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HIGHT is a lightweight block cipherwhich has been adopted as a standard block cipher. In this paper, we present a bit-level algebraic
fault analysis (AFA) of HIGHT, where the faults are perturbed by a stealthy HT. The fault model in our attack assumes that the
adversary is able to insert a HT that flips a specific bit of a certain intermediate word of the cipher once the HT is activated.The HT
is realized by merely 4 registers and with an extremely low activation rate of about 0.000025. We show that the optimal location for
inserting the designed HT can be efficiently determined by AFA in advance. Finally, a method is proposed to represent the cipher
and the injected faults with amerged set of algebraic equations and themaster key can be recovered by solving the merged equation
system with an SAT solver. Our attack, which fully recovers the secret master key of the cipher in 12572.26 seconds, requires three
times of activation on the designed HT. To the best of our knowledge, this is the first Trojan attack on HIGHT.

1. Introduction

The resource-constrained devices such as RFID tags and
smart cards have been pervasively used in the daily activities
of human society, such as intelligent transportation, modern
logistics, and food safety [1, 2]. As these devices have inherent
constrains in storage space, computation ability, and power
supply, modern cryptographic primitives like DES, AES, or
RSA are difficult to be deployed on them. Hence, the research
of lightweight cryptography, which aims at designing and
implementing security primitives fitting the needs of low-
resource devices, has been focused on a large scale [3].
Particularly, the lightweight block cipher is one of the most
studied metrics, which has been extensively explored in
numerous prior papers.There have existed a lot of lightweight
block ciphers, such as PRESENT [4], LED [5], SIMON [6],
mCrypton [7], and HIGHT [8, 9].

Hardware Trojan is a circuit maliciously inserted into
integrated circuit (IC) that typically functions to deactivate

the host circuit, change its functionality, or provide covert
channels through which sensitive information can be leaked
[10, 11]. They can be implemented as hardware modifications
to ASICs, commercial-off-the-shelf (COTS) parts, micro-
processors, microcontrollers, network processors, or digital-
signal processors (DSPs) and can also be implemented as
firmware modifications to, for example, FPGA bitstreams
[12]. An adversary is expected to make a Trojan stealthy
in nature, that is, to evade detection by methods such as
postmanufacturing test, optical inspection, or side-channel
analysis [13–15]. Due to outsourcing trend of the semicon-
ductor design and fabrication, hardware Trojan attacks have
emerged as a major security concern for integrated circuits
(ICs) [13].

Differential Fault Analysis (DFA) [16] was one of the ear-
liest techniques invented to attack block ciphers by provoking
a computational error. DFA retrieves the secret key based
on information of the characteristics of the injected faults
and the difference of the ciphertexts and faulty ciphertexts.
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However, since DFA relies on manual analysis, it often has
inherit inherent limitations in scenarios that have very high
complexity, for example, when faults are located in deeper
rounds of the cipher or when the exact location of the injected
faults in a deep round is unknown.

In eSmart 2010, Courtois and Pieprzyk combine algebraic
cryptanalysis [17] with fault analysis to propose a more pow-
erful fault analysis technique called algebraic fault analysis
(AFA) [18].The basic idea of AFA is to convert both the cipher
and the injected faults into algebraic equations and recover
the secret key with automated solvers such as SAT instead
of the manual analysis on fault propagations in DFA, hence
making it easier to extend AFA to deep rounds and different
ciphers and fault models. AFA has been successfully used to
improve DFA on the stream ciphers such as Trivium [19] and
Grain [20] and block ciphers such as AES [21], LED [22, 23],
KASUMI [24], and Piccolo [25].

1.1. Motivation. HIGHT is a lightweight block cipher that
has attracted a lot of attention because it is constructed by
only ARX operations (modular addition, bitwise rotation,
bitwise shift, and XOR), which exhibits high performance
in terms of hardware compared to other block ciphers.
HIGHT has been selected as a standardized block cipher
by Telecommunications Technology Association (TTA) of
Korea and ISO/IEC 18033-3 [9].

It is noted that both the DFA and AFA require high pre-
cision in the fault injection in terms of location and timing.
In practice, low-cost fault injection techniques like reduction
of the feeding voltage or clock manipulation do not achieve
the required accuracy, while highly precise methods such as
pinpointed irradiation of desired fault sites by intensive laser
light are difficult to perform and require costly equipment
[26]. However, if the adversary is able to insert hardware
Trojan (HT) to the underlying cryptographic hardware [10],
AFA can be easily achieved. A well designedHT can precisely
inject any type of faults to enable AFA and evade detections,
by having low cost and with low activation rate.

In addition, since the design of lightweight block ciphers
is compact, especially for HIGHT whose construction only
based on ARX operations, it is simple to represent the cipher
as a set of algebraic equations. It is also easier to implant
hardware Trojans into devices that adopt such lightweight
algorithms because these devices are normally used in RFID
system and composed of sorts of IPs, and they are typically
designed and manufactured by offshore design houses or
foundries. In theory, any parties involving into the design
or manufacturing stages can make alterations in the circuits
for malicious purpose [15], and thus these circuits are more
vulnerable to algebraic fault attacks which inject faults by
triggering HT.

1.2. Contribution. In this paper, we show that the lightweight
block cipher HIGHT is prone to algebraic fault analysis,
which can be feasible with a stealthy HT. The proposed
analysis of HIGHT is implemented on SASEBO-GII board
soldering a 65 nm Virtex-5 FPGA [27] and recovers the
128-bit secret master key with only 3 faults. The main
contributions of the paper are summarized as follows:

(1) We design a stealthy FSM-based HT by using 4 flip-
flops overhead which is a 1.63% additional cost in flip-flops
for HIGHT implemented on SASEBO-GII board and with
an extremely low activation rate of about 0.000025. The HT
enables the adversary to induce a single-bit fault precisely in
both location and time when it is activated and thusmake the
bit-level AFA efficiently.

(2) Some properties of faults are given to maximize the
utilization of the fault leakages and show that the adversary
can predetermine the optimal location for the HT by AFA to
maximize the attack efficiency.

(3) A very simple and efficient method is proposed to
describe HIGHT and the injected faults as a merged set of
algebraic equations and transform the problem of searching
for the secret master key into solving the merged equation
system with an SAT solver.

(4) It is proven that the lower bound for the number of the
required faults is 3 and an efficient distinguisher is proposed
to uniquely determine the secret master key.

1.3. Organization. The rest of this paper is organized as
follows. Section 2 introduces the related works. Section 3 lists
the notations used in the paper and briefly describes the
HIGHT algorithm and the overview of the attack. Section 4
presents some important properties of the faults and the
details of the HT are given in Section 5. Then, Section 6
describes our attack on HIGHT and the experimental results
are shown in Section 7. Finally, Section 8 concludes the paper.

2. Related Work

Since the proposal of HIGHT, there have been many studies
on the security of HIGHT. The preliminary security analysis
[8], conducted during the HIGHT design process, includes
the assessment of the cipher with respect to different crypt-
analytic attacks such as differential cryptanalysis, related-
key attack, saturation attack, and algebraic attack and the
designers claim that at least 20 rounds of HIGHT are secure
against these attacks. But in 2007, Lu [28] presents the first
public cryptanalysis of reduced versions of HIGHT which
indicates the reduced versions of HIGHT are less secure than
the designers claimed. Then in 2009, Lu’s attack results were
improved by Özen et al. [29] by presenting an impossible
differential attack on 26-round HIGHT and a related-key
impossible differential attack on 31 round HIGHT. At CANS
2009, Zhang et al. [30] present a 22-round saturation attack
on HIGHT including full whitening keys with 262.04 chosen
plaintext and 2118.71 22-round encryptions. The first attack
on full HIGHT was proposed by Koo et al. at ICISC 2010
[31] using related-key rectangle attack based on a 24-round
related-key distinguisher with the data complexity of 257.84
chosen plaintext and the time complexity of 2123.17 encryp-
tions. The second attack on full HIGHT was proposed by
Hong et al. at ICISC 2011 [32] with a Biclique cryptanalysis
of the full HIGHT which recovers the 128-bit secret master
key with the computational complexity of 2126.4, faster than
exhaustive search. In [33], Lee et al. present the first DFA
against HIGHT. In this attack, authors claimed that the full
secret master key of HIGHT can be recovered in a few
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Table 1: Summary of the attacks on HIGHT.

Attack #rounds Complexities References
Data Time

Imp. Diff. 18 246.8 CP 2109.2 EN [8]
Saturation 22 262.04 CP 2118.71 EN [30]
Imp. Diff. 25 260 CP 2126.78 EN [29]
Imp. Diff. 26 261 CP 2119.53 EN [22]
Rel.-Key Rec. 26 251.2 CP 2120.41 EN [28]
Rel.-Key Imp. 28 260 CP 2125.54 EN [28]
Rel.-Key Imp. 31 263 CP 2127.28 EN [29]
Rel.-Key Rec. for Weak. 32 (full) 257.84 CP 2123.17EN [31]
Biclique 32 (full) 248 CP 2126.4 EN [32]
DFA 32 (full) 12 faults O(232) Com. + O(232) Mem. +22 seconds [33]
AFA with HT 32 (full) 3 faults 12572.26 seconds (≈3.49 Hours) This paper
Imp.: impossible, Diff.: differential, Rel.: related, Rec.: rectangle, Weak.: weak key, CP: chosen plaintext, EN: encryptions, Com.: computational, and Mem.:
memory.

minutes or seconds with a success rate of 96%, computational
complexity of 𝑂(232), and memory complexity of 𝑂(212) by
injecting 12 faults based on a random byte fault model.

The main idea of this attack is to collect pairs of correct
and faulty ciphertexts by injecting adequate faults and use
them to distinguish where the faults are injected. Once the
fault locations are determined, a number of equations can be
built based on manual analysis of the fault propagations to
filter out the wrong subkey candidates and thus to recover
the secret master key. However, since the adversary analyzes
fault propagations and filters out wrong subkey candidates
manually, the fault leakages are not maximally utilized and
the attack can be further improved.

In this paper, we elaborate an algebraic fault analysis of
HIGHTwith a stealthy HT.The fault model we choose in this
attack is the one in which the adversary is assumed to inject
a single-bit fault precisely in both location and the time of
the disturbance by a HT which is activated just by choosing
certain plaintexts. The attack converts both the cipher and
the injected faults into algebraic equations automatically and
recovers the secret master key with an SAT solver. The
attack recovers the secret master key with a success rate of
96% within 12,572.26 seconds and requires only 3 faults. We
summarize our results as well as the major previous results in
Table 1.

3. Preliminaries

In this section, the notations used in the paper are listed in
Section 3.1. Then, we briefly describe the HIGHT algorithm
in Section 3.2 and the overview of the attack is given in
Section 3.3.

3.1. Notations. In the rest of the paper, the following notations
are used:

1. ⊞: 𝑥 ⊞ 𝑦means 𝑥 + 𝑦mod 28, where 0 ≤ 𝑥, 𝑦 < 28.
2. ⊕, ‖: bitwise XOR and concatenation operations.
3. 𝐴⋘𝑠: 𝑠-bit left rotation of an 8-bit value 𝐴.

4. 󸀠: sign for denoting faulty ciphertext or intermediate
values.

5. 𝑃, 𝐶, 𝐶󸀠: the 64-bit plaintext, ciphertext, and faulty
ciphertext.

6. MK = MK15 ‖ ⋅ ⋅ ⋅MK1 ‖ MK0: the 16 bytes master
key.

7. WK𝑖: the whitening keys, 0 ≤ 𝑖 ≤ 7.
8. SK𝑘: the round keys, 0 ≤ 𝑘 ≤ 127.
9. 𝑋𝑟 = 𝑋𝑟,7 ‖ ⋅ ⋅ ⋅ 𝑋𝑟,1 ‖ 𝑋𝑟,0: the 64-bit input of the
(𝑟 + 1)th round, 0 ≤ 𝑟 ≤ 32.

10. 𝑋𝑘𝑟,𝑖: the 𝑘th bit of𝑋𝑘𝑟,𝑖, 0 ≤ 𝑘 ≤ 7.

3.2. Brief Description of HIGHT Cipher. HIGHT is a
lightweight block cipher with 64-bit block length and 128-bit
key length. The encryption process of HIGHT is as follows.

(1) The KeySchedule is performed to generate 8 bytes
whitening keys WK𝑖 (0 ≤ 𝑖 ≤ 7) and 128 bytes SK𝑖 (0 ≤ 𝑖 ≤
127):

WK𝑖 = MK𝑖+12 (𝑖 = 0, 1, 2, 3) ; (1)

WK𝑖 = MK𝑖−4 (𝑖 = 4, 5, 6, 7) ; (2)

SK16𝑖+𝑗 = MK𝑗−𝑖mod8 ⊞ 𝛿16𝑖+𝑗 (0 ≤ 𝑖, 𝑗 ≤ 7) , (3)

SK16𝑖+𝑗+8 = MK(𝑗−𝑖mod8)+8 ⊞ 𝛿16𝑖+𝑗+8 (0 ≤ 𝑖, 𝑗 ≤ 7) . (4)

(2) The InitialTransformation is performed to transform the
64-bit plaintext P to the input of the first round 𝑋0 by using
four bytes whitening keys WK0, WK1, WK2, and WK3.

𝑋0,0 = 𝑃0 ⊞WK0;
𝑋0,1 = 𝑃1;
𝑋0,2 = 𝑃2 ⊕WK1;
𝑋0,3 = 𝑃3;
𝑋0,4 = 𝑃4 ⊞WK2;
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𝑋0,5 = 𝑃5;
𝑋0,6 = 𝑃6 ⊕WK3;
𝑋0,7 = 𝑃7.

(5)

(3) For 𝑖 = 1, 2, . . . , 31, RoundFunction is performed to trans-
form𝑋𝑖 into𝑋𝑖+1 as follows:

𝑋𝑖,0 = 𝑋𝑖−1,7 ⊕ (𝐹0 (𝑋𝑖,6) ⊞ SK4𝑖−1) ;

𝑋𝑖,2 = 𝑋𝑖−1,1 ⊞ (𝐹0 (𝑋𝑖,0) ⊕ SK4𝑖−4) ;

𝑋𝑖,4 = 𝑋𝑖−1,3 ⊕ (𝐹0 (𝑋𝑖,2) ⊞ SK4𝑖−3) ;

𝑋𝑖,6 = 𝑋𝑖−1,5 ⊞ (𝐹0 (𝑋𝑖,4) ⊕ SK4𝑖−2) ;
𝑋𝑖,1 = 𝑋𝑖−1,0;
𝑋𝑖,3 = 𝑋𝑖−1,2;
𝑋𝑖,5 = 𝑋𝑖−1,4;
𝑋𝑖,7 = 𝑋𝑖−1,6.

(6)

For 𝑖 = 32,
𝑋𝑖,1 = 𝑋𝑖−1,1 ⊞ (𝐹1 (𝑋𝑖−1,0) ⊕ SK4𝑖−4) ;

𝑋𝑖,3 = 𝑋𝑖−1,3 ⊕ (𝐹0 (𝑋𝑖−1,2) ⊞ SK4𝑖−3) ;

𝑋𝑖,5 = 𝑋𝑖−1,5 ⊞ (𝐹1 (𝑋𝑖−1,4) ⊞ SK4𝑖−2) ;

𝑋𝑖,7 = 𝑋𝑖−1,7 ⊕ (𝐹0 (𝑋𝑖−1,6) ⊞ SK4𝑖−1) ;
𝑋𝑖,0 = 𝑋𝑖−1,0;
𝑋𝑖,2 = 𝑋𝑖−1,2;
𝑋𝑖,4 = 𝑋𝑖−1,4;
𝑋𝑖,6 = 𝑋𝑖−1,6.

(7)

The two auxiliary functions 𝐹0 and 𝐹1 are defined as follows:

𝐹0 (𝑥) = (𝑥⋘1) ⊕ (𝑥⋘2) ⊕ (𝑥⋘7) ,

𝐹1 (𝑥) = (𝑥⋘3) ⊕ (𝑥⋘4) ⊕ (𝑥⋘6) .
(8)

(4) The FinalTransformation transforms 𝑋32 into the cipher-
text 𝐶:

𝐶0 = 𝑋32,1 ⊞WK4;
𝐶1 = 𝑋32,2;
𝐶2 = 𝑋32,3 ⊕WK5;
𝐶5 = 𝑋32,6;
𝐶4 = 𝑋32,5 ⊞WK6;
𝐶3 = 𝑋32,4;
𝐶6 = 𝑋32,7 ⊕WK7;
𝐶7 = 𝑋32,0.

(9)

For complete description of HIGHT, the reader is referred to
[8, 9].

3.3. Overview of the Attack. As illustrated in Figure 1, our
attack consists of four steps.

(1) Inducing the Designed HT in a Selected Location. The task
of this step is to design a HT and insert it in the cipher chip.
The optimal location of inserting a HT should be in a deeper
round to enable the fault to involve thewholemaster key bytes
during its propagation. It also should ensure that the injected
HT escapes detections by having low cost and with extremely
low activation rate.

(2) Constructing Boolean Equations for the Cipher. In this step,
the target cipher and its key schedule are described by a set
of Boolean equations C, which contain unknowns (master
key bits, whitening key bits, subkey bits, and intermediate
variables) and constants (plaintext and ciphertext bits). The
most important and difficult part in this step for HIGHT is
to describe nonlinear operations like addition mod 2𝑛 and
complicated linear functions like 𝐹0(⋅) and 𝐹1(⋅).

(3) Constructing Boolean Equations for the Faults. After the
fault injections, the faults are also represented with a set
of Boolean equations D. It is obvious that the more secret
variables D contains, the more master key bits that can be
recovered.Therefore, the key point of this step is how tomake
D contain secret variables that were involved during the fault
propagation as many as possible in an efficient and simple
way.

(4) Solving the Algebraic Equation System. The problem of
searching for the secret master key is now transformed
into solving the merged equation system C and D. Many
automatic tools [25, 34–37] can be leveraged.

4. Some Properties of the Faults

This section is devoted to presenting the fault properties,
which are helpful to our attack. For the sake of simplicity, we
denote the deduction ofB fromA by equation (∗) by

A
(∗)󳨀󳨀→B. (10)

Property 1. Assume that a fault was induced to 𝑋𝑟,𝑖, then
define

Ω𝑟,𝑖 = {WK𝜔, SK𝜉 | 𝑋𝑟,𝑖 󳨀→WK𝜔, SK𝜉} (11)

as the set of subkey bytes and whitening key bytes that were
involved by the fault during its propagation form round 𝑟 to
FinalTransformation, where 1 ≤ 𝑟 ≤ 32, 0 ≤ 𝜔 ≤ 15, 0 ≤ 𝜉 ≤
127, 0 ≤ 𝑖 ≤ 7, and 0 ≤ 𝑚 ≤ 3. Then we have
Ω𝑟,𝑖

=

{{{{{{{
{{{{{{{
{

Ω𝑟+1,𝑖+1 + Ω𝑟+1,(𝑖+2)mod8 + {SK4𝑟+𝑚} , 𝑟 < 31, 𝑖 = 2𝑚
Ω𝑟+1,(𝑖+1)mod8 + {SK4𝑟+𝑚} , 𝑟 < 31, 𝑖 = 2𝑚 + 1
Ω𝑟+1,𝑖 + Ω𝑟+1,𝑖 + {SK4𝑟+𝑚} , 𝑟 = 31, 𝑖 = 2𝑚
Ω𝑟+1,𝑖 + {SK4𝑟+𝑚} , 𝑟 = 31, 𝑖 = 2𝑚 + 1.

(12)



Security and Communication Networks 5

IP

IP

IP

IP

IP

P

MK

SK

C

X

Cipher 

3 constructing equations 

equation system with solver

D = M(L)

Cipher chip

2 constructing equations

1 inducing the HTH to the selected location

HTH

for the faults

for the ciper

4 solving the combined
MK

· · ·· · ·

SK1,...,n = g(MK)

X1 = f(P, ３＋1)

X2 = f(X1, ３＋1)

C = f(P, ３＋n)

Figure 1: Overview of the attack on HIGHT.

Proof. Without loss of generality, we assume that the fault was
induced to𝑋𝑟,𝑖.

(1) For 𝑖 = 2𝑚, 1 ≤ 𝑟 < 31, and 0 ≤ 𝑚 ≤ 3, the fault
will propagate to 𝑋𝑟+1,2(𝑚+1)mod8 and 𝑋𝑟+1,2𝑚+1 in the next
round as shown in Figure 2; thus we have Ω𝑟,𝑖 = Ω𝑟+1,𝑖+1 +
Ω𝑟+1,(𝑖+2)mod8 + {SK4𝑟+𝑚}.

When the fault was injected in 𝑟 = 31, the fault will propa-
gate to𝑋𝑟+1,2𝑚mod8 and𝑋𝑟+1,2𝑚+1mod8 in the final round.Then,
we haveΩ𝑟+1,𝑖 + Ω𝑟+1,𝑖 + {SK4𝑟+𝑚}.

(2) For 𝑖 = 2𝑚+1, 1 ≤ 𝑟 < 31, and 0 ≤ 𝑚 ≤ 3, the fault will
only propagate to𝑋𝑟+1,2(𝑚+1)mod8 in the next round as shown
in Figure 3; thus we have Ω𝑟,𝑖 = Ω𝑟+1,(𝑖+1)mod8 + {SK4𝑟+𝑚}.

In the similar way, the fault will propagate to𝑋𝑟+1,2𝑚mod8
and𝑋𝑟+1,2𝑚+1mod8 in the next round for 𝑟 = 31.Then, we have
Ω𝑟,𝑖 = Ω𝑟+1,𝑖 + {SK4𝑟+𝑚}.

Property 2. Assume that a fault was induced to 𝑋𝑟,𝑖, then
define

Σ𝑟,𝑖 = {MK𝜏 | 𝑋𝑟,𝑖 󳨀→ MK𝜏, 1 ≤ 𝑟 ≤ 32, 0 ≤ 𝜏

≤ 15, 0 ≤ 𝑖 ≤ 7}
(13)

as the set of the master key bytes that were involved during
the propagation of the fault. Then we have the following
conclusion.

Proof. From Section 3.2, for the FinalTransformation of
HIGHT, we have the following formula:

𝑋32,2𝑚
(7)󳨀󳨀→WK𝑚+4, 0 ≤ 𝑚 ≤ 3. (14)

For the KeySchedule of HIGHT, we have the following
formula:

WK𝑛
(2)󳨀󳨀→ MK𝑛−4, 4 ≤ 𝑛 ≤ 7. (15)

Xr,2m+1

F1

Xr,2m

３＋4r+m

ΔXr+1,2(m+1)ＧＩ＞8 ̸= 0 ̸= 0ΔXr+1,2m+1

Figure 2: The fault was injected in 𝑋𝑟,2𝑚 for 1 ≤ 𝑟 < 31.

For (14)∼(15), we have

𝑋32,2𝑚
(14) (15)󳨀󳨀󳨀󳨀󳨀󳨀→ MK𝑚, 0 ≤ 𝑚 ≤ 3, (16)

𝑋32,2𝑚+1
(14) (15)󳨀󳨀󳨀󳨀󳨀󳨀→ ⌀, 0 ≤ 𝑚 ≤ 3. (17)

Thus, we haveΩ32,2𝑚+1 = ⌀ andΩ32,2𝑚 = {WK𝑚}. Moreover,
according to Property 2, thenwe have the desired conclusions
which are shown in Table 2.

Note that, to fully recover the master key, the entire
master key bytes must be included in the merged equation
system.That is, themaster key bytes can possibly be recovered
only for the case that Σ𝑟,𝑖 = MK.

Property 3. Given that a single-bit fault is inserted in 𝑋𝑡,2𝑚,
the fault propagation paths are shown in Figure 4. The
intermediate words 𝑋𝑟,2𝑚+1, 𝑋𝑟,2𝑚+2, 𝑋𝑟+1,2𝑚+2, 𝑋𝑟+1,2𝑚+3,
𝑋𝑟+2,2𝑚+3, and 𝑋32,𝑛 are all corrupted that Δ𝑋𝑟,2𝑚+1 = Δ 1,
Δ𝑋𝑟,2𝑚+2 = Δ𝑋𝑟+1,2𝑚+3 = Δ 2,Δ𝑋𝑟+1,2𝑚+2 = Δ 3,Δ𝑋𝑟+2,2𝑚+3 =
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Table 2: The location of fault for #Σ𝑟,𝑖 = 16 or #(Σ𝑟,𝑖 ∪ Σ𝑟,𝑗) = 16.

𝑟 #(Σ𝑟,𝑖) = 16 or #(Σ𝑟,𝑖 ∪ Σ𝑟,𝑗) = 16
𝐼 (𝑖, 𝑗)

25 0, 1, 2, 3, 4 (0, 1), . . . , (0, 7), (1, 2), . . . , (1, 7), (2, 3), . . . , (2, 7), (3, 4), . . . , (3, 7), (4, 5), (4, 6), (4, 7)
26 – (0, 2), (0, 3), (0, 4), (0, 5), (1, 4), (1, 5), (2, 4), (2, 5), (2, 6), (2, 7), (3, 6), (3, 7), (4, 6), (4, 7), (5, 6), (5, 7)
27 – (0, 4), (0, 5), (0, 6), (1, 4), (1, 5), (1, 6), (2, 6)(3, 6)
28 – (2, 6), (2, 7)

Xr,2m+1

F1

Xr,2m

３＋4r+m

ΔXr+1,2(m+1)ＧＩ＞8 ̸= 0 ΔXr+1,2m+1 = 0

Figure 3: The fault was injected in 𝑋𝑟,2𝑚+1 for 1 ≤ 𝑟 < 31.

Δ 5, and Δ𝑋32,𝑛 = Δ 6. Then the intermediate words are
included in

(𝑋𝑟+1,2𝑚+3 ⊞ (SK4(𝑚+1)+1 ⊕ 𝐹1 (𝑋𝑟+1,2𝑚+2)))

⊕ ((𝑋𝑟+1,2𝑚+3 ⊕ Δ 2)

⊞ (SK4(𝑚+1)+1 ⊕ 𝐹1 (𝑋𝑟+1,2𝑚+2 ⊕ Δ 2))) = Δ 4,

(WK𝑡 ⊞ 𝑋32,𝑛) ⊕ (WK𝑡 ⊞ (𝑋32,𝑛 ⊕ Δ 5)) = Δ𝐶𝑛.

(18)

More generally, if we use 8-bit words 𝑥 and 𝑦 to denote
the inputs of modular addition, 𝛼 and 𝛽 to denote the
difference of the inputs, and 𝛾 to denote the corresponding
output difference in (18), then the above two equations can
be simplified as

(𝑥 ⊞ 𝑦) ⊕ ((𝑥 ⊕ 𝛼) ⊞ (𝑦 ⊕ 𝛽)) = 𝛾, (19)

(𝑥 ⊞ 𝑦) ⊕ (𝑥 ⊞ (𝑦 ⊕ 𝛼)) = 𝛾. (20)

That is, the intermediate words, whitening keys and subkeys
can be recovered by solving the two equations.

5. The Proposed Trojan Circuit

In this section, we give the details of the HT. In general,
a hardware Trojan consists of two parts: trigger logic (TL)
and payload logic (PL). The TL is used to judge whether
the values of signal lines and states meet the activation
condition which is referred to the values of signal lines and
states set by the adversary in advance. Once the activation
condition is satisfied, the PL executes attacks. Attacks of
Trojan circuit may deactivate the circuit (denial-of-service),
change its functionality, or provide covert channels through
which the protected secret information can be leaked.

5.1. Assumption of Trojan Circuits. In this paper, we make
three assumptions about the design of hardware Trojan
circuits.

(1) HIGHT is implemented in a cryptographic intellectual
property (IP) with advanced protections like sensors from an
untrusted IP vendor or system integrator. The prototype is
on a Xilinx FPGA device implementing a cryptographic IP.
In fact, it is a common practice to deploy physical sensors
alongside cryptographic IP in industrial designs.

(2) The adversary is assumed to be able to assign the
plaintext to be encrypted. And he is also assumed to be able
to insert a smart but functional hardware Trojan in Register
Transfer Level (RTL) by either modifying the RTL or the
corresponding logic elements in the postplace or route netlist.
But he only has the access to the Xilinx Design Language
(XDL) file and no access to the design stage.

(3) The hardware Trojan is designed to introduce a fault
by flipping only one bit of a certain intermediate word of the
cipher when it was activated.

5.2. Trigger Design. The FSM-based Trojans [38] have two
prominent advantages over many other Trojans: one is that
they can be designed to be arbitrarily complicated with the
same amount of resources and can reuse both combinational
logic and flip-flops of the original circuit, and the other is
that the FSM-based Trojans are bidirectional which means
they can have state transitions leading back to the previous or
initial state, thus causing the final Trojan state to be reached
only if the entire state sequence is satisfied in consecutive
clock cycles. The above two advantages both make the FSM-
based Trojans harder-to-detect than other Trojans.

As shown in Figure 6, to design a hard-to-detect Trojan
circuit, the TL of the proposed HT is designed based on a
finite state machine (FSM). In this FSM, a 3-bit register is
used to store the current state. The Trojan circuit undergoes
state transition under the certain state transition diagram
which is defined by the adversary in advance and shown in
Figure 5. Moreover, only the adversary knows the predefined
state transition diagram. The 3-bit input is derived from any
three of the four different 8-bit intermediate words𝑋0,1,𝑋0,3,
𝑋0,5, and 𝑋0,7, randomly. And it is assigned as the transition
condition of the FSM that causes the state transition. If the
input agrees with the current state, the FSM will transition to
the next state; otherwise the FSMwill go back to the previous
state. When the FSM reaches the final state 𝑆16, the Trojan
output is activated (the single act is “1” ) and the PL will cause
a single-bit fault in the original circuit. In the next clock cycle,
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Figure 4: Fault propagation paths for the case where the fault is induced to𝑋𝑡,2𝑚.
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Figure 5: State transition graph of the FSM.

the Trojan will automatically go back to the initial state 𝑆0;
thus the Trojan can be disguised as a random fault.

Since a 3-bit register is able to store 8 different states, the
test space that is to activate the trigger logic is 8! (>215); that
is, the probability of activating the HT is Pr ≈ 0.000024 which
is an extremely low probability. However, since according to
InitialTransformation (see (5)), the required four plaintext
bytes P1, P3, P5, and P7 can be directly deduced by X0,1, X0,3,
X0,5, and X0,7. Hence, the adversary can trigger the HT by
carefully choosing 𝑃1, P3, P5, and P7.The total logic overhead
of the implemented trigger logic is three flip-flops and four
3-input LUTs.

5.3. Payload Design. For clarity, the 𝑚th encryption and
plaintext are denoted as 𝐸𝑚 and 𝑃𝑚, respectively. A pair
of correct and faulty ciphertexts (𝐶𝑚, 𝐶󸀠𝑚) is required to be
collected for the same plaintext Pm. The payload component
PL(A) is designed to inject a single-bit fault in round 𝑟 during
𝐸𝑚. When the HT is triggered by carefully choosing some
certain plaintexts, a “1” is stored in the flip-flop𝑀whichwaits
for the target round 𝑟 + 1. A signal Rflag, derived from state
machine, indicates whether the current round is the target
round 𝑟 + 1 or not.The value of (𝑟, 𝑖, 𝑘) is determined by AFA
which will be described in detail in Section 7.2.1. Once the
Trojan is triggered, the 𝑘th bit of 𝑋𝑟,𝑖, that is, 𝑋𝑘𝑟,𝑖, is flipped
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Figure 6: The structure of the Trojan.

due to PL(A) in 𝐸𝑚. This is realized by function 𝑓 as shown
in Figure 6.The total costs of implementing the payload logic
are a flip-flop and a 3-input payload gate 𝑓(𝑎, 𝑏, 𝑐) that can
be implemented by 1 LUT in both 4-input and 6-input FPGA
series.

6. The AFA with a HT of HIGHT

6.1. The Optimal Location Selection. Let 𝑋𝑘𝑟,𝑖 be the location
where the HT is inserted, 0 ≤ 𝑟 ≤ 32, 0 ≤ 𝑖, and 𝑘 ≤ 7.
In order to search the optimal location, four properties are
desired:

(1) Note that the secret master key can be recovered
only for the case that they are involved during the fault
propagation; thus the number of elements in Σ𝑟,𝑖 should be
equal to 16.

(2) The required number of faults to recover the secret
master key and the reduced key search space 𝜑(𝐾) after the
injection to𝑋𝑘𝑟,𝑖 should be bothminimized tomake the attack
more practical.

(3) The average time of the solver to solve the merged
equation system should be minimized to increase the effec-
tiveness of the attack.

(4) 𝑋𝑘𝑟,𝑖 should be in a deeper round to maximize utilize
the fault leakages and to evade the detection.

In order to search the optimal bit location for the HT,
AFA is used to enumerate every possible (𝑟, 𝑖, 𝑘).The attempts
are conducted in advance, which can guide the logic designs
of the HT and reduce costs. Since AFA is executed as
machine-based automation, all possible key candidates will
be eventually checked along the fault propagation paths. The
utilization of fault leakages is maximized. The automation

shows its advantage over traditional manual analysis, such as
DFA, especially when the analysis goes into the deeper round.

6.2. Constructing Algebraic Equations for Encryption of
HIGHT. The task of this stage is to represent HIGHT cipher
with a large system of low degree Boolean equations. Suppose
𝑋𝑟 = 𝑋𝑟,7 ‖ 𝑋𝑟,6 ⋅ ⋅ ⋅ ‖ 𝑋𝑟,1 ‖ 𝑋𝑟,0 and 𝐶 = 𝐶7 ‖ 𝐶6 ‖
⋅ ⋅ ⋅ ‖ 𝐶1 ‖ 𝐶0 are the 64-bit input of round 𝑟 + 1 and
ciphertext, respectively. Since the key schedule of HIGHT is
very simple, we mainly focus on the encryption of HIGHT
which is shown in Algorithm 1. From Algorithm 1, the most
important yet difficult problem is to construct the equations
for ARX operations.

It is stressed that in general the adversary will not choose
a very deep round as the target round. That is, the rounds
between the target round and FinalTransformation are not
very large. Therefore, instead of constructing equations for
the full rounds of the cipher, we only construct equations for
the rounds from the target round to the FinalTransformation
which will result in a smaller equation script and thus will
accelerate the solving procedure.

According to Algorithm 1, for every fault that is injected
in𝑋𝑟,𝑖, there are 64 × (32 − 𝑟 + 1) variables and 8 × (8 × (32 −
𝑟 + 1) + 8) ANF equations were introduced to the equation
system C. In addition, 32 × (32 − 𝑟 + 1) variables and ANF
equations are required for round keys, 64 variables and ANF
equations are for the whitening keys, and 128 variables and
ANF equations are for the master keys.

6.2.1. The Equations for Addition mod2𝑛. Assume 𝑋, 𝑌, 𝑍 ∈
GF(2𝑛) are the two inputs and output of addition modulo 2𝑛,
where 𝑋 = (𝑥𝑛−1, 𝑥𝑛−2, . . . , 𝑥0), 𝑌 = (𝑦𝑛−1, 𝑦𝑛−2, . . . , 𝑦0), and
𝑍 = (𝑧𝑛−1, 𝑧𝑛−2, . . . , 𝑧0) with 𝑥0, 𝑦0, and 𝑧0 being the least
significant bit, respectively. Then addition modulo 2𝑛 can be
described as Boolean equations as follows:

𝑧0 = 𝑥0 ⊕ 𝑦0
𝑧1 = 𝑥1 ⊕ 𝑦1 ⊕ 𝑥0𝑦0
𝑧2 = 𝑥2 ⊕ 𝑦2 ⊕ 𝑥1𝑦1 ⊕ (𝑥1 ⊕ 𝑦1) (𝑥1 ⊕ 𝑦1 ⊕ 𝑧1)

...

𝑧𝑖 = 𝑥𝑖 ⊕ 𝑦𝑖 ⊕ 𝑥𝑖−1𝑦𝑖−1
⊕ (𝑥𝑖−1 ⊕ 𝑦𝑖−1) (𝑥𝑖−1 ⊕ 𝑦𝑖−1 ⊕ 𝑧𝑖−1)

...
𝑧𝑛−1 = 𝑥𝑛−1 ⊕ 𝑦𝑛−1 ⊕ 𝑥𝑛−2𝑦𝑛−2
⊕ (𝑥𝑛−2 ⊕ 𝑦𝑛−2) (𝑥𝑛−2 ⊕ 𝑦𝑛−2 ⊕ 𝑧𝑛−2) .

(21)

6.2.2. The Equations for 𝐹0(⋅) and 𝐹1(⋅). Given that the input
and output of 𝐹0(⋅) and 𝐹1(⋅) are 𝑋 = (𝑥7, 𝑥6, . . . , 𝑥0) and
𝑌 = (𝑦7, 𝑦6, . . . , 𝑦0), respectively, then 𝐹0(⋅) and 𝐹1(⋅) can be
described as the following Boolean equations:
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for 𝑚 = 𝑟 to 31 do
𝑋𝑚,0 ⊕ 𝑋𝑚−1,7 ⊕ (𝐹0 (𝑋𝑚−1,6) ⊞ SK4𝑚−1) = 0, 𝑋𝑚,1 ⊕ 𝑋𝑚−1,0 = 0
𝑋𝑚,2 ⊕ (𝑋𝑚−1,1 ⊞ (𝐹1 (𝑋𝑚−1,0) ⊕ SK4𝑚−2)) = 0, 𝑋𝑚,3 ⊕ 𝑋𝑚−1,2 = 0
𝑋𝑚,4 ⊕ 𝑋𝑚−1,3 ⊕ (𝐹0 (𝑋𝑚−1,2) ⊞ SK4𝑚−3) = 0, 𝑋𝑚,5 ⊕ 𝑋𝑚−1,4 = 0
𝑋𝑚,6 ⊕ (𝑋𝑚−1,5 ⊞ (𝐹1 (𝑋𝑚−1,4) ⊕ SK4𝑚−4)) = 0, 𝑋𝑚,7 ⊕ 𝑋𝑚−1,6 = 0

end for
for 𝑚 = 32 do

𝑋𝑚,0 ⊕ 𝑋𝑚−1,0 = 0, 𝑋𝑚,1 ⊕ (𝑋𝑚−1,1 ⊞ (𝐹1 (𝑋𝑚−1,0) ⊕ SK4𝑚−4)) = 0
𝑋𝑚,2 ⊕ 𝑋𝑚−1,2 = 0, 𝑋𝑚,3 ⊕ 𝑋𝑚−1,3 ⊕ (𝐹0 (𝑋𝑚−1,2) ⊞ SK4𝑚−3) = 0
𝑋𝑚,4 ⊕ 𝑋𝑚−1,4 = 0, 𝑋𝑚,5 ⊕ (𝑋𝑚−1,5 ⊞ (𝐹1 (𝑋𝑚−1,4) ⊞ SK4𝑚−2)) = 0
𝑋𝑚,6 ⊕ 𝑋𝑚−1,6 = 0, 𝑋𝑚,7 ⊕ 𝑋𝑚−1,7 ⊕ (𝐹0 (𝑋𝑚−1,6) ⊞ SK4𝑚−1) = 0

end for
𝐶0 ⊕ (𝑋32,0 ⊞WK4) = 0, 𝐶1 ⊕ 𝑋32,1 = 0, 𝐶2 ⊕ 𝑋32,2 ⊕WK5 = 0, 𝐶3 ⊕ 𝑋32,3 = 0
𝐶4 ⊕ (𝑋32,4 ⊞WK6) = 0, 𝐶5 ⊕ 𝑋32,5 = 0, 𝐶6 ⊕ 𝑋32,6 ⊕WK7 = 0, 𝐶7 ⊕ 𝑋32,7 = 0
𝐶 = 𝐶7 ‖ 𝐶6 ‖ 𝐶5 ‖ 𝐶4 ‖ 𝐶3 ‖ 𝐶2 ‖ 𝐶1 ‖ 𝐶0

Algorithm 1: ConstructEquEncryption(𝑋𝑟,𝑖).

𝐹0 (⋅) ⇐⇒

{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{
{

𝑦7 = 𝑥6 ⊕ 𝑥5 ⊕ 𝑥0
𝑦6 = 𝑥7 ⊕ 𝑥5 ⊕ 𝑥4
𝑦5 = 𝑥6 ⊕ 𝑥4 ⊕ 𝑥3
𝑦4 = 𝑥5 ⊕ 𝑥3 ⊕ 𝑥2
𝑦3 = 𝑥4 ⊕ 𝑥2 ⊕ 𝑥1
𝑦2 = 𝑥3 ⊕ 𝑥1 ⊕ 𝑥0
𝑦1 = 𝑥7 ⊕ 𝑥2 ⊕ 𝑥0
𝑦0 = 𝑥7 ⊕ 𝑥6 ⊕ 𝑥1,

𝐹1 (⋅) ⇐⇒

{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{
{

𝑦7 = 𝑥4 ⊕ 𝑥3 ⊕ 𝑥1
𝑦6 = 𝑥3 ⊕ 𝑥2 ⊕ 𝑥0
𝑦5 = 𝑥7 ⊕ 𝑥2 ⊕ 𝑥1
𝑦4 = 𝑥6 ⊕ 𝑥1 ⊕ 𝑥0
𝑦3 = 𝑥7 ⊕ 𝑥5 ⊕ 𝑥0
𝑦2 = 𝑥7 ⊕ 𝑥6 ⊕ 𝑥4
𝑦1 = 𝑥6 ⊕ 𝑥5 ⊕ 𝑥3
𝑦0 = 𝑥5 ⊕ 𝑥4 ⊕ 𝑥2.

(22)

6.3. Constructing Equations for the Injected Faults. This stage
illustrates the method of constructing equations for the
injected faults. To clarify the method, the example is shown
in Figure 7.

Given that every time the HT was activated, a single-
bit fault 𝛽 was introduced to flip the most significant bit of
𝑋25,3. The fault propagation paths are shown by bold line
in Figure 7. The correct and faulty 64-bit inputs to the 𝑟th
round are denoted by 𝑋𝑟 = 𝑋𝑟,7 ‖ ⋅ ⋅ ⋅ 𝑋𝑟,1 ‖ 𝑋𝑟,0 and
𝑋󸀠𝑟 = 𝑋󸀠𝑟,7 ‖ ⋅ ⋅ ⋅ 𝑋󸀠𝑟,1 ‖ 𝑋󸀠𝑟,0, respectively. Then, the complex
fault propagation paths can be described as a set of algebraic

equationswith the variables thatwere involved. Since the fault
flips the most significant bit of𝑋25,0, we have

𝑋25,3 ⊕ 𝑋󸀠25,3 ⊕ 𝛽 = 0, (23)

where 𝛽 = (1, 0, . . . , 0). For the fault propagation paths that
from round 25 to the FinalTransformation, they can be
described by equations as Algorithm 2.

Algorithm 2 constructs the equations for the injected
faults. The main idea is that every time a fault was induced,
the intermediate variables from round 𝑟 to round 32 were
viewed as new variables 𝑋󸀠𝑖,𝜑. Then, we reconstruct the
equations for the encryption by replacing 𝑋𝑖,𝜑 with 𝑋󸀠𝑖,𝜑.
Furthermore, for variables that were not involved along the
fault propagation paths Θ which can be deduced by the
function SearchFaultyInterVal(𝑋𝑟,𝑖), we have 𝑋󸀠𝑖,𝜑 = 𝑋𝑖,𝜑.
Thus, there are 64 × (32 − 𝑟 + 1) variables and 8 × (#(Θ) +
8 × (32 − 𝑟 + 1) + 8) ANF equations were introduced to the
equation systemD for every fault that was injected in 𝑋𝑟,𝑖.

The function, SearchFaultyInterVal(𝑋𝑟,𝑖) searches the
faulty intermediate variables automatically according to the
fault location Xr,i and finally returns them. The main idea
is explained earlier in Section 3. Algorithm 3 describes the
procedure.

6.4. Solving the Equations System. After activating the
inserted HT to introduce single-bit faults and constructing
the merged equation system for both the cipher and faults,
the whole secret master key can be fully recovered by solving
the merged equation system with an automatic solver. Since
the SAT-based solvers [39, 40] have prominent advantage of
thememory usage when solving large equations systems over
many other automatic tools, such asmutantXL algorithm [35,
37] and Gröbner basis-based [41] solvers and recently further
significant improvements have been made to SAT-based
solvers, we have chosen the CryptoMiniSAT v4.4 which is
a DPLL-based SAT solver developed from MiniSAT to solve
the equation system. The readers can refer to [25, 35, 40, 42]
for details of how to generate equations and how to feed them
to the solvers.
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Figure 7: The fault propagation corresponding to the case where𝑋25,0 is faulted.

7. Theoretical and Simulation Results

In order to verify the effectiveness of the proposed attack on
HIGHT and optimize the implementation of HT, we conduct
many experiments and report the results in this section.

In the phase of searching the optimal location for the HT,
we conduct the fault injectionwith software level simulations.
The HIGHT software implementation was written in C and
the CryptoMiniSAT 4.4 solver is running on a PC with Intel
Core i7-4790, 3.60GHZ, 12Gmemory, andWindows 7 64-bit

OS. An instance refers to one run of our attack on a set of (P,
MK,C).The instance fails if the solver does not give an output
within 48 hours (172800 seconds). In the online phase, the
HIGHT hardware implementation and HT are both running
in SASEBO-GII board soldering a 65 nm Virtex-5 FPGA.

7.1. Data Complexity Analysis. Our aim is to fully recover
the entire master key, which is mainly depending on solving
the two equations (19) and (20) in Section 4. Our task is to
investigate the number of queries (𝛼, 𝛽) and (0, 𝛽) to solve
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Θ = 𝐼 − SearchFaultInterVal (𝑋𝑟,𝑖);
while𝑋𝑖,𝜑 ∈ Θ do
𝑋󸀠𝑖,𝜑 ⊕ 𝑋𝑖,𝜑 = 0

end while
for𝑚 = 𝑟 to 31 do

𝑋󸀠𝑚,0 ⊕ 𝑋󸀠𝑚−1,7 ⊕ (𝐹0 (𝑋󸀠𝑚−1,6) ⊞ SK4𝑚−1) = 0, 𝑋󸀠𝑚,1 ⊕ 𝑋󸀠𝑚−1,0 = 0
𝑋󸀠𝑚,2 ⊕ (𝑋󸀠𝑚−1,1 ⊞ (𝐹1 (𝑋󸀠𝑚−1,0) ⊕ SK4𝑚−4)) = 0, 𝑋󸀠𝑚,3 ⊕ 𝑋󸀠𝑚−1,2 = 0
𝑋󸀠𝑚,4 ⊕ 𝑋󸀠𝑚−1,3 ⊕ (𝐹0 (𝑋󸀠𝑚−1,2) ⊞ SK4𝑚−3) = 0, 𝑋󸀠𝑚,5 ⊕ 𝑋󸀠𝑚−1,4 = 0
𝑋󸀠𝑚,6 ⊕ (𝑋󸀠𝑚−1,5 ⊞ (𝐹1 (𝑋󸀠𝑚−1,4) ⊕ SK4𝑚−2)) = 0, 𝑋󸀠𝑚,7 ⊕ 𝑋󸀠𝑚−1,6 = 0

end for
for𝑚 = 32 do

𝑋󸀠𝑚,0 ⊕ 𝑋󸀠𝑚−1,0 = 0, 𝑋󸀠𝑚,1 ⊕ (𝑋󸀠𝑚−1,1 ⊞ (𝐹1 (𝑋󸀠𝑚−1,0) ⊕ SK4𝑚−4)) = 0
𝑋󸀠𝑚,2 ⊕ 𝑋󸀠𝑚−1,2 = 0, 𝑋󸀠𝑚,3 ⊕ 𝑋󸀠𝑚−1,3 ⊕ (𝐹0 (𝑋󸀠𝑚−1,2) ⊞ SK4𝑚−3) = 0
𝑋󸀠𝑚,4 ⊕ 𝑋󸀠𝑚−1,4 = 0, 𝑋󸀠𝑚,5 ⊕ (𝑋󸀠𝑚−1,5 ⊞ (𝐹1 (𝑋󸀠𝑚−1,4) ⊞ SK4𝑚−2)) = 0
𝑋󸀠𝑚,6 ⊕ 𝑋󸀠𝑚−1,6 = 0, 𝑋󸀠𝑚,7 ⊕ 𝑋󸀠𝑚−1,7 ⊕ (𝐹0 (𝑋󸀠𝑚−1,6) ⊞ SK4𝑚−1) = 0

end for
𝐶󸀠0 ⊕ (𝑋󸀠32,0 ⊞WK4) = 0, 𝐶󸀠1 ⊕ 𝑋󸀠32,1 = 0, 𝐶󸀠2 ⊕ 𝑋󸀠32,2 ⊕WK5 = 0, 𝐶󸀠3 ⊕ 𝑋󸀠32,3 = 0
𝐶󸀠4 ⊕ (𝑋󸀠32,4 ⊞WK6) = 0, 𝐶󸀠5 ⊕ 𝑋󸀠32,5 = 0, 𝐶󸀠6 ⊕ 𝑋󸀠32,6 ⊕WK7 = 0, 𝐶󸀠7 ⊕ 𝑋󸀠32,7 = 0
𝐶󸀠 = 𝐶󸀠7 ‖ 𝐶󸀠6 ‖ 𝐶󸀠5 ‖ 𝐶󸀠4 ‖ 𝐶󸀠3 ‖ 𝐶󸀠2 ‖ 𝐶󸀠1 ‖ 𝐶0

Algorithm 2: ConstructgEquFault(𝑋𝑟,𝑖).

𝐹𝑎𝑢𝑙𝑡𝑦𝐼𝑛𝑡𝑒𝑟𝑉𝑎𝑙 ← {𝑋𝑟,𝑖}
𝑇𝑒𝑚𝑝𝐴𝑟𝑟𝑎𝑦 [] [] ← 𝑋𝑟,𝑖
for𝑚 = 𝑟 to 32 do
while𝑋𝑚,𝜑 ∈ 𝑇𝑒𝑚𝑝𝐴𝑟𝑟𝑎𝑦[𝑚] do

if 𝑚 < 32 then
if 𝜑 %2 == 0 then
𝑇𝑒𝑚𝑝𝐴𝑟𝑟𝑎𝑦[𝑚 + 1] ← 𝑋𝑚,𝜑+1, 𝑋𝑚,(𝜑+2)%8

end if
if 𝜑 %2 == 1 then
𝑇𝑒𝑚𝑝𝐴𝑟𝑟𝑎𝑦[𝑚 + 1] ← 𝑋𝑚,(𝜑+1)%8

end if
end if
if 𝑚 == 32 then
if 𝜑 %2 == 0 then
𝑇𝑒𝑚𝑝𝐴𝑟𝑟𝑎𝑦[𝑚 + 1] ← 𝑋𝑚,𝜑, 𝑋𝑚,𝜑+1

end if
if 𝜑 %2 == 1 then
𝑇𝑒𝑚𝑝𝐴𝑟𝑟𝑎𝑦[𝑚 + 1] ← 𝑋𝑚,𝜑

end if
end if

end while
𝐹𝑎𝑢𝑙𝑡𝑦𝐼𝑛𝑡𝑒𝑟𝑉𝑎𝑙 ← 𝐹𝑎𝑢𝑙𝑡𝑦𝐼𝑛𝑡𝑒𝑟𝑉𝑎𝑙 ∪ 𝑇𝑒𝑚𝑝𝐴𝑟𝑟𝑎𝑦 [𝑚]
end for
Return 𝐹𝑎𝑢𝑙𝑡𝑦𝐼𝑛𝑡𝑒𝑟𝑉𝑎𝑙

Algorithm 3: SearchFaultyInterVal(𝑋𝑟,𝑖).

the equations. We notice that this issue was already explored
from a theoretical point of view in [41]. And a worst case
lower bound on the number of queries (𝛼, 𝛽) to solve (16) is
a constant 3, and the corresponding number of queries (0, 𝛽)
to solve (20) in the worst case is (8−𝑡), where t is the position
of the least significant “1” of 𝑥 and 0 ≤ 𝑡 ≤ 7.

Additionally, we use N to denote the amount of faults
required to recover the entire master key bits. In our case,
every encryption the master key bits are assumed to be fixed
while the plaintext was chosen randomly by the adversary.
And since queries (𝛼, 𝛽) and (0, 𝛽) are introduced by activat-
ing the HT to flip one fixed bit of a certain intermediate word,
the lower bound on the number of HT activated in the worst
case is𝑁 ≥ 3.

7.2. Experimental Results

7.2.1. Cost-Optimization Implementation of the HT. 6-input
LUT is the mainstream look-up-table (LUT) architecture
widely used from the 65 nm Virtex-5 FPGAs to the 20 nm
Ultrascale FPGAs. In these devices, slice is the fundamental
logic unit and each slice contains four 6-input LUTs. A
single 6-input LUT is able to implement either one Boolean
equation up to 6 inputs or two Boolean equations with no
more than 5 different input signals in total. The structure of
the 6-input LUT is shown in Figure 8.

According to Section 5, both the payload gate 𝑓(𝑎, 𝑏, 𝑐)
which is illustrated in Figure 6 and the LUTs required
to implement the trigger logic have 3 inputs. Moreover,
occupied LUTs with 3 or less used inputs can be found by
searching the XDL. In this stage, the payload gate 𝑓(𝑎, 𝑏, 𝑐)
and the required four 3-input LUTs can be implemented by
five arbitrarily occupied LUTs with no more than 3 used
inputs, by justmodifying the corresponding slice instances on
XDL. Since the Trojan LUTs are implemented with existing
logic, the eventual cost is 4 extra flip-flops. The experiment
result is shown in Table 3, which reports a 1.63% additional
cost in flip-flops for the HT implemented on a 65 nm Virtex-
5 FPGA.
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Table 3: Overhead report of inserted HT.

Slice LUT Flip-flop
HIGHT 404 750 245
Trojan HIGHT 404 750 249
Overhead 0% 0% 1.63%
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Figure 8: The structure of 6-input LUT.

7.2.2. The Optimal Location Selection for Inserting the HT

(1) Determining k. According to Section 5.1, to make the
designedHT stealthy and reduce the costs, theHT is designed
to flip only one bit of the 8-bit intermediate word when it is
activated. Since the lower bound on the number of queries
(𝛼, 𝛽) to solve (16) in the worst case is inversely proportional
to the size of 𝑡, we choose the most significant bit of the 8-bit
intermediate word to be flipped. That is, 𝑘 = 7. And in that
case, the resulting𝑁 is minimum.

(2) Determining (𝑟, 𝑖). According to Property 3 of the faults
(Section 4), only when 𝑟 ≤ 25 the entire master key bytes
can be involved during the fault propagation. Thus, the HT
should be inserted in𝑋𝑟,𝑖 (𝑟 ≤ 25) to ensure the entire secret
master key variables are included in the algebraic equations
of the injected faults (Section 6.3). And there are 5 candidate
locations (𝑟, 𝑖) = {(25, 0), (25, 1), (25, 2), (25, 3), (25, 4)} and
each of them is tested by AFA to get the optimal location for
the HT.

According to the equations for addition mod2𝑛 in
Section 6.2.1, the most significant bit of 𝑥 and 𝑦 for (19)
and (20) can be never recovered for no observation which
can be made about the most significant bit of 𝛾. Thus, there
are multiple solutions for (19) and (20); that is, multiple
candidates for MK will be collected by solving the merged
equation system with an SAT solver. To determine MK
uniquely, a distinguisher is required to further filter the MK
candidates.

TheCryptoMiniSAT solver searches for the given amount
of solutions, which means all candidates for MK will be
checked if the given amount of solutions is set large enough.

With this property, we can build a distinguisher. Note the
fact that the unknown intermediate words Xr and the known
ciphertext 𝐶 are both depending on (𝑃,MK); we can filter
the MK candidates against 𝐶 by constructing equations for
the full rounds of HIGHT. For every MK candidate, 𝐶∗
will be automatically deduced by the solver based on the
MK candidate and the known P. If 𝐶∗ does not match 𝐶,
the candidate will be eliminated. Thus, with this property
of the solver, an efficient distinguisher can be built just
by constructing equations for the full rounds of HIGHT.
Since the equations for round 𝑟 to FinalTransformation has
been constructed in Algorithm 1, we only need to construct
equations for InitialTransformation to round 𝑟 − 1 of HIGHT
to build the distinguisher which is shown in Algorithm 4.
Hence, there are additional 64× 𝑟 variables and 8× (8 × 𝑟+ 8)
ANF equations are required for the intermediate words, 32×𝑟
variables and ANF equations are required for round keys,
and 64 variables and ANF equations are required for the
whitening keys.

In order to verify the effectiveness of the distinguisher,
that is, whether the entire master key bits can be uniquely
determined, we set the given amount of solutions to 2128
for the solver. And the simulations are conducted under
two different modes: one is denoted by mode A which is
with the distinguisher and the other is denoted by mode B
which is without the distinguisher. We use the method in
Section 6 to build the emerged algebraic equation system
for the cipher and the injected faults. The results in Table 4,
which are derived statistically from 100 instances, show the
statistics of solutions corresponding to different (𝑟, 𝑖) under
modeA andmodeBwith the number of faults𝑁which varies
from 3 to 9. We can see that the cases, which are conducted
under mode A, have a unique solution for 𝑁 ≥ 3; that is,
the entire 128-bit master key can be uniquely determined
for these cases. However, when these attacks are conducted
under mode B, the CryptoMiniSAT solver always outputs
multiple solutions and the number of solutions seem to be
inversely proportional to 𝑁. Thus, the experimental results
indicate that the distinguisher is feasible and effectiveness and
also proving the lower bound in the worst case for𝑁 is 3.

Serving the purpose of accelerating the experiments, five
PCs with the same configuration are employed to run the
CryptoMiniSAT solver in parallel so as to finish these attacks.
EachPC runs 20 instances. Figure 9 shows the average solving
time of the CryptoMiniSAT solver corresponding to the cases
where theHT is inserted in𝑋25,𝑖 (𝑖 = 0, 1, 2, 3, 4) undermode
A. The figure shows that when 𝑁 < 3, the secret master key
is failed to be recovered in 48 hours. And for the cases where
the HT is inserted in (25, 0) and (25, 4), the minimum value
for N is 4, while for the cases (25, 1), (25, 2), and (25, 3) the
minimum value for 𝑁 is 3. The figure also clearly shows the
distributions corresponding to the case (25, 3) having a lower
average compared to the other. Thus the optimal location for
inserting the HT is (25, 3) and the corresponding average
solving time when 𝑁 = 3 is 𝑡0 = 12572.26 seconds (≈3.49
hours).

7.2.3. Success Rate of the Attack. To evaluate the success rate
of the attack under mode A where the HT is inserted in the
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𝑃 = 𝑃7 ‖ 𝑃6 ‖ 𝑃5 ‖ 𝑃4 ‖ 𝑃3 ‖ 𝑃2 ‖ 𝑃1 ‖ 𝑃0
𝑋0,0 ⊕ (𝑃0 ⊞WK0) = 0, 𝑋0,1 ⊕ 𝑃1 = 0, 𝑋0,2 ⊕ 𝑃2 ⊕WK1 = 0, 𝑋0,3 ⊕ 𝑃3 = 0
𝑋0,4 ⊕ (𝑃4 ⊞WK2) = 0, 𝑋0,5 ⊕ 𝑃5 = 0, 𝑋0,6 ⊕ 𝑃6 ⊕WK2 = 0, 𝑋0,7 ⊕ 𝑃7 = 0
for 𝑚 = 0 to 𝑟 − 1 do

𝑋𝑚,0 ⊕ 𝑋𝑚−1,7 ⊕ (𝐹0 (𝑋𝑚−1,6) ⊞ SK4𝑚−1) = 0, 𝑋𝑚+1,1 ⊕ 𝑋𝑚,0 = 0
𝑋𝑚,2 ⊕ (𝑋𝑚−1,1 ⊞ (𝐹1 (𝑋𝑚−1,0) ⊕ SK4𝑚−4)) = 0, 𝑋𝑚+1,3 ⊕ 𝑋𝑚,2 = 0
𝑋𝑚,4 ⊕ 𝑋𝑚−1,3 ⊕ (𝐹0 (𝑋𝑚−1,2) ⊞ SK4𝑚−3) = 0, 𝑋𝑚,5 ⊕ 𝑋𝑚−1,4 = 0
𝑋𝑚,6 ⊕ (𝑋𝑚−1,5 ⊞ (𝐹1 (𝑋𝑚−1,4) ⊕ SK4𝑚−2)) = 0, 𝑋𝑚,7 ⊕ 𝑋𝑚−1,6 = 0

end for

Algorithm 4: ConstructDistinguisher(𝑋𝑟,𝑖).

Table 4: Statistics of solutions corresponds to different (𝑟, 𝑖) under mode A and mode B.

(𝑟, 𝑖) Mode A (with a distinguisher) Mode B (without a distinguisher)
N = 9 N = 8 N = 7 N = 6 N = 5 N = 4 N = 3 N = 9 N = 8 N = 7 N = 6 N = 5 N = 4 N = 3

(25, 0) 1 1 1 1 1 1 – 8.24 8.48 8.64 8.96 9.44 11.74 –
(25, 1) 1 1 1 1 1 1 1 16.76 17.55 18.58 21.33 26.40 264.47 9660.49
(25, 2) 1 1 1 1 1 1 1 2.12 2.40 2.66 2.78 3.20 3.93 2654.37
(25, 3) 1 1 1 1 1 1 1 34.74 34.82 35.66 36.57 39.31 55.77 5782.57
(25, 4) 1 1 1 1 1 1 – 8.32 8.48 8.96 8.96 10.88 21.69 –
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Figure 9: The results of the cases where the HT is inserted in 𝑋25,𝑖
under mode A.

optimal location determined in Section 7.2.2, 100 instances
are tested with different (𝑃,MK). Figure 10 shows the success
rate of the attack. It can be seen that when N is lower than 3,
the success rate of the attack remains 0%. Once N is greater
than or equal to 3, as N taken grows, the success rate of the
attack increases. And the success rate of the attack can reach
100% by increasingN to 7. It can be also seen in the lower part
of Figure 10 that when N is equal to 3, only 4 instances fail to
recover the secretmaster key in 48 hours; thus the success rate
of the attack is 96%.
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Figure 10: Success rate of the attack.

8. Conclusions

In this paper, an algebraic fault analysis (AFA), relying on
the stealthy hardware Trojan, against HIGHT cipher has
been proposed. To facilitate a bit-level AFA of HIGHT, a
FSM-based stealthy HT is designed with an extremely low
activation rate of around 0.000025. The optimal location
for inserting the HT is determined by AFA in advance.
Experiments report a 1.63% additional cost in flip-flops
for the HT implemented on a 65 nm Virtex-5 FPGA. As
for HIGHT implementation, a single-bit flip on the most
significant bit of𝑋25,3 when the HT is activated requires only
3 injections to recover the secret master key with a success
rate of 96%. In this paper, we showed that even with very
limited number of faults from a lightweight Trojan, modern
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cryptographies are still vulnerable against algebraic attacks.
This work certified the severity of the lightweight HT for the
security-critical ciphers in ICs, and hence extensive security
investigations must be devoted throughout the entire design
and manufacture process of the security chips.

In the future work, we aim at explore effective solutions
to detect the stealthy Trojan injected inside the cryptographic
circuits.
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