
SCIENCE CHINA
Information Sciences

March 2018, Vol. 61 039102:1–039102:3

doi: 10.1007/s11432-017-9108-3

c© Science China Press and Springer-Verlag Berlin Heidelberg 2017 info.scichina.com link.springer.com

. LETTER .

Efficient flush-reload cache attack on scalar

multiplication based signature algorithm

Ping ZHOU1, Tao WANG1, Xiaoxuan LOU3, Xinjie ZHAO2,

Fan ZHANG3,4* & Shize GUO2

1Department of Information Engineering, Ordnance Engineering College, Shijiazhuang 050003, China;
2Institute of North Electronic Equipment, Beijing 100191, China;

3College of Information Science and Electrical Engineering, Zhejiang University, Hangzhou 310027, China;
4Science and Technology on Communication Security Laboratory, Chengdu 610041, China

Received 20 February 2017/Revised 9 May 2017/Accepted 19 May 2017/Published online 16 August 2017

Citation Zhou P, Wang T, Lou X X, et al. Efficient flush-reload cache attack on scalar multiplication based

signature algorithm. Sci China Inf Sci, 2018, 61(3): 039102, doi: 10.1007/s11432-017-9108-3

Dear editor,
Cache timing attack is a very powerful side chan-
nel attack technique to break cryptographic imple-
mentations. Recently, Flush-Reload, a new type
of cache attacks, was proposed to attack crypto-
graphic implementations on multi-core platforms.
It utilizes a spy processes S to monitor the victim
process V which shares the same memory pages. S
flushes the specific memory lines of V , evicts data
from all levels of caches, and then reloads these
memory lines into cache. The corresponding load-
ing time can be measured, therefore the victim’s
accesses to the specific instructions can be moni-
tored.

The selection of the location of the memory lines
to be monitored is very important in flush-reload
attacks. In [1], RSA based on square-and-multiply
method is attacked where the memory lines in the
loop body are targeted. In [2], ECDSA based on
Montgomery ladders is attacked, where the mem-
ory lines in each arm of the conditional branches
are chosen. However, when the scalar multiplica-
tion is implemented by binary method, neither of
the existing methods are suitable for elliptic curve
(EC) based signature algorithm (e.g., ECDSA and
SM2-DSA [3], shown in Figure 1(a)). More specif-
ically, it is difficult to find the memory lines which

are executed frequently in loop body as in [1].
In [2], the source code of the conditional branch in
binary method is so short that the corresponding
machine code of different arms may reside in the
same or the adjacent memory lines. As a result,
the spy program cannot distinguish which arm is
executed. Meanwhile, a very high error rate needs
to be handled when recovering those scalar bits.

In this letter, we present a new method on how
to select the memory line to be monitored, i.e.,
those contains multiple function calls. Those func-
tion calls may significantly increase the probability
for the adversary to capture the victim’s cache ac-
cesses. We apply this method to the EC-based sig-
nature algorithms implemented in OpenSSL with
the binary method. As a result, the full scalar
bits can be recovered by only ONE single signature
with a probability of 79%. The presented method
is also applied to EC based signatures which em-
ploy sliding window method and wNAF method,
recovering almost all doublings and additions with
an error rate as low as 0.15%.

Flush-Reload cache attack. In EC based signa-
tures, the binary method computes P , a point on
the curve, with the scalar multiplication P = [k]Q
by scanning the bits of the scalar k, where Q is
the base point. The goal is to recover k. As shown

*Corresponding author (email: fanzhang@zju.edu.cn)
The authors declare that they have no conflict of interest.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-017-9108-3&domain=pdf&domain=pdf&date_stamp=2017-8-16
https://doi.org/10.1007/s11432-017-9108-3
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-017-9108-3


Zhou P, et al. Sci China Inf Sci March 2018 Vol. 61 039102:2

parameters

parameters

addr
A

addr
D

(a) (b) (c) (d)

(e) (f) (g)

Figure 1 (Color online) Selecting the monitored memory line and the attack result. (a) The binary method; (b) OpenSSL
implementation of the loading time addition and doubling; (c) location of the monitored memory line; (d) measurement of
the loading time; (e) error bits per bit position; (f) error bits per scalar; (g) error bits per scalar (exclude the first 2 bits).

in Figure 1(a), the doubling is executed for each
ki, followed by an addition if the current bit is
set. In the rest of this letter, we denote doubling
and addition as D and A, respectively. To recover
the AD sequence, and to further extract the scalar
bits, the Flush-Reload attack does the follows.

Stage 1: The monitored memory lines of the
instruction addresses are selected for the addition
and doubling, denoted as addrA and addrD, re-
spectively.

Stage 2: The cache side channel leakages are
monitored by timing. Each round of monitoring
consists of three phases. (1) In Flush phase, S uses
clflush instruction which is supported by x86 pro-
cessor architecture to evict both of the line addrA
and the line addrD from all levels of caches. (2) In
Trigger phase, S waits for a time interval tw with-
out executing any operation. During this phase, V
executes the addition or the doubling, and triggers
the corresponding memory loads from line addrA
or addrD. (3) In Reload phase, S reloads both of
the memory line addrA and line addrD and mea-
sures the time, denoted as tA and tD, respectively.

S repeats three phases until it reaches the end of
the signature. In each round of monitoring, a vec-
tor of cache access stateis derived, denoted as ti =
[tiA, tiD]T. The vectors of n rounds of monitoring
form a cache access trace T = [t1, t2, . . . , tn], as
shown in Figure 1(d).

Stage 3: Each ti corresponds to one operation
oi from three cases: doubling, addition or the rest,
denoted as A, D, R, respectively. A threshold h is
used to deduce oi from ti as follows, resulting in a
sequence O = [o1, o2, . . . , ol]:

oi =











A, if tiA < h ∧ tiD > h,

D, if tiA < h ∧ tiD > h,

E, else.

Then, the scalar k can be inferred as the bit value
of scalar is corresponding to the operations.

Our solution. To raise the chance to capture the
victim’s memory access during a group operation,
S should monitor the memory line that is accessed
frequently. However, in most implementation of
scalar multiplication, the source code is very sim-
ple and straight-forward during a single group op-
eration. Here are two disadvantages. First, there
are very few lines to be monitored. Second, each
instruction is executed only once. Therefore, it will
be very difficult for S to catch the correct cache
behavior due to small tw.

However, the adversary can look dig into the
machine code level and take advantage of the func-
tion calling, which can lead multiple accesses to the
same memory line. When the machine codes of the
call instruction are executed, the process jumps to
the address of the callee function. After executing



Zhou P, et al. Sci China Inf Sci March 2018 Vol. 61 039102:3

the callee function, the process returns and con-
tinues from the address after the call instruction.
Thus, in a single execution, the memory line which
contains n call instructions would be accessed n+1
times. This phenomenon provides two advantages
for the adversary: The multiple accesses caused
by function calling increase the chance for S to
catch the cache behavior. Besides, the execution
of the invoked function separates the accesses in
different time slots, making the accesses easier to
be detected and distinguished.

In our build of OpenSSL, we selected the mon-
itored memory lines addrA and addrD where line
674 to 678 of the source code in the addition and
line 834 to 838 in the doubling functions are lo-
cated, as shown in Figure 1(b). These memory
lines contain the largest number of call instruc-
tions. Take line addrA as an example. The ma-
chine codes in the line addrA and their virtual ad-
dress are illustrated in Figure 1(c). It contains
four call instructions which cause five accesses to
the memory line during a single execution. As a re-
sult, the probability for S to capture at least one of
the victim’s accesses will be significantly increased,
in spite of the potential overlap or undistinguished
accesses. With a very high probability, the AD se-
quence can be completely recovered and the secret
key can be extracted.

Experiment. The experiment is conducted on a
ThinkCentre desktop, equipped with an Intel i5-
3470 processor, a 4 GB DDR3-1600 memory and
Fedora 18. The scalar multiplication employs the
binary method. The addition and the doubling
are implemented by OpenSSL 1.01e. The 256-bit
scalar and the curve parameters are generated ran-
domly. We set the time slot tw as 600 cycles and
the threshold h as 180 cycles.

We conduct 100 signings, collect the timings on
the monitored memory lines, and try to recover the
scalar. On average, the total error rate is 0.38%
(0.96 among the 256 scalar bits) which is lower
than 4.26% as in [2].

The distribution of the positions of those error
bits is showed in Figure 1(e). The errors tend to
occur at the first 2 bits. It may be caused by the
unstableness at the start of the execution. The
error rate of the rest bits goes below 2%. The dis-
tribution of the number of error bits in the 100
signatures is displayed in Figure 1(f). All of the
recovered scalars have no more than 8 error bits
and 46 of them are totally correct. As the errors
mainly occur at the first 2 bits whose value can
be easily verified via a simple brute forth later, we
can ignore them when recover the scalar. Thus,

the distribution of the number of error bits in the
100 signatures is displayed in Figure 1(g). All of
the recovered scalars have no more than 6 error
bits and 79 of them are totally correct.

Conclusion. In this letter, we present a new
method to select the monitored memory line which
are accessed for several times due to the function
calling. The experiments show that our improve-
ment to the Flush-Reload attack can recover the
key with a probability of 79%, when the sign-
ing uses the binary algorithm in scalar multipli-
cation. Our work can also be extended to attack
those scalar multiplications with sliding window
method and wNAF method. For 256-bit scalars
and 3-bit window, the AD sequence is recovered
with an error rate as low as 0.15%. In 73% of
the signatures, the AD sequence is exactly recov-
ered. As the scalar cannot fully recovered from the
AD sequence when using sliding window or wNAF
method, the presented attack needs to combine the
lattice techniques [4,5]. The adversary need about
344 signatures to recover the private key.

Acknowledgements This work was supported in

part by National Basic Research Program of China

(973 Program) (Grant No. 2013CB338004) and Na-

tional Natural Science Foundation of China (Grant

Nos. 61272491, 61309021, 61472357, 61571063).

Supporting information Appendixes A–C. The

supporting information is available online at info.

scichina.com and link.springer.com. The supporting

materials are published as submitted, without type-

setting or editing. The responsibility for scientific ac-

curacy and content remains entirely with the authors.

References

1 Yarom Y, Falkner K. Flush+reload: a high resolution,
low noise, L3 cache side-channel attack. In: Proceed-
ings of the 23rd USENIX Security Symposium, San
Diego, 2014. 719–732

2 Yarom Y, Benger N. Recovering OpenSSL ECDSA
nonces using the FLUSH + RELOAD cache side-
channel attack. IACR Cryptology ePrint Archive,
2014, 2014: 140

3 State Cryptography Administration of China. Pub-
lic key cryptographic algorithm SM2 based on elliptic
curves. GM/T 0003-2012. http://www.oscca.gov.cn/
UpFile/2010122214822692.pdf

4 Nguyen P Q, Shparlinski I E. The insecurity of the el-
lipitc curve digital signature algorithm with partially
known nonces. Design Code Cryptogr, 2003, 30: 151–
176

5 Liu M, Chen J. Partially known nonces and fault
injection attacks on SM2 signature algorithm. In:
Proceedings of Information Security and Cryptology,
Guangzhou, 2013. 343–358

info.scichina.com
info.scichina.com
link.springer.com
http://www.oscca.gov.cn/UpFile/ 2010122214822692.pdf
http://www.oscca.gov.cn/UpFile/ 2010122214822692.pdf

