed the clflush 
instruction from the spy program. In this way, 
the monitored instruction will always be re-
loaded from Cache. 300,000 reload times from 
Cache was measured, whose distribution is 
shown in Figure 3.

From Figure 3, most reload times from 
Cache ranged within 33~59. However, some 
samples were distributed in 60~400 cycles, ex-
ceeding the minimum time of memory access. 
Moreover, the access time of different Cache 
level can also be observed from the Figure.

4.2.4 Calculation of optimal threshold

After determining the cost factors, the priori 

cause incorrect speculation to be accessed by 
the victim. Even though errors are taken into 
consideration in the key recovery algorithm, 
the efficiency and success rate of private key 
recovery will be greatly reduced. Therefore, 
the cost of (H0|H1) determination will be ob-
viously higher than the cost of (H1|H0) deter-
mination. In this paper we set c01=100, c10=10. 
Note that this selection of c01and c10 is to 
reflect the comparative cost of two determina-
tion results. As long as the values satisfy that 
c01>c10>0, same results will be obtained in the 
subsequent analyses.

Fig.3  Distribution of reload times from Cache

Fig.2  Distribution of reload times from memory

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

30

Reload Time (cycles)

P
er

ce
nt

 (%
)

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

Reload Time (cycles)

P
er

ce
nt

 (%
)



China Communications • June 2015 40

of victim process, leading to severe fluctua-
tions of measurement, which subsequently 
affects capturing the victim access.

To investigate the range of waiting in-
tervals, let twait be waiting interval, tprobe be 
the time used for each monitoring operation 
(including flushing, reloading, measuring, 
recording etc.). Let trdtsc denotes the time used 
for the timer to record time, tmemory and tL3_

Cache denote the reload time of instruction from 
memory and from L3 Cache respectively. Let 
ΔTtarget denotes the execution time interval 
between two adjacent monitored instructions 
that are to be distinguished. All variables use 
cycles as their units. The time sequence model 
of monitoring is displayed in Figure 5.

For every specific monitored instruction, 
the time between flushing and the next reload-
ing includes waiting interval twait, as well as the 
time for another two monitoring tasks 2*tprobe, 
and the time cost trdtsc for timer instruction 
rdtsc. Based on the times sequence model of 

probability of the hypotheses and the prob-
ability density function of reload times, the 
average cost is a function of threshold η. Us-
ing MATLAB, the average cost with different 
threshold is shown in Figure 4.

In Figure 4, the horizontal axis indicates 
threshold η. The vertical axis indicates average 
cost (for convenience of displaying, the results 
are logged). From Figure 4, it is clear to see 
that the optimal value of η is 170~189 cycles, 
and its average cost is minimal.

4.3 Time sequence model of 
monitoring and waiting time 
interval selection

In the spy process, each round of monitoring is 
divided into flushing, waiting, and reloading. 
At the beginning of the monitoring, the moni-
tored instruction will be flushed out of Cache 
by the spy process. After waiting for a certain 
time interval, it is reloaded by the spy process 
and the reload time is measured. It can be de-
cided that whether the victim process accessed 
the monitored instructions during the waiting 
interval by the length of reload time. The work 
in [9] selected the waiting time interval to be 
2048 cycles. However, no explanations were 
provided.

In this paper, we believe that the effects of 
waiting interval on attack are two folds. If the 
waiting interval is relatively long, the moni-
tored instruction may have been executed for 
multiple times, or multiple different monitor 
instructions have been executed during the 
same waiting interval, which cannot be dis-
tinguished by the spy process, leading to low 
“resolution”. If the waiting interval is relative-
ly short, the frequent flushing and reloading 
may be more likely to conflict with the access 

0 50 100 150 200 250 300 350 400
-10

-5

0

5

threshold η (cycles)

av
er

ag
e 

co
st

 (l
og

)

Fig.4  Average cost with different thresholds

twait+trdtsc

reload(s) flush(s) reload(m) flush(m) reload(r) flush(r) reload(s) flush(s)wait interval

tprobetprobe

Fig.5  Time sequence model of monitoring



China Communications • June 201541

Intel i5-3470 processor, a 4GB DDR3-1600 
memory and a Fedora 18 operating system. 
The RSA decryption employed the binary 
square-and-multiply algorithm. The square, 
multiplication and modulo reduce calculation 
were implemented by OpenSSL. Each decryp-
tion round was performed with the randomly 
generated 1024-bit modulus and key. The 
selected monitored instruction was the same 
as that in Section 4.1 and its address was ob-
tained from the Eclipse debug tool.

In the attack, if more than two successive 
samples of reload times of addri are less than 
the threshold, it is believed that the operation 
i is performed. A successful attack means that 
the 1024-bit is recovered entirely and exactly 
without exhausting search.

5.2 Selecting the threshold

In the experiment, we use the error rate of op-
eration determination and the success rate of 
attack to evaluate the impact of the threshold 
and verify the conclusion in Section 4.2. The 
error rate of operation determination refers 
to the ratio between the number of wrong 
guessed operations and the total number of op-
erations performed during a decryption round. 
The wrong guesses include the admittance of 
the operations that actually occur and the con-
sideration of the operations that never occur.

In the experiment, the waiting interval was 
set as [0, 50, 100, 150, 200, 250, 300, 400, 
600, 800, 1024, 1536, 2048, 3072, 4096] cy-
cles. For each interval, we executed the attack 
for 100 times and recorded the timing data. 
Then the data processing and key recovery 
were conducted with different threshold val-
ues. The relationship among the error rate of 
operation determination, the success rate of 
attack and the threshold value are presented in 
Figure 6.

From Figure 6, we can see that in the range 
between 80 and 160 cycles, the error rate of 
operation determination decreases while the 
success rate of the attack goes up with increas-
ing threshold η. The reason is that the prob-
ability of incorrect determination P(H1|H0) 
decreased. Especially, the error rate exhibits 

monitoring, waiting interval twait should satisfy:
  tmemory-tL3_Cache<twait+2*tprobe+trdtsc<ΔTtarget� (4-3)

In the FLUSH+RELOAD attack, the adver-
sary needs to distinguish whether the reload is 
from memory or Cache, the interval between 
two rounds of monitoring i.e., twait+2*tprobe+trdtsc, 
should at least be greater than the time needed 
for the monitored instruction to be loaded to 
L3 Cache from memory, i.e., tmemory-tL3_Cache. 
Otherwise, the spy process will start reloading 
and measuring before the victim process com-
pletes loading the monitored instruction from 
memory to L3 Cache. The conflict caused by 
different processes access the same physical 
address will bias the measured reload times.

Meanwhile, the interval between two 
rounds of monitoring should ensure that the 
access behaviors would not happen within the 
same waiting intervals. In our case, twait needs 
to be smaller than the time interval between 
two executions of each monitored instruction. 
In addition, it also needs to be smaller than 
the time interval between last execution of the 
monitored instruction in one computation and 
the first execution of monitored instruction in 
the next computation.

The average values of the aforementioned 
parameters and the twait range calculated from 
Formula 4-3 are shown in Table I.

V. EXPERIMENTS

5.1 Experiment setup

The experiment was conducted on the Think-
Centre desktop, which is characterized by an 

Table I  Values of time parameter and boundary of the optimal twait

Parameter
Average Value

(cycles)
Boundary of the Optimal twait

(cycles)

tmemory 285.31

tL3_Cache 57.74

tprobe 512.31

trdtsc 72.98

ΔTtarget（s） 2059.53 <961.93

ΔTtarget（m） 3370.33 <2272.73

ΔTtarget（r） 1476.04 <378.44

ΔTtarget（between operations） 1670.40 <572.8



China Communications • June 2015 42

surements decreases and then remains stable. 
Particularly, when twait is smaller than 200, the 
measured reload times are significantly unsta-
ble, which may lead to incorrect determination 
during data processing.

The capture rate refers the ratio between the 
number of captured victim accesses and the 
number of victim accesses in actual. During 
a long waiting interval, it is possible that the 
monitored instruction has been executed for 
more than one time and the capture rate de-
crease. Figure 8 shows the influences of differ-
ent values of twait to the capture rates.

The vertical dashed lines denote the calcu-
lated boundary of the optimal twait according to 

a sharp descent in the range between 120 and 
160 cycles, while the success rate shows a 
significant increase in the range between 140 
and 160 cycles. These properties result from 
the fact that plenty of the measured values of 
the reload times from Cache lie near to 150 
cycles.

In addition, the error rate becomes more 
stable and ranges between 1.78% and 1.91% 
in the domain bounded by 180 and 200. It 
achieves its minimum value of 1.78% at 
η=180. The success rate of the attack stabiliz-
es between 84.47% and 88.4% and it arrives 
its peak value of 88.4% at η=180. It is in the 
domain that both P(H1|H0) and P(H0|H1) are 
relatively small.

The phenomenon that the error rate turns 
into a sharp increase while the success rate of 
the attack descends dramatically is attributed 
to an increasing P(H0|H1) after the η becomes 
greater than minimum value of reload times 
from memory.

Note that the threshold value η is evaluated 
in a relatively better domain between 160 and 
200; the optimal value of the threshold is 180. 
These values are consistent with the conclu-
sion in Section 4.2.

5.3 Selecting waiting interval

In this section, we use the standard deviation 
of measurements, the capture rate and the 
overlapping rate to evaluate the impact of the 
waiting interval and to verify the conclusion in 
Section 4.2. Specifically, the standard devia-
tion of measurements is used to determine the 
lower boundary of the optimal waiting interval 
twait. The capture rate and the overlapping rate 
are used to determine the upper boundary of 
the optimal twait.

Normally the reload times are stable. If 
fluctuation happens, it means that the flush-
ing and reloading are too frequent so that the 
accesses of victim to monitored instruction is 
disturbed. The standard deviations of measure-
ments under different twait are shown in Figure 
7.

It is clear to see that as waiting interval 
twait increases, the standard deviation of mea-

Fig.6  Error rate and success rate of attacks with different thresholds

Fig.7  Standard deviation of measurements with different waiting intervals

80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

threshold η (cycles)

pe
rc

en
t (

%
)

 

 

error rate
success rate

0 500 1000 1500 2000 2500 3000 3500 4000
5

10

15

20

25

30

35

40

waiting interval tw ait (cycles)

st
an

da
rd

 d
ev

ia
tio

n 
of

 m
ea

su
re

m
en

t (
C

P
U

 c
yc

le
s)



China Communications • June 201543

the optimal value, the capture rates maintain 
above 62.82%.

In addition, a long waiting interval twait, will 
lead to overlap between different operations, 
which may cause difficulty in distinguish op-
erations. The overlap rate is the ratio between 
the number of overlap and the number of op-
erations performed during a decryption round. 
The relationship between twait and overlap rate 
is shown in Figure 9.

From Figure 9, when the waiting interval 
twait>600, the overlap rate increases dramati-
cally. The experimental result is very close to 
the calculated ceiling of the optimal twait, i.e., 
<572.8.

Note that these results are consistent with 
the conclusion in Section 4.3. According to the 
experiments above, the following experiments 
will be carried out with setting the waiting in-
terval as 200~600 cycles.

5.4 Attacking experiments

In the attack experiments, we set twait=200, 
η=180. Figure 10 presents a part of measure-
ment times during one decryption operation.

In Fig. 10, the horizontal axis is the round 
of monitoring and the vertical axis is reload 
time, and the dotted line is the threshold. We 
can see that when the reload time is less than 
the threshold, the monitored instruction is re-
loaded from the Cache, which determines the 
type of operation performed by victim process 
at this moment.

Table II shows the monitoring round corre-
sponding to each operation:

Note that in round 1361 modulo reduce 
calculation and multiplication overlap each 
other, and in round 1434 an incorrect determi-
nation is mixed in square operations, but the 
sequence of operations can still be recognized 
obviously. This is because that the selected 
monitored instruction is frequently executed 
in each operation so that the fault tolerance is 
improved.

According to experimental results in Sec-
tion 5.2 and Section 5.3, we set 160<twait<200 
and 200<η<600. For each (twait, η) we executed 
the attack for 100 times, and for each attack 

Formula 4-3. The overall capture rate decreas-
es as twait increases. The capture rates decreas-
es dramatically after the twait exceeding the 
calculated boundary of optimal values. Within 

Fig.8  Capture rate with different waiting intervals

Fig.9  Overlap rate with different waiting intervals

0 500 1000 1500 2000 2500 3000 3500 4000

20

30

40

50

60

70

80

90

100

wait interval tw ait (cycles)

ca
pt

ur
e 

ra
te

 (%
)

 

 

square
multiply
modulo

tw ait(r)=378.44

tw aitt(s)=961.93

tw ait(m)=2272.73

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

30

35

wait interval tw ait (cycles)

ov
er

la
p 

ra
te

 (%
)

tw ait=572.8

Table II  Monitoring round corresponding to operations
Number of the Monitoring Rounds Operation

1317-1334 S

1337-1361 R

1361-1394 M

1394-1427 R

1428-1443 S

1447-1479 R



China Communications • June 2015 44

ACKNOWLEDGEMENTS

The authors would like to thank the reviewers 
for their detailed reviews and constructive 
comments, which have helped improve the 
quality of this paper. This work is supported by 
National Natural Science Foundation of China 
(No. 61472357, No. 61309021, No. 61272491, 
No. 61173191), the Major State Basic Re-
search Development Program (973 Plan) of 
China under the grant 2013CB338004.

References
[1]	� KOCHER P C. Timing Attacks on Implementa-

tions of Diffie-Hellman, RSA, DSS, and Other 
Systems[C]// Proceedings of CRYPTO 1996: 
August 1996, Santa Barbara, California, USA. 
Berlin: Springer, 1996: 104–113.

[2]	� KOCHER P, JAFFE J, JUN B. Differential power 
analysis[C]// Proceedings of CRYPTO 1999: 
August 1999, Santa Barbara, California, USA. 
Berlin: Springer, 1999: 388-397.

[3]	� PAGE D. Theoretical use of Cache memory as a 
cryptanalytic side-channel[R]. Technical Report 

we used randomly generated 1024-bit key. The 
success rates of attacks are shown in Table III:

With the optimal parameters, the success 
rates of attacks ranges between 86% and 95%, 
with an average of 89.67%, while the success 
rate of attack is 64% with the parameters cho-
sen by [9].

VI. CONCLUSION

Three important issues for FLUSH+RELOAD 
attack have been analyzed in details in this pa-
per, including the selections of the monitored 
instructions, the threshold and the waiting 
intervals. We provide the complete rules for 
selecting the monitored instructions based on 
necessary and sufficient condition. Following 
these rules can ensure that the reload times of 
monitored instructions reflect the real opera-
tions performed by the victim process. Based 
on Bayesian binary signal detection principle, 
we propose the method of choosing the opti-
mal threshold. The experimental results indi-
cate that the threshold should be smaller than 
but close to the lower boundary of loading 
times form memory. The time sequence model 
of monitoring was established and an approach 
to calculate the optimal waiting interval was 
provided. Generally, the shorter waiting inter-
val can provide higher resolution. However, 
the measured reload times may be unstable if 
the waiting interval is too short. The method 
above is verified by experiments to recover 
private key of RSA decryption employing 
binary square-and-multiply algorithm. The 
average success rate reached 89.67%, which is 
better than 64% with the value of parameters 
used in [9].

It should be noted that the methods pro-
posed in this paper can also be applied to 
various implementations of RSA or other 
public-key cryptography, by simply adjust-
ing some details. For example, in the case of 
literature [18], the cost factor c01 should be 
set equal to c10 when calculating the optimal 
threshold, since that the costs of two kind of 
incorrect determinations are the same, which 
is quite different with our case.

1317 1337 1357 1377 1397 1417 1437 1457 1477
0

50

100

150

200

250

300

350

400

450

500

round number

re
lo

ad
 ti

m
e 

(c
yc

le
s)

 

 

multiply
square
modulo
threshold

Fig.10  Measurements of reload time

Table III  Success rates of attacks with different waiting intervals and thresholds
Waiting Interval /Threshold 200 180 160 120([9])

200 86% 87% 87%

250 89% 88% 87%

300 90% 91% 91%

400 87% 89% 89%

600 94% 95% 95%

2048([9]) 64%



China Communications • June 201545

of Software, 2011, 22(3):572-591.
[18]	� Yarom Y, Benger N. Recovering OpenSSL 

ECDSA nonces using the FLUSH + RELOAD 
cache side-channel attack[EB/OL]. Cryptology 
ePrint Archive, <http://eprint.iacr.org/> Report 
2014/140, 2014.

[19]	� Benger N, van de Pol J, Smart N P, et al. 
“Ooh Aah… Just a Little Bit”: A Small Amount of 
Side Channel Can Go a Long Way[C]// Proceed-
ings of the CHES 2014: September 2014, Busan, 
South Korea. Berlin: Springer, 2014: 75-92.

Biographies
Zhou Ping, is a currently a Ph.D. student in Depart-
ment of Information Engineering, Ordnance Engi-
neering College, Shijiazhuang, China. He received a 
B.S. degree from University of Electronic Science and 
Technology of China, a M.S. in Ordnance Engineering 
College. His main research interest is side channel 
analysis of public-key cryptography. Email: zhou.
ping_01@hotmail.com

Wang Tao, was born in 1964. He received his Ph.D. 
degree in computer application from Institute of 
Computing Technology Chinese Academy of Scienc-
es in 1996 and master’s degree in computer appli-
cation from Ordnance Engineering College in 1990. 
He is currently a Professor in Ordnance Engineering 
College. His research interests include information 
security and cryptography.

Li Guang, received his M.S. and B.S. degrees in 
Department of Computer Engineering, Ordnance 
Engineering College, Artillery Command Academy in 
2007 and 1996, respectively. He is currently an Senior 
Engineer in Institute of North Electronic Equipment. 
His main research interest includes computer security 
and side channel analysis of block ciphers.

ZHANG Fan, was born in 1978. He received his Ph.D. 
degree in the Department of Computer Science and 
Engineering from University of Connecticut in 2012. 
His research interests include side channel analysis 
and fault analysis in cryptography, computer ar-
chitecture, security in wireless sensor network, and 
more. Currently he is working in the Department of 
Information Science & Electrical Engineering, Zhe-
jiang University, China. *The corresponding author. 
Email: fanzhang@zju.edu.cn

Zhao Xinjie, received his Ph.D., M.S. and B.S. de-
grees in Department of Information Engineering, 
Ordnance Engineering College in 2012, 2009 and 
2006, respectively. He is currently an Engineer in 
Institute of North Electronic Equipment. His main 
research interest includes side channel analysis, fault 
analysis and combined analysis of block ciphers. He 
won the best paper award in Darmstadt - the 3rd In-
ternational Workshop on Constructive Side-Channel 
Analysis and Secure Design (COSADE 2012). 

CSTR-02-003, Department of Computer Sci-
ence, University of Bristol, 2002.

[4]	� Percival C. Cache missing for fun and prof-
it[EB/OL]. <http://www.daemonology.net/pa-
pers/ htt.pdf>. 2005.

[5]	� ACIICMEZ O., SCHINDLER W. A Vulnerability in 
RSA Implementations Due to Instruction Cache 
Analysis and Its Demonstration on OpenS-
SL[C]// Proceedings of the CT-RSA 2008: April 
2008, San Francisco, CA, USA. Berlin: Springer, 
2008: 256–273.

[6]	� ACIIÇMEZ O, BRUMLEY B B, GRABHER P. New 
Results on Instruction Cache Attacks[C]// Pro-
ceedings of the CHES 2010: Santa Barbara, USA. 
Berlin: Springer, 2010: 110-124.

[7]	� NEVE M, SEIFERT J P. Advances on Access-driv-
en Cache Attacks on AES[C]// Proceedings of 
SAC 2006: August 2006, Montreal, Canada. Ber-
lin: Springer, 2007: 147-162.

[8]	� ACIICMEZ O. Yet Another MicroArchitectural At-
tack: Exploiting I-cache[C]// Proceedings of the 
ACM Workshop on Computer Security Architec-
ture: November 2007, Fairfax, Virginia, United 
States. New York, NY, USA: ACM, 2007: 11–18.

[9]	� YAROM Y, FALKNER K. FLUSH+RELOAD: a High 
Resolution, Low Noise, L3 Cache side-Chan-
nel Attack[EB/OL]. Cryptology ePrint Archive, 
<http://eprint.iacr.org/> Report 2013/448, 
2013.

[10]	� BRYANT R E, O’HALLARON D R. Computer Sys-
tems A Programmer’s Perspective[M]. Beijing: 
China Machine Press, 2014.

[11]	� Intel 64 and IA-32 Architecture Optimization 
Reference Manual[R]. Intel Corporation, April 
2012.

[12]	� ZHAO Shujie, ZHAO Jianxun. Signal Detection 
and Estimation Theory[M]. Beijing: Publishing 
House of Electronics Industry, 2013.

[13]	� RIVEST R L, SHAMIR A, ADLEMAN L. A Method 
for Obtaining Digital Signatures and Public-key 
Cryptosystems[J]. Communications of the ACM, 
1978, 21(2): 120-126.

[14]	� ZHANG Y, JULES A, REITER M K, et al. Cross-
VM side channels and their use to extract 
private keys[C]// Proceedings of the 19th ACM 
Conference on Computer and Communication 
Security: October 2012, Raleigh, North Carolina, 
United States. New York, NY, USA: ACM, 2012: 
305-316.

[15]	� ZHAO Xinjie, GUO Shize, ZHANG Fan, et al. 
A Comprehensive Study of Multiple Deduc-
tions-based Algebraic Trace Driven Cache At-
tacks on AES[J]. Computers & Security, 2013, 
39(4): 173-189.

[16]	� WANG Tao, ZHAO Xinjie, GUO Shize, et al. 
Research of Cache Timing Template Attack on 
AES[J]. Chinese Journal of Computers, 2012, 
35(2): 325-341.

[17]	� ZHAO Xinjie, WANG Tao, GUO Shize, et al. Driv-
en Cache Timing Attack Against AES[J]. Journal 


