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Abstract. The Closest Pair Problem (CPP) is one of the fundamental
problems that has a wide range of applications in data mining, such
as unsupervised data clustering, user pattern similarity search, etc. A
number of exact and approximate algorithms have been proposed to solve
it in the low dimensional space. In this paper, we address the problem
when the metric space is of a high dimension. For example, the drug-
target or movie-user interaction data could contain as many as hundreds
of features. To solve this problem under the �2 norm, we present two novel
approximate algorithms. Our algorithms are based on the novel idea of
projecting the points into the real line. We prove high probability bounds
on the run time and accuracy for both of the proposed algorithms. Both
algorithms are evaluated via comprehensive experiments and compared
with existing best-known approaches. The experiments reveal that our
proposed approaches outperform the existing methods.
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1 Introduction

Similarity search has been widely used in data mining. Example applications
include finding the similarity between user patterns from online merchant trans-
actions, analysis of social media connections, unsupervised data clustering,
knowledge discovery from semantic data, etc. Two of the fundamental problems
in data mining are finding the Nearest Neighbor (NN) and finding the Closest
Pair (CP). These two problems are closely related. For instance, CP could be
seen as an extension of NN, which requires more computation and thus is more
challenging. In general, multi-feature data could be modeled as points in a high
dimensional metric space. Among all the different similarity measurement met-
ric, �p norm is commonly used. In this paper, �2 norm, or Euclidean distance, is
employed as it is one of the most widely applicable measurements.

The Closest Pair Problem (CPP) we are addressing is that of identifying the
closest pair of points from a given set of N points ∈ �m when m is not small.
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This classical problem has been studied extensively [19]. A straightforward algo-
rithm for solving this problem takes O(N2m) time, where m is the dimension of
the input space. Research works have been carried out in different domains for
different purposes to solve this problem in an efficient way. In 1979, Fortune and
Hopcroft presented a deterministic algorithm with a run time of O(N log log N)
assuming that the floor operation takes O(1) time [8]. In [1], another divide-and-
conquer deterministic algorithm was introduced. Later improvements include
[9,11,17,18]. In his seminal paper, Rabin proposed a randomized algorithm with
an expected run time of O(N) [7] (where the expectation is in the space of all
possible outcomes of coin flips made in the algorithm). Rabin’s algorithm also
used the floor function as a basic operation. In 1995, the sieve method was pro-
posed to eliminate points in a randomized way such that the actual comparison
of the remaining candidates could be dramatically reduced [14]. A sample-based
randomized approach was proposed in [6] in 1997 to solve several issues existing
in [7]. Yao has proven a lower bound of Ω(N log N) on the algebraic decision tree
model (for any dimension) [21]. All these algorithms assume a constant dimen-
sional space (i.e., m = O(1)), and the run times are exponentially dependent on
the dimension, making them not applicable for a dimension of several hundreds.

In recent years, database applications have driven the research on CPP. By
exploring the connection between CPP and matrix multiplication, Indyk [10]
has presented an O(N (w+3)/2) time algorithm for CPP in �1 and �∞ norms,
where O(Nw) is the time needed to multiply two N × N matrices. This algo-
rithm is not applicable for �2 norm. Corral et al. [3] have provided a method
that uses tree data structures. Besides exact algorithms, Lopez and Liao [15]
have provided an approximate algorithm to address this problem by making
copies of the original data and employing random shifting on each copy. More
recently, Locally Sensitivity Hashing (LSH) has gained attention in solving the
NN problem. As a consequence, approximate algorithms based on LSH for CPP
are proposed in the literature. Datar [5] has proposed a sub-quadratic time algo-
rithm using LSH that solves the c-approximate problem (output neighbors that
are no further than c times the distance between the nearest neighbors). Later
Tao [20] improved Datar’s algorithm and extended it to out-of-core CPP, where
the I/O costs are optimized. The comparison in [20] shows that their algorithm
outperforms the methods in [3,15]. These algorithms mainly focus on the NN
problem, or address the problem for efficiency in I/O cost, making them fit for
out-of-core computation with many applications such as in database query pro-
cessing. However, they are not very suitable for in-memory computation. Also,
the construction of special data structures (such as LSB tree in [20]) will bring
significant overhead for in-core tasks. In addition, the approximate methods in
this domain are addressing the c-approximate problem that introduces a relax-
ation factor c.

Mueen et al., have presented an elegant exact algorithm called MK for the CPP
[16]. Though this algorithm was originally proposed to solve a special case of the
CPP, known as the time series motif mining problem, it can be used to solve the
CPP very well. Although MK is an O(N2m) time algorithm, it improves the per-
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formance of the brute-force algorithm in practice using the triangular inequality
and a technique called early-abandoning. MK is a deterministic algorithm that
always finds the closest pair. To the best of our knowledge, MK is still one of the
best performing algorithms for high dimensional CPP in practice, even though it
is no longer the state-of-the-art choice for time series motif mining problem. In
this paper we use MK as the baseline to evaluate our proposed algorithms. To
provide a fair comparison, we use the original MK code that is publicly available
in http://alumni.cs.ucr.edu/mueen/MK/. The code for our proposed approaches
can be found at https://github.com/TideDancer/ACPP.git.

In this paper we present two approximate algorithms for the CPP. One of
them revisits the divide-and-conquer approach but modifies it to high dimen-
sional settings. The other uses a novel idea in random projection: The original
Johnson-Lindenstrauss Lemma shows the existence of a random projection of
O(log N) dimension that preserves all pairwise distances with a high probabil-
ity. For the CPP we only have to preserve the distance between the closest pair.
We use random projection of points into 1D. We show that if we perform this
projection O(log N) times, then the distance between the closest pair will be
preserved at least once with a high probability. Note that although the proposed
algorithms are sequential, all these algorithms along with MK, could be easily
parallelized due to the independence of their subroutines.

The rest of this paper is organized as follows: In Sect. 2, we present two
approximate algorithms for the high dimensional CPP. Running time and accu-
racy bounds are proved for both of the approaches (refer to Appendix for details).
Comprehensive experiments are carried out to evaluate the performance of both
algorithms in Sect. 3, and some conclusions are provided at the end.

2 Proposed Approximate Algorithms

Two approximate approaches for the high dimensional CPP are provided: ACP-P
and ACP-D. Both algorithms always keep an upper bound δu on the distance δ∗

between the closest pair of points. The common initial step for both algorithms
is to obtain an upper bound on δ∗ by picking a random sample of

√
N points

and identifying the distance between the closest pair of points in the sample.
Even a brute-force algorithm will only take O(N) time for doing this.

2.1 ACP-D

The divide-and-conquer algorithm of [1] performs well on low dimensional (e.g.,
2D and 3D) data with a run time of O(N log N). Its performance degrades
significantly on high dimensional data since the run time has an exponential
dependence on the dimension. The divide-and-conquer algorithm proceeds by
partitioning the input into two using the median along one of the dimensions.
The closest pairs are recursively found for each of the two parts. Followed by
this, we have to find the closest among the cross-part pairs. When the input is

http://alumni.cs.ucr.edu/mueen/MK/
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Fig. 1. Illustration of search within a range s around the partition line along a partic-
ular coordinate

from 2D (i.e., m = 2), the number of cross-pairs that have to be considered is
proved to be O(N). When the input is from an m-dimensional space, the number
of candidate cross-pairs to be considered goes up to O(N × 3m). This number
can be Ω(N2) or worse. Thus the performance could be as bad as that of the
brute force algorithm.

Algorithm 1. ACP-D

Input: N points pi ∈ �m (1 ≤ i ≤ N),
brute-force subset size T , search range
constant α. Initialize left = 1, right =
N , depth = 1

Output: function ACP-D(depth,
left, right) finds the closest pair (l, r)
with the smallest Euclidean distance
D(l, r)

1: len = right - left + 1
2: if depth = 1 then
3: Randomly select one coordinate

c(H), c(H) ∈ [1, d];
4: Sort the points based on values

pi[c
(H)] along the coordinate c(H);

5: end if
6: if len ≤ T then
7: Use brute-force to find best-so-far

d(i, j) where left ≤ i ≤ j ≤ right;
8: if d(i, j) < D(l, r) then
9: l = i; r = j; D(l, r) = d(i, j);

10: end if
11: return D(l, r);
12: else
13: mid = left + len/2;
14: ACP-D(depth+1, left, mid);
15: ACP-D(depth+1, mid+1, right);
16: Obtain two sets of indices: S =

{pi}, i < mid, pmid − pi ≤ αD/
√

N
and S′ = {pj}, j > mid, pj −pmid ≤
αD/

√
N ;

17: for i ∈ S do
18: for j ∈ S′ do
19: if dist(pi, pj) < D(l, r) then
20: l = i; r = j; D(l, r) =

dist(pi, pj);
21: end if
22: end for
23: end for
24: end if

In this section we propose an enhanced divide-and-conquer algorithm. The
idea is to choose the candidate cross-part pairs appropriately. Here again we
partition the input into two and recursively find the closest pair in each part.
To find the closest cross-part pair we do the following: Let H be the hyperplane
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that partitions the input into two (based on the median along one of the coor-
dinates). We have to consider all pairs of the form (a, b) where a is one side of
the hyperplane H and b is on the other side of H. Instead of checking all such
pairs we only consider pairs where a and b are on different sides of H but within
a distance of s. We refer to s as the search range (see Fig. 1). This procedure is
repeated by partitioning along different coordinates to increase the chances of
finding the closest pair.

To begin with, ACP-D randomly chooses a coordinate to do partition. It
then recursively finds the closest pair’s distance from the left and the right par-
titions (denote the distances as δ(L), δ(R)). Next we look at all the points that
reside within a search range s around the partition hyperplane H along this
coordinate, and find the closest pair (distance as δ(s)) among these candidates.
Followed by this we update the pair with the minimum distance denoted as
δ(H) = min(δ(L), δ(R), δ(s)). The detailed pseudocode of ACP-D is given in Algo-
rithm1. An illustration of searching within a range s is shown in Fig. 1. We
establish the following theorem and provide the proof in Appendix. This the-
orem offers a probabilistic bound on success rate and run time of ACP-D. To
boost the success rate, we repeat ACP-D and output the closest pair seen as the
closest pair of points.

Theorem 1. Let p[c] represent vector p’s c-th element, or equivalently p’s c-
coordinate value. Assume that the coordinate values in each dimension are uni-
formly distributed and let the spread length of points be r = maxi pi[c(H)] −
minj pj [c(H)] on the partition coordinate c(H). Use a search range of s =

√
α δ(H)√

m
.

As long as r2 = Ω(N) where m is the dimension, ACP-D algorithm’s expected
run time will be T (N) = O(N log N), with a high probability.

Corollary 1. We have the following probability bound on the run time:

Prob{T (N) ≥ (β + 1)α(δ(H))2N log N} ≤ e−β , for any β > 0.

2.2 ACP-P

Random projection lemma [12] states that pairwise distances are closely pre-
served in a random O(log N)-dimensional space with a high probability. In this
paper we prove that, if we repeat projecting the input points from �m to �d

randomly (d < m) a total of k times, as long as kd satisfies a certain condition,
the closest pair’s distance will be closely preserved in at least one of the projec-
tions, with a high probability. In addition, d = 1 would significantly reduce the
computation cost. We exploit this property in the ACP-P algorithm.

After the projection, all the pairs in the projected space that are within a
distance of δ(P ) = (1 + ε)δu (in �d) needs to be identified, where ε is a small
constant. For the case of d > 1, identifying these close pairs in �d still remains a
difficult task. One can use hyper-sphere centered at each point with a radius of
δ(P ), and check if there are other points in the hyper-sphere. However, this might
be even harder than directly computing all pairwise distances in �d, which takes
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O(N2d) running time. On the other hand, if in 1-D space (d = 1), the hyper-
sphere becomes left and right intervals, making the job of identifying close points
within an interval of δ(P ) extremely easy. To be specific, one can use any sorting
algorithm to first sort all the projected points because all the points are identified
by a scalar value in 1-D space. Then a scanning from left to right is performed
and all the adjacent points within a certain range are detected. In total it only
requires an O(N log N) running time. In fact, sorting could be replaced by a
griding approach to identify pairs within an interval (see Appendix 4.4). After
identifying these pairs, the Euclidean distance between each pair is computed in
�m. The pair with the least distance is kept and δu is updated.

Algorithm 2. ACP-P

Input: N points in �m: p1, p2, . . . , pN .
Output: The closest pair of input points.

1: j = 1
2: repeat
3: Randomly generate a projection

vector Φ ∈ �1×n

4: for i = 1 to N do
5: p′

i = ΦpT
i

6: end for
7: Sort p′

1, p
′
2, . . . , p

′
N ;

8: for i = 1 to N do
9: Identify the interval that p′

i

belongs to;
10: end for

11: for every interval do
12: Generate all possible pairs from

the points that have fallen into
this interval. These are candidate
pairs;

13: end for
14: For each candidate pair compute

the distance in �m and pick the pair
with the least distance. Let this dis-
tance be δj ;

15: j = j + 1;
16: until j = k
17: Find δo = min{δ1, δ2, . . . , δk};
18: return δo

The above projection-identification process is repeated k times. We show (in
Appendix) that if kd = Θ(log N), then the closest pair would come within a
distance of (1+ ε)δu in the projected space at least once with a high probability.
Note that in the original Johnson-Lindenstrauss Lemma, d = O(log N). The
reason that we can push the limit to d = 1 is because we only have to
preserve the distance between the closest pair, and not all pairwise
distances. We provide the following theorems and the corresponding proofs (in
Appendix).

Theorem 2. Let the closest pair have a distance of δ∗. If we repeat the random
projection �m → �d for a total of k times, then the probability that (δ(P ))2 <
(1 + ε)(δ∗)2 at least once is high (i.e., ≥ 1 − N−α where α is some constant), as
long as dk ≥ 4α

ε2−ε3 log N , for any ε ∈ [0, 1].

Corollary 2. Let d = 1. In each iteration of ACP-P, let the projected points
be quantized with intervals of length 2(1 + ε)δu. The probability that the closest
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pair (in �m) will fall into the same interval is ≥ 1
2 [1− e−(ε2−ε3)/4]. This in turn

means that the number of iterations taken by ACP-P to identify the closest pair
of points with a high probability is k = O

(
α log N
ε2−ε3

)
.

In practice, we have found that the sorting based implementation in 1-D does
not introduce an observable overhead. A detailed pseudocode of ACP-P that
employs sorting is given in Algorithm2. It is worth pointing out that the key
difference between ACP-P and the LSH method used in [20] is after projection.
The linear search based on the sorted list of points is much more efficient to
identify each points’ close neighbors, rather than a grid scheme using hashset
technique. In our experiments we have realized that neither C++/boost hashset
nor google’s hashset could achieve desirable in-core performance, making the
method in [20] not suitable for in-memory computations. Besides, the probability
bound analyses in Appendix are also different.

3 Experiments

We have conducted experiments to evaluate the performance of ACP-P and
ACP-D against MK. We have employed an Intel Xeon E5 CPU @ 3.2 GHz
machine. The experiments have been performed on synthetic datasets, with dif-
ferent numbers of points and dimensions. Coordinate values have been generated
uniformly randomly from the range: [0, 1000]. The following values have been
used: N = 10, 20, 30, 40, 50 × 103 and m = 128, 256, 512, 1024 and 2048.

To further boost the success rate, in each run we repeat the approximate
algorithms Q times and output the best among them. Q is designed as QACP-D =
h N
10×103 and QACP-P = h( N

10×103 )2 for ACP-D and ACP-P, respectively. N is the
input size and h is the hyper parameter. For instance if N = 30k, h = 2, then
Q = 6 for ACP-D and Q = 18 for ACP-P. We perform 10 runs and provide
the average running time, average rank and the hit rate (i.e., the fraction of the
number of times the closest pair is found in 10 runs). Clearly, the larger the h,
the better is the accuracy and the worse is the run time.
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Fig. 2. Run time comparison
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Fig. 3. Hit rate comparison

Table 1. Average rank (the smaller the better)

m = 128 m = 256 m = 512 m = 1024 m = 2048

h = 1 ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P

N=10k 2.7 7.1 4 6.2 4.4 8.5 4 6.6 3.9 7.9

N=20k 1.7 4.7 2 3.7 3.5 4.9 3.6 5 3.2 5.5

N=30k 2.1 1.9 1.7 2.7 1.9 2.3 1.5 3.2 1.8 2.9

N=40k 1.5 1.9 1.2 3.3 2.4 2 1.3 2.9 2.1 2.2

N=50k 1.6 1.5 1.4 2.6 1.2 1.4 1.7 2 2 3.5

h = 2 ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P

N=10k 1.6 4.8 2.5 3.7 1.7 5.5 2.2 5.8 3.5 5.7

N=20k 1.5 1.9 1.2 3.3 1.8 2.4 1.5 4.6 2.2 3.1

N=30k 1 1.2 1 2.1 1.2 1.5 1.5 2 1.3 1.6

N=40k 1.1 1.2 1 1.4 1.1 1.1 1.3 1.7 1.3 1.3

N=50k 1 1 1.1 1.1 1.1 1.2 1 1.8 1 1.4

Figure 2 shows the run time comparison. Clearly, for all settings, ACP-D and
ACP-P are significantly faster than the MK algorithm. As expected, the run
time when h = 2 (the right plot) is longer than when h = 1 (the left plot)
for both approximate algorithms. When N is smaller, ACP-D could be slightly
faster, but when N is larger, ACP-P becomes the fastest. For instance, when
N = 50k,m = 1, 024, h = 1, ACP-D’s run time is 1,252 s and ACP-P’s is 832 s,
while MK is much slower using 5,230 s.

To illustrate the accuracy, in Fig. 3, the hit rate is presented. Again in the
case of h = 2, the overall hit rate is higher as expected. When m is higher, the
hit rate tends to be better than in smaller dimension cases. The average rank
is also provided in Table 1. From the table we can see that for larger N , the
proposed algorithms are more robust because the average ranks are closer to 1.
And the overall average rank for h = 2 is also better than that for h = 1.

In addition to the rank of the best pair identified, we also report the difference
between the output pair’s distance and the true closest pair’s distance. We define
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the distance ratio as ρ = d/d∗, where d∗ is the distance between the closest pair
of points and d is the distance between the output pair of points. In Table 2,
we show the mean and variance of ρ when h = 2, and demonstrate that for our
synthetic dataset, the distance ratio is very close to 1 with a small variance. This
also proves the robustness of our proposed approximate algorithms.

Table 2. Distance ratio ρ (mean and standard deviation) when h = 2

h = 2 m = 128 m = 256 m = 512 m = 1024 m = 2048

Mean ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P

N=10k 1.010 1.034 1.004 1.008 1.002 1.012 1.001 1.004 1.006 1.006

N=20k 1.008 1.015 1.000 1.002 1.002 1.004 1.001 1.003 1.005 1.007

N=30k 1.000 1.004 1.000 1.002 1.000 1.001 1.000 1.001 1.001 1.002

N=40k 1.001 1.003 1.000 1.012 1.000 1.000 1.001 1.001 1.001 1.001

N=50k 1.000 1.000 1.002 1.002 1.000 1.000 1.000 1.005 1.000 1.001

Std ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P ACP-D ACP-P

N=10k 0.011 0.029 0.004 0.003 0.002 0.006 0.001 0.002 0.002 0.004

N=20k 0.015 0.015 0.000 0.003 0.003 0.003 0.001 0.003 0.005 0.005

N=30k 0.000 0.011 0.000 0.002 0.001 0.002 0.000 0.001 0.002 0.003

N=40k 0.004 0.006 0.000 0.014 0.001 0.001 0.001 0.002 0.001 0.001

N=50k 0.000 0.000 0.007 0.007 0.001 0.001 0.000 0.005 0.000 0.001

4 Conclusions

In this paper we have offered two approximate algorithms for solving the CPP.
Both of them are based on the idea of converting high dimensional search into line
search. We provide theoretical bounds on the run time and prove the accuracy
of ACP-D. For ACP-P, we exploit random projections but push the limit to
1-D space because we only identify the closest pair rather than preserving all
pairwise distances. A theoretical analysis is also provided. In the experiments,
we perform comprehensive simulations to evaluate both the run time and the
accuracy for the proposed approximate algorithms. The results reveal that our
approach runs much faster than the state-of-the-art method while still keeping
a very good accuracy. Our algorithms could be easily parallelized for further
speedups.

Acknowledgments. This work has been partly supported by NSF Grants 1447711 &
1743418 to SR; and the National Natural Science Foundation of China Grants 61472357
& 61571063 to FZ.
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Appendix

4.1 Proof of Theorem1

Proof. In the recursive algorithm ACP-D, the initial data size is N and each
recursion splits the input into two halves. Recursion ends when the size is below
the threshold T . The brute-force or MK algorithm can be used when the final
input size is ≤ T . Thus the total number K of recursions is K = log(N/T ).

In each iteration, the closest pair (pa, pb) may not be captured only if this pair
is neither in the left half nor the right half, and also not captured by the search
range in the middle. So the probability of failure in this iteration equals the
probability that pa, pb is split into left and right halves (denote this probability
as P(sep)), multiplied by probability that (pa, pb) is missed in the search range
s (denote this probability as P(miss)) conditioned on P(sep). Denote iteration k

with a superscript such as P k
(sep).

Assume a uniform distribution of points’ coordinate values. In the randomly
chosen coordinate c(H), denote pM as the index of the median point along this
coordinate. Then, for the first iteration,

P 1
(sep) = Prob{pa[c(H)], pb[c(H)] are split by pM [c(H)]} = 1/2.

In the second iteration, probability that pa, pb are split again in both halves is

P 2
(sep) = 2 × (Prob{pa[c(H)], pb[c(H)]in same half} × Prob{They are separated})

= 2 × (
1
4

× 1
2
) =

1
4
.

Thus we can easily see that P k
(sep) = 1

2k
.

Next let us compute P(miss). Let the distance between the closest pair
(pa, pb) be δ∗ and let δ(D) = min(δ(L), δ(R)). Clearly, δ(D) ≥ δ∗. Since
there are m dimensions, the expected contribution of δ∗ to coordinate c(H) is
E[lc(H)(pa, pb)] = δ∗/

√
m, which means there are at least (m − m

α ) coordinates
for which lc(pa, pb) ≤ √

α δ(D)√
m

, α > 1.

If we set the search range as s =
√

α δ(D)√
m

, meaning we check pairs (pi, pj)
such that pi[c] ∈ [pM [c]− s, pM [c]] and pj [c] ∈ [pM [c], pM [c]+ s], then choosing a
random coordinate would give Prob{Capture the closest pair| P 1

(sep)} ≥ 1−1/α.
As a result, for any iteration k, the conditional probability of failure is

P k
(miss){Fail | P k

(sep)} = (1 − Prob[Capture| P k
(sep)]) ≤ 1/α.

So the probability of failure through all the recursions is

Prob[Fail] =
K∑

k=1

P k
(sep)P

k
(miss) ≤ 1

α

log N/T∑
k=1

1
2k

≤ 1
α

.

Thus we arrive at the following Lemma:
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Lemma 1. Assuming a uniform distribution of points, if we set the search range
as s =

√
α δ(D)√

m
, α > 1, where δ(D) is minimum of the closest distances returned

by the left and the right halves, ACP-D will find the closest pair with a probability
of ≥ 1 − 1/α. Q.E.D.

Assuming a uniform distribution and letting the spread length of points be
r = maxi pi[c(H)]−minj pj [c(H)] on the chosen coordinate, within search range s,
the expected number of points residing in will be sN/r. Thus the expected num-
ber of pairs that we need to compute distances for would be (sN/r)2. Therefore,
the expected running time will be

T (N) = 2T (
N

2
) + Õ(

s2N2

r2
m) = 2T (

N

2
) + Õ(

α(δ(D))2N2

r2
)

assuming that each distance computation takes O(m) time. As long as r2 =
Ω(N) ACP-D algorithm’s expected run time will be:

T (N) = 2T (N/2) + Õ(α(δ(D))2N) = Õ(N log N) as α and δ(D) are some
constants.

4.2 Proof of Corollary 1

Proof. Applying the probabilistic recurrence relationship [13] and the revised
version [2], under the same assumptions of Theorem 1, for a positive β, we have

Prob{T (N) ≥ (β + 1)α(δ(D))2N log N} ≤ e−β .

4.3 Proof of Theorem2

Proof. In the proof for the JL lemma [4], the following lemma is also given:

Lemma 2. For any fixed vector v ∈ �m, projection matrix Φ : �m → �d with
i.i.d. Gaussian entries, i.e., Φij = 1√

d
N (0, 1), the following statements are true:

E[||Φv||2] = ||v||2 and Prob[||Φv||2 ≥ (1 + ε)||v||2] ≤ e−(ε2−ε3)d/4, as well as
Prob[||Φv||2 ≤ (1 − ε)||v||2] ≤ e−(ε2−ε3)d/4.

For simplicity in both analysis and implementation, we use Gaussian projec-
tions. Let the closest pair (in �m) be (pa, pb) with a distance of δ∗. Using the
second equation of the above theorem, we obtain:

Prob{||Φ(pb − pa)||2 ≥ (1 + ε)||(pb − pa)||2} ≤ e−(ε2−ε3)d/4.

Let the distance between pa and pb in �d be δ(P). The above equation becomes:

Prob{(δ(P))2 ≥ (1 + ε)δ∗2} ≤ e−(ε2−ε3)d/4.
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The probability that the above event happens at least once in the k iterations
is:

Prob{(δ(P))2 < (1 + ε)δ∗2]} ≥ 1 − e−(ε2−ε3)dk/4.

We want this to be a high probability. By high probability we mean a probability
of ≥ (1 − N−α), α being a probability parameter (normally assumed to be a
constant ≥ 1). We want 1 − e−(ε2−ε3)dk/4 ≥ 1 − N−α. This happens when:

e−(ε2−ε3)dk/4 ≤ N−α ⇒ (ε2 − ε3)dk/4 ≥ α log N ⇒ dk ≥ 4α

ε2 − ε3
log N.

4.4 Proof of Corollary 2

Proof. Projecting the input points into real numbers, i.e., d = 1, has a great
computational advantage. To identify pairs within a specific distance in O(N)
time, we use quantization technique. Let the minimum and maximum projected
values be m1 and m2, respectively. We partition the range [m1,m2] into intervals
of length L = 2(1 + ε)δu each. Each such interval has an integer index (starting
from 1). We also extend the range [m1,m2] by a random number r in the range
[0, (1 + ε)δu]. Specifically, we use the range: [m1 − r,m2]. Then for each point
pi we identify the interval that it falls into as: ID(pi) = 	(pi/L)
. This can be
done in a total of O(N) time for all the points. For each interval, we generate
all possible pairs from out of the points that belong to this interval. From out
of all of these candidate pairs we pick the one with the least distance (in �m).
Clearly, the probability that two points that are within a distance of ≤ (1+ ε)δu

(in �m) will fall into the same interval is ≥ 1/2. Thus the number of iterations
k can be computed in the same manner as above.

References

1. Bentley, J.L., Shamos, M.I.: Divide-and-conquer in multidimensional space. In:
Proceedings of the Eighth Annual ACM Symposium on Theory of Computing, pp.
220–230. ACM (1976)

2. Chaudhuri, S., Dubhashi, D.: Probabilistic recurrence relations revisited. Theoret.
Comput. Sci. 181(1), 45–56 (1997)

3. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Closest pair
queries in spatial databases. In: ACM SIGMOD Record, vol. 29, pp. 189–200. ACM
(2000)

4. Dasgupta, S., Gupta, A.: An elementary proof of a theorem of Johnson and Lin-
denstrauss. Random Struct. Algorithms 22(1), 60–65 (2003)

5. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual
Symposium on Computational Geometry, pp. 253–262. ACM (2004)

6. Dietzfelbinger, M., Hagerup, T., Katajainen, J., Penttonen, M.: A reliable random-
ized algorithm for the closest-pair problem. J. Algorithms 25(1), 19–51 (1997)

7. Rabin, M.: Probabilistic algorithms (1976)



Efficient Approximate Algorithms for the Closest Pair Problem 163

8. Fortune, S., Hopcroft, J.: A note on Rabin’s nearest-neighbor algorithm. Inf. Pro-
cess. Lett. 8(1), 20–23 (1979)

9. Ge, Q., Wang, H.-T., Zhu, H.: An improved algorithm for finding the closest pair
of points. J. Comput. Sci. Technol. 21(1), 27–31 (2006)

10. Indyk, P., Lewenstein, M., Lipsky, O., Porat, E.: Closest pair problems in very high
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