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Abstract— Searchable encryption (SE) provides a privacy-
preserving mechanism for data users to search over encrypted
data stored on a remote server. Researchers have designed a
number of SE schemes with high efficiency yet allowing some
degree of leakage profile to the remote server. The leakage,
however, should be further measured to allow us to understand
what types of attacks an SE scheme would encounter. This paper
considers passive attacks that make inferences based on prior
knowledge and observations on queries issued by users. This is
in contrast to previously studied active attacks that adaptively
inject files and queries. We consider several assumptions on the
types or prior knowledge the attacker possessed and propose
a few passive attacks. In particular, under the “full-fledged”
assumption, the keyword recovery rate of our attack is optimal
in the sense that it is equal to the theoretical upper bound.
We further present several enhanced attacks under other weaker
assumptions on various levels of the prior knowledge that the
attacker can obtain, in which the keyword recovery rates are
optimal or nearly optimal (i.e., approaching the theoretical upper
bound). In addition, we provide extensive experiments to show
the “power” of our passive attacks. This paper highlights the
importance of minimizing the prior knowledge of a server and
the leakage of search queries. It also shows that simply distorting
the frequency of the keyword to hold against our passive attacks
may not scale well.

Index Terms— Searchable symmetric encryption, passive
attacks, search query privacy, leakage of file-access pattern.

I. INTRODUCTION

TO DATE the advanced cloud-based technologies provide
flexible data outsourcing service for the Internet users.

The service, however, may incur the concern on the leakage
of personal sensitive data, due to the fact that the data is out
of data owner’s premises. To guarantee the confidentiality of
the data, one of the choices is using encryption techniques.
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Although protecting personal data from being read by
malicious cloud server, traditional encryption mechanisms
limit further operations over encrypted data. In particular, if all
data are encrypted and remotely stored in a cloud server, how
can the server successfully respond a search query over the
encryption? To address the problem, searchable encryption
(SE) [28] has been introduced to allow a valid user to issue a
search query, so that the server can return the corresponding
encrypted data without knowing “what the query is” and “what
the underlying data is”.

In theory, SE schemes with no information leakage can be
built on top of several well studied cryptographic primitives
such as oblivious RAM, fully-homomorphic encryption, and
secure two-party computation [32]. However, such construc-
tions require either heavy computation complexity or large
storage cost so that they may be inadequately employed in
practice [6], [24]. Researchers have focused on designing
searchable symmetric encryption (SSE) schemes with better
efficiency (e.g., [10], [28]), which can be deployed in practice,
but being subject to some information leak. Cash et al. [10]
claimed that “in order to provide truly practical SSE solutions
one needs to accept a certain level of leakage”. One of the
most recent concerns on SSE is the leakage of query [9].
One may aim to understand how much information an SSE
scheme does truly leak in reality and meanwhile, what the
information does mean for the scheme. Informally, there are
two main types of information that may be leaked in practice.
One is search pattern [9], [32] that can be used to determine if
two queries correspond to the same keyword(s), and the other
is file-access pattern [9], [32] referring to the information that
is implied by the query results.

Recently, researchers have attempted to launch attacks
against SSE schemes (those with some level of information
leakage). Islam et al. [19] demonstrated that a server can
identify the queries of a user from the leakage of search and
file-access patterns if the server is with knowledge of all the
contents of the user’s files. Cash et al. [9] later presented an
enhanced attack for larger keyword universe even if the server
has less knowledge of the user’s files. Liu et al. [23] proposed
a new attack on keyword recovery, assuming the attacker
has knowledge of the distribution on keyword(s) searched by
user. Zhang et al. [32] introduced an “active” attack, called
file-injection attack, in which the server is able to recover
all the keywords from the given queries if it is allowed to
actively inject some deliberately chosen files into the encrypted
database. In this paper, we ask:

How effective are passive attacks against SSE schemes?

A. Our Contributions
In this paper, we study the prior knowledge and the search

query leakage to quantitatively analyze the practical security
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of SSE. We consider different amounts of prior knowledge that
an attacker can obtain, and provide a series of passive attacks
exploiting “leakage of file-access pattern”. Different from
the count (or frequency) strategy1 used in [9] and [32], our
attacks exploit the information of each keyword’s “position”
(i.e., the occurrence and non-occurrence of the keyword for
each file). Our approach allow attackers to reveal more useful
information which can be further used to launch keyword
recovery attack. In this paper, we show that an attacker
can reveal quite a high fraction of the underlying keywords
corresponding to the tokens searched by users, with different
amounts of prior knowledge. More details are described as
follows.

• Passive attack under the “full-fledged” assumption.
We first design a primary passive attack under the “full-
fledged” assumption where the attacker has knowledge
of the whole database and the encrypted file identifier
(stored on the server) corresponding to each database
file. This attack will be served as a “sub-routine” in the
subsequent enhanced attacks.

• Enhanced passive attack with no prior knowledge of
file identifiers. To relate adversary behaviours to more
practical scenarios, we introduce a new assumption that
requires the attacker to have no prior knowledge of the
encrypted file identifiers (corresponding to each file).
We note that the attacker here is not as powerful as
the one under the “full-fledged” assumption. We further
design an enhanced attack under this weaker assumption.

• Passive attacks under other weaker assumptions. We
consider other weaker assumptions where the attacker
has even less prior knowledge and design the enhanced
passive attacks based on the assumptions.

We provide extensive experiments to display the success rate
of our attacks. In each particular attack, the keyword recovery
rate is close to the upper bound of the keyword recovery
inherited by prior knowledge that the attacker has known.

B. Summary

We investigate the “power” of our passive attacks on cur-
rent practical SSE. Our theoretical analysis and experimental
results show that such (easy-to-mount) passive attacks can
recover a significant amount of keywords embedded in search
queries. In light of these, we recommend SSE designer to
blur the (file identifier,token) inclusion/exclusion relationship,
besides hiding the count/frequency of tokens.

C. Organization

We introduce preliminaries in Section II and the overview of
assumptions in Section III. We start with a basic passive attack
under the “full-fledged” assumption in Section IV. We further
design an enhanced attack under a weaker assumption whereby
the attacker has no prior knowledge of file identifiers in
Section V. Based on the resulting attacks, we further introduce

1The count/frequency strategy leverages the frequency of occurrence of the
keywords (resp. tokens) in the known files (resp. the encrypted files stored on
the server). Concretely, for a given keyword k and eight files, the count of k
equals to 3 if there are 3 out of the files containing k.

variants under other assumptions in Section VI. The experi-
ment results of our attacks are presented in Section VII. Some
discussions are given in Section VIII. Section IX discusses the
related work, and Section X concludes this paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

Let [n] denote a set {1, 2, ..., n} of integers, and A[1..n]
denote a tuple (A1, A2, ..., An), for n ∈ N. For a set S, let
|S| denote the number of elements in S. In general, an SSE
scheme allows a user to securely outsource his/her encrypted
database to a remote server, while the user still maintains
the searchability over the encrypted data. Each file may be
designed to contain a set of keywords such that the user could
later retrieve the file by the keywords. Following [32], for
simplicity, we regard a file as an unordered set of keywords.
That is, a file is viewed as a set of keywords {k1, k2, ...}. If an
attacker knows a file, it knows all the keywords of the file.

We briefly describe the search process of most current
practical SSE schemes as follows. To retrieve a file (or files)
from a server, a user deterministically constructs a search
token t corresponding to a keyword k and further sends t to the
server. Using t , the server searches the (encrypted) database
so as to return the file identifier(s) of all the related file(s)
containing k. With the identifier(s), the user obtains the file(s).

As noted in [9] and [32], since the token is determinis-
tically derived from the keyword, the server will know the
relationship between the “input” (i.e. token) and the “output”
(i.e. file identifier). Given a token t , the server can identify
the encrypted file(s) matching t . This is called leakage of file-
access pattern [9], [32]. In this paper, we will design attacks
on this type of leakage. The goal of our attacks is to reveal
the relationship between the token and the underlying keyword
and hence, violating the query privacy.2 With knowledge of
the recovered token (hereafter, by recovered token we mean the
underlying keyword of the token is revealed), we can further
violate the privacy of other “unknown” files, i.e., knowing the
keywords of an “unknown” file. Concretely, for a query with
a recovered token, we can identify if an unknown (encrypted)
file contains the underlying keyword embedded into the token.
The more tokens we recover, the more private information of
the unknown files we can obtain.

B. Attack Model

1) Attacker: A server is the attacker who follows the
specifications of SSE (which supports single keyword search)
but curiously extracts as much secret information as possible.

2) Knowledge of Attacker: For different assumptions con-
sidered in this paper, an attacker may have the following
knowledge.

• Knowledge of (original) files (i.e. M0). The attacker is
allowed to obtain a set of files {Fi }i∈[l]. Since the attacker
knows {Fi }i∈[l], it can obtain the keyword(s) associated
with each file in {Fi }i∈[l]. That is, the attacker obtains a

2By violating the query privacy we mean that the attacker can obtain the
underlying keyword of a given query.
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set of files and the corresponding keywords. Assume the
keyword set corresponding to {Fi }i∈[l] is {k j } j∈[n]. The
attacker may generate an l ×n matrix M0, where the row
and column correspond to file and keyword, respectively.
The value of the (i, j)th entry in M0 is defined as

mi, j =
{

0 if k j /∈ Fi

1 if k j ∈ Fi

The matrix M0 is set as

⎛
⎜⎝

k1 k2 · · · kn

F1 m1,1 m1,2 · · · m1,n
...

...
... · · · ...

Fl ml,1 ml,2 · · · ml,n

⎞
⎟⎠. (1)

• Knowledge of file identifiers and the corresponding
tokens from observed search results (i.e. M1). Let
{F ′

i }i∈[l] be the file identifier set of encrypted versions
of a file set {Fi }i∈[l] stored on the server and {ti }i∈[n] be
the token set corresponds to {F ′

i }i∈[l] (i.e., {Fi }i∈[l]).3 The
server will recover an l ×n matrix M1 from the observed
search results, where the row and column correspond to
file identifier and token, respectively. The value of the
(i, j)th entry in M1 is defined as

m′
i, j =

{
0 if t j /∈ F ′

i

1 if t j ∈ F ′
i

The matrix M1 is designed as

⎛
⎜⎝

t1 t2 · · · tn
F ′

1 m′
1,1 m′

1,2 · · · m′
1,n

...
...

... · · · ...
F ′

l m′
l,1 m′

l,2 · · · m′
l,n

⎞
⎟⎠. (2)

• Knowledge of the file identifier of each (known)
file (i.e. πr ). The attacker may know the file identi-
fier of encrypted version of each (known) file. That is,
the attacker knows the row permutations (denoted by πr )
between M0 and M1.

3) Objective of Attacker: The goal of the attacker is to
reveal the relationship between keyword and token to com-
promise the underlying keyword of each queried token.

C. Problem Definition

Let M0 =

⎛
⎜⎜⎝

...
�ri
...

⎞
⎟⎟⎠

i∈[l]

be a l × n matrix, where the row

vector �ri denote its i -th row. Let πr be a permutation over [l].
We define a matrix transformation function ROWPERMUTE as
below

ROWPERMUTE(M0, πr ) =

⎛
⎜⎜⎝

...
�rπr (i)

...

⎞
⎟⎟⎠

i∈[l]

, (3)

3Note that since (we assume) tokens are deterministically computed from
the corresponding keywords, the size of the token set equals to the size of
the keyword set.

where the i -th row of the resulting matrix will equal to the
πr (i)-th row of the input matrix M0.

Alternatively, we may write the matrix M0 in column vector
form: M0 = (· · · , �cT

j , · · · ) j∈[n], where the column vector �cT
j

denotes its j -th column. Let πc be a permutation over [n].
We define a matrix transformation function COLPERMUTE as
below

COLPERMUTE(M0, πc) =
(
· · · , �cT

πc( j ), · · ·
)

j∈[n] , (4)

where the j -th column of the resulting matrix will equal to
the πc( j)-th column of the input matrix M0.

Similar to [9] and [19], we define the recovery rate as the
percentage of unique queries correctly guessed (or recovered).
That is, the recovery rate reflects the percentage of the unique
(keyword,token) mappings that could be recovered.

The problem can be formalized as follows.
Problem 1: Alice randomly chooses two permutations

πr : [l] → [l] and πc : [n] → [n]. Let M0 be
an l × n matrix. Alice computes the transformed matrix
M1 := COLPERMUTE(ROWPERMUTE(M0, πr ), πc)). Then
Alice sends the two matrix (M0, M1) to Bob. Bob attempts
to find the two permutation πr , πc. More precisely, Bob
deterministically outputs two arrays MATCHEDROWS[1..l]
and MATCHEDCOLS[1..n], such that for any i ∈ [l],
MATCHEDROW[i ] ∈ {πr (i),⊥}, and for any j ∈ [n],
MATCHEDCOLS[ j ] ∈ {πc( j),⊥}, in order to maximize the
recovery rate ρ := |{MATCHEDCOLS[ j ]�=⊥}|

n .
We remark that, in the above definition of Problem 1,

we allow false negative result (i.e. in Bob’s output,
MATCHEDROWS[i ] or MATCHEDCOLS[ j ] could be ⊥ for
some row index i , or column index j , respectively), but
not accept false positive result (i.e.if MATCHEDROWS[i ] �∈
{πr (i),⊥} or MATCHEDCOLS[ j ] ∈ {πc( j),⊥} in Bob’s out-
put, then Bob’s recovery rate is zero.)

Example 1: Let M0 be a matrix with every entry equals 0.
Thus, after row permutations and column permutations,
the resulting matrix is still a zero-matrix. That is M1 = M0.
In this case, any permutation π0 over [l] and any per-
mutation π1 over [n] can satisfy the equation M1 =
COLPERMUTE(ROWPERMUTE(M0, π0), π1). Since there are
exponentially many such permutations π0, π1, the probability
that Bob will correctly guess the exact permutation πr , πc

chosen by Alice, will be always less than 1 (actually, the prob-
ability is negligibly small, close to zero). As a result, Bob’s
recovery rate will be zero.

Example 2: Let l ≥ n and M0 be a l × n matrix, such
that for each column index j , in the j -th column of M0,
there are exactly j number of 1 and (l − j) number of 0.
In this case, Bob can find the column level permutation πc

with certainty by counting number of 1’s in each column in
M0 and M1.

Lemma 1: For any (computationally unbounded) algorithm
executed by Bob in Problem 1, the recovery rate cannot exceed
the fraction of unique columns in matrix M0, that is,

|{MATCHEDCOL[ j ] �= ⊥}|
n

≤ |{Unique columns in M0}|
n

(5)
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Fig. 1. Relationships and comparison among the five assumptions.4

Remark: We say a column in matrix M0 is unique, if its
column vector is distinct from any other column vector in
matrix M0. As indicated by Lemma 1, the upper bound on the
recovery rate equals the fraction of unique columns in matrix
M0. We note that the upper bound on the recovery rate does
not consider the case where an attacker can correctly guess
the permutation used among the non-unique columns.

III. OVERVIEW OF ASSUMPTIONS

In this paper, we mainly consider SSE with single-keyword
search whereby one search token is only embedded with one
keyword. The attack goal is to reveal the relationship between
a chosen keyword and a given search token, i.e., compromising
the underlying keyword of the token. We assume that the
queries issued by users could be observed by the attacker in a
reasonable amount of time, and the queries should exhaustedly
cover all keywords under each assumption.

We first present a primary passive attack under the “full-
fledged” assumption. The assumption may be a rare case in
real-world applications from an attacker perspective. However,
it could be seen as a worst case that the prior knowledge
of attacker is maximized in passive attack. In this paper,
we use this worst case as a start point of research. It is
worth mentioning that the attack algorithm under the worst
case assumption can be further served as a “subroutine” in
the subsequent enhanced attacks.

In total, we mainly present five attacks under the respec-
tive assumptions in Section IV, Section V and Section VI.
We introduce the assumptions below.

• Type I assumption. We assume the attacker is given all
database files F and the corresponding keyword set K.5

The attacker is also able to relate the encrypted file
identifier (stored on the server) with each file in F (i.e.,
I, EI in Fig. 1). In addition, the attacker is allowed to
observe all the queries to associate the (returned) file
identifier(s) with each search token, where the queries

4F is the set of all database files, K is the keyword set corresponding to
F, Ff is a fraction of F, Kf is the keyword set corresponding to Ff , I is the
file identifier set of F (i.e., I = {id(x) : x ∈ F}, where id(·) is a function
that maps a file to its file identifier), If is the file identifier set of Ff (i.e.,
If = {id(x) : x ∈ Ff }), EI is the set of relationship between file identifier and
file in F (i.e., EI = {(x, id(x)) : x ∈ F}), EIf is the relationship set for Ff
(i.e., EIf = {(x, id(x)) : x ∈ Ff }), T is the token set for K, Tf is the token
set for Kf , and Ts is a subset of T.

5Recall that a file is a set of keywords. If an attacker knows a file, it knows
all the keywords of the file.

completely cover all keywords in K (i.e., it knows
the token set T corresponding to K). In other words,
the attacker has knowledge of l ×n matrices M0, M1 and
the row permutation πr (as defined in Section II), where
l = |F| and n = |K|. Since being given full knowledge
of database, the attacker under the assumption is “full-
fledged”. Therefore, Type I assumption is referred to as
the “full-fledged” assumption.

• Type II assumption. We assume the attacker is provided
the same amount of knowledge as the one under the
Type I assumption except that it is unable to link the file
identifier (stored on the server) with each file. Likewise,
the attacker has knowledge of M0 and M1.

• Type III assumption. We assume the attacker is given a
fraction of F (denoted by Ff ) and the keyword set Kf
corresponding to Ff . It also knows the file identifier
(stored on the server) of each file in Ff and the token
set (denoted by Tf ) corresponding to Kf . In addition,
the attacker can observe all the queries to associate the
(returned) file identifier(s) with each search token in Tf ,
where the queries completely cover all keywords in Kf .
Concretely, the attacker has knowledge of l ′×n′ matrices
M0, M1 and the row permutation πr , where l ′ = |Ff | <
|F|, n′ = |Kf | < |K|.

• Type IV assumption. We assume the attacker is provided
the same amount of knowledge as the one under the Type
I assumption except that it only knows a fraction of T
(i.e., Ts in Fig. 1).

• Type V assumption. We assume the attacker is given
Ff and the keyword set Kf . The attacker knows the file
identifier set If for Ff and can further obtain the token set
Tf for Kf by observing the (searched) tokens w.r.t. Ff ,
where the queries of search tokens completely cover all
keywords in Kf . Therefore, the attacker has knowledge
of l ′ × n′ matrices M0 and M1, where l ′ = |Ff | < |F|,
n′ = |Kf | < |K|.

The relationships and comparison among these assumptions
(which are organized in a hierarchy of decreasing adversarial
background knowledge) are shown in Fig. 1. We use the
following example to illustrate the practical scenario of each
assumption. We consider a four-party setting of searchable
encryption: Data owner (which is a company) has a dataset D
(e.g. it could be healthcare data and human genome database),
and encrypts it as D′ using some searchable encryption scheme
before outsourcing it to a cloud server. Meanwhile, the data
owner may authorize some data consumer (who could be a
biomedical researcher) to make query over D′, and the cloud
server is not supposed to be able to learn nor understand the
dataset or queries. The fourth party is an inside attacker Eve,
who is an employee in the company. Here D is the intellectual
property of the data owner, and the sequence of queries them-
selves are intellectual property of the data consumer (e.g. two
consecutive queries, which are a particular disease name and
a particular human gene segment, may suggest that the data
consumer is investigating the linkage between the disease and
the gene segment, which might be a very valuable information
for the competitors of the data consumer). We further note that
in general a stringent security requirement of a secure system
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(e.g. in leakage resilient cryptography) is that there should
be no leakage amplification. In other words, after some out-
of-band leakage of plaintext and some metadata, as long as
the master private key is still completely random from the
attacker, the attacker should not know more information of the
plaintext. All of our attacks under Type I to V assumptions,
in fact, demonstrate leakage amplification of plaintext.

• Case 1 (Type I assumption): Eve steals information
F, K, I, EI from the data owner, and wants to know
about the sequence of queries by the data consumer.
So Eve colludes with the cloud server, who can monitor
all queries made by the data consumer (i.e. T).

• Case 2 (Type II assumption): Similar to Case 1, except
that Eve failed to steal information EI.

• Case 3 (Type IV assumption): Similar to Case 1,
except that the cloud server is only able to obtain a
subset (i.e., Ts) of the whole token set after observing
queries from the data consumer (i.e., not all keywords
are searched).

• Case 4 (Type III assumption): Eve only steals informa-
tion Ff , Kf , If , EIf . For example, D′ is dynamic in the
sense that the data owner collects new data and outsources
it to the cloud server every week. Eve succeeded in
stealing Ff , Kf , If , EIf only in a particular week. Eve
also colludes with the cloud server, who could obtain Tf .

• Case 5 (Type V assumption): Similar to Case 4, except
that Eve failed to steal EIf .

IV. PASSIVE ATTACK UNDER TYPE I ASSUMPTION

In this section, we present a primary passive attack under the
“full-fledged” assumption. Note that allowing attacker to have
knowledge of file identifier is a practical assumption [32]. This
is because: 1) the attacker can identify the returned (encrypted)
file based on its length (in reality, it may be inadequately
to always pad each file to the maximum file length); 2) for
SSE schemes supporting update functionality, the attacker can
compromise a file and identify the file with the next encrypted
file uploaded by user.

The problem (to be tackled) under the “full-fledged”
assumption is a simplified version of the one defined in
Subsection II-C. The attack mainly exploits the informa-
tion of each keyword’s “position” (i.e., the occurrence and
non-occurrence of the keyword for each file). For example,
given a particular keyword k and the eight files (which are
already exposed to the attacker), we define a binary sequence
(01001010) indicating that file no. 2, file no. 5 and file
no. 7 contains k. Such a binary sequence is a reflection of the
“position” of k in a particular set of files. Our attack leverages
the uniqueness of such “position” information to recover the
underlying keywords of search queries. Specifically, we view
each column of M0 and M1 as binary sequence. The binary
sequence in each column of M0 is a reveal of matching relation
between a particular keyword and the (whole) files that the
attacker has known. Likewise, the sequence in each column
of M1 is a reveal of matching relation between a particular
token and the (whole) file identifiers (that the attacker has
known).

The basic observation is that if we can map each column
of M0 with that of M1, we can launch an attack that could map
each keyword with the corresponding token. Different from
the count (or frequency) method in [9] and [32], the novelty
of our attack lies in the usage of the uniqueness of each
column from matrices M0 and M1, where the uniqueness
depends on the binary sequence of each column (rather than
simply counting the number of file that appears). Since we are
considering the one-(keyword)-to-one-(token) mapping, given
a unique column from M0 with binary sequence c, there must
exist a unique column from M1 whose binary sequence exactly
matches c.

Cornerstone of Attack. Leverage the uniqueness of each
column to establish the mapping between keyword (i.e., col-
umn of M0) and its corresponding token (i.e., column of M1).

Description of Attack. The attack consists of two steps:

• Convert: Convert the binary sequence of each column of
M0 and M1 to an integer, and obtain two sets of integers,
COLINT0 for M0 and COLINT1 for M1.

• Match: For each integer k that is unique among
COLINT0, find t in M1 satisfies: (1) t is unique among
COLINT1; (2) t = k. Let K be the underlying keyword
that k represents and T be the underlying token that t
represents, output each (keyword,token) mapping (K , T ).

The pseudocode of this attack and the corresponding algo-
rithm analysis are given in Appendix A. There exists an
upper bound on the recovery rate of this attack. Under the
“full-fledged” assumption, M1 is indeed a “half-permuted”
version of M0 in the sense that the columns of M1 are
the permutations of the columns of M0. The fundamental
task of this attack is to identify the “pre-image” (in M0) of
each column of M1. Intuitively, for columns of M0 (or M1),
the percentage of unique column is the upper bound of the
(keyword,token) mappings that we can recover. Therefore,
the keyword recovery rate equals to this upper bound, that
is, the recovery rate of our attack is optimal.

V. ENHANCED PASSIVE ATTACK UNDER

TYPE II ASSUMPTION

Relating file identifier with each file stored on server is
indeed a strong assumption that allows the attacker to obtain
sufficient knowledge of the database. In practice, an attacker
may have no prior knowledge of the file identifier corre-
sponding to each file at all. In this section, we consider
an assumption that is weaker than the “full-fledged” one.
In particular, the assumption is identical to that of Section IV
except that the attacker cannot relate the file identifier with
each (known) file.

Without prior knowledge of file identifiers, we cannot
reuse the passive attack under the “full-fledged” assumption
directly. We here need an “extra-processing” step. The main
task of the step is to obtain (keyword,token) and (file,file
identifier) mappings as many as possible. The following
two methods are leveraged to find the mappings. The first
is the count strategy that is used to map keyword (resp.
file) with token (resp. file identifier) if they share the same
unique count. The second method we use, is the count track.
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For each keyword (resp. file), the count track is defined to be
the vector of counts corresponding to different sets of files
(resp. keywords). For example, given a particular keyword k
and eight files, the count is 6 if there are six out of the files
containing k; for a subset of all the files, say five of them,
the count is 3 if there are three out of the five files containing k.
The count track related to k is {6, 3}. The mapping between
keyword (resp. file) and token (resp. file identifier) relies on
the same unique count track number they have.

A. Main Idea of Attack

Our approach is to find some features or characteris-
tics which could serve as “fingerprint” to identify different
columns (or rows) of a matrix:

• such features should stay constant even if the rows and
columns of a matrix are randomly permutated;

• different columns (or rows, respectively) are likely to
have different feature values.

In particular, the attack under this weak assumption consists
of two steps. The first is to use the idea of Count and Match
to obtain (file,file identifier) and (keyword,token) mappings
as many as possible. The second is to utilize the recovered
(file,file identifier) mappings (obtained from the first step) to
launch a similar attack as given in Section IV to recover the
“more” unique (keyword,token) mappings.

B. Algorithm Description

Since the second step of the attack is identical to the attack
in Section IV, we here mainly give the algorithm description
of the first step. We will sum all entries in each column of
M0 and M1. If for some j0, j1 ∈ [n], the following conditions
hold:

• Sum of the j0-th column of M0 is unique among all sums
of each column of M0;

• Sum of the j1-th column of M1 is unique among all sums
of each column of M1;

• Sum of the j0-th column of M0 is equal to the sum of
the j1-th column of M1,

we will identify ( j0, j1) as a matched pair and set
MATCHEDCOL[ j1] = j0. Next, we conceptually remove the
j0-th column from M0 by setting each entry in this column
to 0, and conceptually remove the j1-th column from M1
by setting each entry in this column to 0. In a similar way,
we might match some row (say i0-th row) of M0 with some
row (say i1-th row) of M1, and conceptually remove them by
setting corresponding matrix entries to 0.

After these two matrix are updated, we will calculate sums
for each column/row of each matrix again. As a result, in every
matrix, each column/row will be associated with a tuple of two
sums. If for some j2, j3 ∈ [n], the following conditions hold:

• The tuple6 of sums for the j2-th column of M0 is unique
among all tuples of sums for each column of M0;

• The tuple of sums for the j3-th column of M1 is unique
among all tuples of sums of each column of M1;

6It is possible that, neither the first sum nor the second sum for the j2-th
column is unique, but the tuple of two sums could be unique.

• The tuple of sums for the j2-th column of M0 equals the
tuple of sum for the j3-th column of M1,

we can identify ( j2, j3) as a matched pair and set
MATCHEDCOL[ j3] = j2. Again, we conceptually7 remove
these two columns from the two matrix correspondingly.
We apply similar procedures over rows, identify matched
rows from these two matrix, and eventually conceptually
remove these matched rows. We can recursively perform
the above procedures, until we cannot find more matched
columns or rows.

The pseudocode of this attack and the corresponding algo-
rithm analysis are given in Appendix B. M1 is indeed a “full-
permuted” version of M0 in the sense that both the columns
and rows of M1 are the permutations of the columns and rows
of M0, respectively. The fundamental task of the attack is to
identify the “pre-image” (in M0) of each column of M1. For
columns of M0, the percentage of unique columns is the upper
bound of the (keyword,token) mappings that we can recover,
which is inherited by the knowledge of the attacker under the
Type II assumption.

VI. PASSIVE ATTACKS UNDER OTHER

WEAKER ASSUMPTIONS

The attacks under the “full-fledged” and Type II assump-
tions effectively compromise the underlying keywords of
queries. In practice, however, attackers may not have so much
prior knowledge. In this section, we introduce several variants
of the attacks in Section IV and V based on new assumptions.

A. Attack Under Type III Assumption

The “full-fledged” assumption supposes the attacker knows
all the database files. In practice, however, an attacker may
not be given such an advantage. We here consider a weaker
but more reasonable assumption. It is identical to the “full-
fledged” assumption except that the attacker only has partial
knowledge of all files. Concretely, the attacker is provided:
1) a fraction of all database files, Ff , and the corresponding
keyword set Kf ; 2) the file identifier (stored on the server)
for each file in Ff (i.e., If , EIf in Fig. 1); 3) the token set
Tf for Kf . An attacker can observe the query-response pairs
and collect all distinct queries (i.e. the tokens), the responses
(i.e., search results) of which contain at least one file identifier
in If . We assume that the attacker can obtain the entire token
set Tf for Kf after observing for a reasonable amount of
time.8 With the above knowledge, the attacker can obtain
|Ff |×|Kf | matrices M0, M1 and the row permutation πr . Since
M0 and M1 share the same dimensions and the attacker knows
the file identifier corresponding to each file in Ff , we can make
use of the same attack method introduced in Section IV to
recover the mapping of (keyword,token).

7We do not actually delete any rows or columns, in order to keep the
dimension of the two matrix unchanged, and thus all row/column indices
will not change.

8The limitation of this assumption will be discussed in Section VIII.
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B. Attack Under Type IV Assumption

We here consider another variant that is identical to the
“full-fledged” assumption except that the adversary is given
a subset of the token set associated with the known files.
Specifically, the attacker is provided: 1) the whole database F
and the corresponding keyword set K; 2) the file identifier
(stored on the server) of each file in F (i.e., I, EI in Fig. 1);
3) a subset of all the tokens corresponding to K, denoted by Ts.
Therefore, the attacker can obtain an |F|× |K| matrix M0 and
an |F| × |Ts| matrix M1, where |K| > |Ts|.

1) Cornerstone of Attack: The observation here is that the
row dimension of M0 is the same as that of M1. For a unique
column �c0 from M0, if there exists a column �c1 from M1 that
shares the same binary sequence with �c0, then �c1 is unique
among all columns of M1. One can establish the mapping
between the underlying keyword of �c0 and the underlying
token of �c1. The attack is to find the mapping of (�c0, �c1) as
many as possible.

2) Description of Attack: The attack consists of two steps:

• Convert: Convert the binary sequence of each column of
M0 and M1 to an integer, and further obtain two sets of
integers, COLINT0 for M0 and COLINT1 for M1.

• Match: For each integer k that is unique among
COLINT0, try to find t in M1 satisfies: (1) t is unique
among COLINT1; (2) t = k. If such t exists, let K be
the underlying keyword that k represents and T be the
underlying token that t represents, output each (keyword,
token) mapping (K , T ).

Let T denote the token set corresponding to K and M′
1 be

an |I| × |T| matrix, where the row and column correspond
to file identifier in I and token in T, respectively. Let C be
the set of columns from M1, where each element of C is
unique among all the columns of M′

1. Intuitively, for columns
of M1, the percentage of columns in C is the upper bound
of the mappings that we can recover. Therefore, the keyword
recovery rate equals to this upper bound, which is optimal.

C. Attack Under Type V Assumption

The Type II assumption supposes that the attacker is
given F. We here consider a more reasonable assumption.
The knowledge of the attacker is the same with the Type III
assumption, excepting that it can only know the file identifier
set (denoted by If ) corresponding to Ff (i.e., no knowledge
of EIf ). We note that providing If for the attacker is reason-
able, because: 1) the attacker can identify the returned files
based on their lengths (e.g., the lengths of the encrypted files of
Ff are all within a certain range); 2) In some cases, the attacker
may compromise a set of files (which is to be uploaded by
a user) via various of means, so that it can identify the file
identifier set corresponding to Ff (with the uploaded encrypted
files). The attacker can obtain an |Ff |×|Kf | matrix M0 and an
|If |×|Tf | matrix M1, where |Ff | = |If |, |Kf | = |Tf |. Since M0
and M1 share the same dimensions and the attacker knows If ,
we can make use of the same attack method used in Section V
to recover the mapping of (keyword, token).

Fig. 2. Keyword recovery rate under the “full-fledged” assumption.

Fig. 3. Keyword recovery rate under the “full-fledged” assumption.

VII. EXPERIMENTS

In this section, we simulate the attacks proposed in
Section IV, V and VI. Since our assumptions are different
from but also weaker than that of [32], we do not compare
our attacks with those introduced in [32].

A. Setting

Similar to [9] and [32], we adopt the Enron email
dataset [1], which consists of 30,109 emails from 150 users of
the Enron corporation from 2000-2002. We remove the headers
(e.g., from, to, date), punctuations and numbers. We then use
the standard Porter stemming algorithm [27] to process each
word, and remove stop words (such as the, to, in, for, and)
from the keyword list. We choose the top 5,000 most frequent
keywords as the keyword universe (as that of [9] and [32]).
In our experiments, we treat one email message as one file.

Since we cannot find a real-world query dataset for email,
much like [9], [32], in our experiments, the queries of a user
are chosen uniformly from the keyword universe.9 Similarly,
leaked files (i.e., the files known to the attacker) are chosen
uniformly from the file universe, i.e., the set of 30,109 emails.
For each case of attack, we repeat each instance of attack
20 times and eventually take the average. As defined in
Section IV, the recovery rate is the percentage of unique
queries correctly recovered. In the following experiments,
we first fix the number of files and evaluate the keyword
recovery rate for varying number of distinct keywords queried
from 500 to 5,000.

9This means each (distinct) keyword will be chosen with the same probabil-
ity, so that the case where very few distinct keywords are searched is (almost)
impossible to happen.
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Fig. 4. Keyword/File identifier recovery rate of the attack (Algorithm 2 and 3) under Type II assumption. We remark that in sub-figures (a-1), (b-1), (c-1)
and (d-1), the curve of Algorithm 3 and the curve of the upper bound almost coincide.

B. Recovery Under the “Full-Fledged” Assumption

We implement our attack under the “full-fledged” assump-
tion. In our experiments, we target the keyword recovery of
our attack in different scenarios. Fig. 2 shows that for four
different cases (i.e., when the number of files are 1,000,
5,000, 10,000 and 20,000), our attack can recover about
70% (on average) of the keywords which have been queried.
We then fix the number of keywords and evaluate the keyword
recovery rate for varying number of files from 2,000 to 20,000.
Fig. 3 shows that for four different cases (i.e., when the
number of distinct keywords queried are 500, 1,000, 2,500 and
5,000), our attack can recover about 72% (on average) of the
keywords which have been queried. It can be observed that
the attack under the “full-fledged” assumption performs quite
well. We emphasize that the recovery rate of this attack is
optimal.

C. Recovery Under Type II Assumption

The recovery rate of the attack under Type II assumption
is shown in Fig. 4. We report the keyword recovery of
Algorithm 2, Algorithm 3 and the corresponding upper bound
of keyword recovery, respectively. In addition, we record the
file identifier recovery of Algorithm 2. In sub-figures (a-1),
(b-1), (c-1), (d-1), there are three curves showing how
the keyword recovery rate changes with the number of
keywords w.r.t. a fixed number of files. Among the 3 curves,

one represents the keyword recovery rate of Algorithm 2,
one for Algorithm 3, and the third curve represents the
upper bound of keyword recovery rate. The (corresponding)
file identifier recovery of each experiment (i.e., when file
number equals 1,000, 5,000, 10,000, 20,000) is shown in sub-
figures (a-2), (b-2), (c-2), (d-2), respectively. We emphasize
that, the curve for Algorithm 3 is almost coincided with
the curve for the upper bound, which demonstrates that our
Algorithm 3 achieves almost optimal recovery rate.

D. Recovery Under Type III Assumption

The attack under Type III assumption is implemented here.
Fig. 5 shows that for four different cases (i.e., when the
percentage of files are 10%, 20%, 50% and 80%), our attack
can recover about 65%∼70% of the keywords have been
queried. In addition, we fix the number of distinct keywords
queried (for four different cases: 500, 1,000, 2,500 and 5,000)
and evaluate the keyword recovery rate for varying percentage
of files from 10% to 80%. Fig. 6 shows that our attack can
recover about 68%∼72% (on average) of the keywords which
have been queried. It can be observed that the attack performs
quite well, where the recovery rate is optimal.

E. Recovery Under Type IV Assumption

For the attack under Type IV assumption, we fix the number
of files (for two different cases: 5,000 and 10,000) and evaluate
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Fig. 5. Keyword recovery rate of the attack under Type III assumption.

Fig. 6. Keyword recovery rate of the attack under Type III assumption.

Fig. 7. Keyword recovery rate of the attack under Type IV assumption.

Fig. 8. Keyword recovery rate of the attack under Type IV assumption.

the keyword recovery rate for varying number of distinct
keywords queried from 500 to 5000. Fig. 7 and Fig. 8 show
the keyword recovery rates of the attack for four different
cases (i.e., when the percentage of tokens are 10%, 20%, 50%
and 80%) when the number of files equals 5,000 and 10,000,
respectively.

F. Recovery Under Type V Assumption

Fig. 9 shows the keyword recovery rate of our attack under
Type V assumption. For four cases (i.e., when the percentage
of files are 10%, 20%, 50% and 80%), our attack can recover
about 68%∼71% (on average) of the keywords which have

Fig. 9. Keyword recovery rate of the attack under Type V assumption.

Fig. 10. Comparison of keyword recovery rate.

been queried. Our experiments indicate that the proposed
attack is quite effective. Since the assumption of this attack
is very close to the one introduced in [9], we compare our
attack under Type V assumption with the one in [9] (denoted as
CGPR15) in Fig. 10. In the experiment, the percentage of files
denotes the files known to the attacker, and the top 2,000 most
frequent keywords are considered. As shown in Fig. 10, our
attack outperforms [9] w.r.t. the keyword recovery rate.

VIII. DISCUSSIONS

A. Limitations of the Attacks

The effectiveness of the present attacks in this paper mainly
depends on knowledge an attacker obtains from observing
file access pattern. We assume that the attacker is able to
obtain the matrix M1. In some special cases, the attacker may
only get a subset of the columns of M1 (those corresponding
to the keywords actually queried) over a certain/fixed period
of time, so that the proposed attacks may not be effective.
Besides, if the attacker only has a subset of the columns of M0,
the keyword recovery rate might be (much) lower than that of
the attack under “full-fledged” assumption (with knowledge of
all columns of M0). For the assumptions in Subsection VI-A
and Subsection VI-C, we suppose that the attacker can obtain
the entire token set Tf corresponding to Kf after observing
the files in Ff . In practice, the attacker possibly may need to
observe for a very long time to achieve this.

B. Possible Countermeasures

In order to protect SSE schemes against the attacks on file
access patten, researchers [9], [19] have considered to leverage
keyword padding as a countermeasure. The premise of the
technique is to add noise to distort the real frequency (or count)
of keyword. In an SSE scheme with keyword padding, given
a query token of a keyword k, the returned search result will
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Algorithm 1 Passive Attack Under the “Full-Fledged” Assumption

Input: An l × n matrix M0 = (mi, j )i∈[l], j∈[n] and an l × n matrix M1 = (m′
i, j )i∈[l], j∈[n], mi, j , m′

i, j ∈ {0, 1}.
Output: MATCHEDCOLS[1..n], where MATCHEDCOLS[ j ] = k means the k-th keyword corresponds to the j -th token.
1: Initialize three arrays with length n: MATCHEDCOLS[ j ] := ⊥, COLINT0[ j ] := ⊥, COLINT1[ j ] := ⊥, j = 1, 2, 3, . . . , n.
2: Initialize two sets GOODCOLS0, GOODCOLS1 as empty sets.
3: for each column index j ∈ [n] do
4: t := ∑l

i=1 mi, j · 2i−1 � Convert the binary sequence of the j -th column of M0 to an integer
5: COLINT0[ j ] = t
6: t ′ := ∑l

i=1 m′
i, j · 2i−1 � Convert the binary sequence of the j -th column of M1 to an integer

7: COLINT1[ j ] = t ′
8: end for
9:

10: Compute GOODCOLS0 = { j ∈ [n] : the value COLINT0[ j ] is unique among COLINT0[1..n]}
11: Compute GOODCOLS1 = { j ∈ [n] : the value COLINT1[ j ] is unique among COLINT1[1..n]}
12: for each column index j ∈ GOODCOL0 do
13: Try to find k such that COLINT1[k] == COLINT0[ j ]
14: if such k exists and k ∈ GOODCOLS1 then
15: Let MATCHEDCOL[k] := j
16: end if
17: end for

return MATCHEDCOLS.

include all the files containing k along with additional noised
files that are not embedded with k. However, trivially making
use of the padding may not be applicable to our attacks. Since
we consider an SSE scheme in the single-keyword search
setting, the number of returned files is padded up to the
same length (for each keyword) for each query token. That
is, for the matrix M0, the number of 1 corresponding to the
binary sequence of each column might always equal to the
same integer. The count (or frequency) attack may fail since
the number of returned files is padded to the point that no
keyword has a unique counting. But the binary sequences
of columns may still maintain distinct with high probability.
Therefore, our attacks may stand still under keyword padding
countermeasure. We here suggest that an effective solution,
w.r.t. our attacks, should aim to scramble the uniqueness of
each sub-sequence of the binary sequence corresponding to
each matrix column.

IX. RELATED WORK

There are two main research branches of provably secure
SE [6]: searchable SE (SSE) and public key encryption
with keyword search (PEKS). Many SSE schemes have been
designed to support various features of searchability: 1) single
keyword search [15], [25], [28]; 2) fuzzy keyword search [21],
[22], [30]; 3) conjunctive keyword search [10], [13], [18]; and
4) ranked and verifiable keyword search [8], [11], [29], [31].
PEKS, which is mainly based on public key encryption, also
have been studied to support: 1) single keyword search [2], [3];
2) conjunctive keyword search [5], [20]; 3) fuzzy keyword
search [4], [7]; and 4) verifiable keyword search [33].

In theory, one can construct SE schemes with no information
leakage based on several well-known techniques such as
fully-homomorphic encryption [14], [17], secure two-party
computation [26], and oblivious RAM [16]. However, such
schemes are impractical [6], [24]. Researchers focused on

designing efficient SSE schemes (e.g., [12], [25], [28]) that
can be efficiently implemented in real-world applications,
at the expense of allowing the leakage of some information.
Liu et al. [23] presented two attacks that can reveal the under-
lying keywords of queries by utilizing some public available
knowledge. Islam et al. [19] demonstrated that the leakage
of search and file-access patterns (together with some other
knowledge) can be used to reveal the underlying keywords of
queries. Cash et al. [9] later proposed an attack for larger
keyword universe with less knowledge than that of [19].
Recently, Zhang et al. [32] presented a file-injection attack
whereby the attacker can actively inject some files deliberately
chosen by the attacker. In this work, we design some attacks
on SSE supporting single keyword search, without making use
of additional public available information and considering file
injection.

X. CONCLUSION

This paper investigates the vulnerability of SSE schemes
based on the assumptions on how much prior knowledge
an attacker is allowed to achieve. Several passive attacks,
which only using passive knowledge to reveal the relationship
between keyword and search token, are introduced in the
paper. The experiments demonstrate that the passive attacks
can be launched to a special type of SSE schemes, which fail
to “hide” the file-access pattern, to effectively break query
privacy. This work also inspires researchers to pay attention
on balancing the trade-off between efficiency and information
leakage in the design of SSE schemes.

APPENDIX A
PSEUDOCODE OF PASSIVE ATTACK UNDER THE

“FULL-FLEDGED” ASSUMPTION AND ITS ANALYSIS

The attack is described in the pseudocode of Algorithm 1.
We further give the analysis of the algorithm as follows.
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Algorithm 2 First Step of Enhanced Passive Attack Under Type II Assumption
Input: An l × n matrix M0 and an l × n matrix M1.
Output: MATCHEDCOLS[1..n] and MATCHEDROWS[1..l], where MATCHEDCOLS[ j ] = k means the k-th keyword corresponds
to the j -th token, and MATCHEDROWS[i ] = k means the k-th file identifier corresponds to the i -th file.
1: Initialize two arrays: MATCHEDROWS[i ] := ⊥, i = 1, 2, 3, . . . , l; MATCHEDCOLS[ j ] := ⊥, j = 1, 2, 3, . . . , n.
2: Initialize four arrays: ROWSUM0[i ], ROWSUM1[i ], i = 1, 2, 3, . . . , l; COLSUM0[ j ], COLSUM1[ j ], j = 1, 2, 3, . . . , n.
3: Initialize four sets GOODROWS0, GOODROWS1, GOODCOLS0, GOODCOLS1 as empty sets.
4:

5: loop
6: for each row index i ∈ [1, l] do
7: t := sum of all matrix entry M0[i ][ j ] in i -th row � Some matrix entries may be updated in previous loop
8: ROWSUM0[i ].append(t) � Insert value t from the tail of vector ROWSUM[i ]
9: t := sum of all matrix entry M1[i ][ j ] in i -th row � Some matrix entries may be updated in previous loop

10: ROWSUM1[i ].append(t) � Insert value t from the tail of vector ROWSUM1[i ]
11: end for
12:

13: for each column index j ∈ [1, n] do
14: t :=sum of all matrix entry M0[i ][ j ] in j -th column � Some matrix entries may be updated in previous loop
15: COLSUM0[ j ].append(t) � Insert value t from the tail of vector COLSUM[ j ]
16: t := sum of all matrix entry M1[i ][ j ] in j -th column
17: COLSUM1[ j ].append(t) � Insert value t from the tail of vector COLSUM[ j ]
18: end for
19:

20: Compute NEWGOODROWS0 := {i ∈ [1, l]\GOODROWS0 s.t. the value ROWSUM0[i ] is unique among ROWSUM0[1..l]}
21: for each k ∈ NEWGOODROWS0 do
22: Try to find i such that ROWSUM1[i ] == ROWSUM0[k]
23: if such i exists and the value ROWSUM1[i ] is unique among ROWSUM1[1..l] then
24: Add i into the set GOODROWS1 and let MATCHEDROWS[i ] := k
25: Set every entry in k-th row of matrix M0 to 0
26: Set every entry in i -th row of matrix M1 to 0
27: end if
28: end for
29: Update the set GOODROWS0 := GOODROWS0 ∪ NEWGOODROWS0 � Note set GOODROWS1 has been updated already
30:

31: Compute NEWGOODCOLS0 := { j ∈ [1, n]\GOODCOLS0 s.t. the value COLSUM0[ j ] is unique among COLSUM0[1..n]}
32: for each k ∈ NEWGOODCOLS0 do
33: Try to find j such that COLSUM1[ j ] == COLSUM0[k]
34: if such j exists and the value COLSUM1[ j ] is unique among COLSUM1[1..n] then
35: Add j into the set GOODCOL1 and let MATCHEDCOLS[ j ] := k
36: Set every entry in k-th column of matrix M0 to 0
37: Set every entry in j -th column of matrix M1 to 0
38: end if
39: end for
40: Update the set GOODCOLS0 := GOODCOLS0 ∪ NEWGOODCOLS0 � Note set GOODCOLS1 has been updated already
41:

42: if both NEWGOODROWS0 and NEWGOODCOLS0 are empty sets then
43: terminate the outermost loop
44: end if
45: end loop

return MATCHEDROWS and MATCHEDCOLS.

Claim 1: If M1 = COLPERMUTE(M0, πc) for some per-
mutation πc over [n], then at the end of the first for loop of
Algorithm 1 (i.e. Line 9), the following equations hold

∀ j ∈ [n], COLINT1[ j ] = COLINT0[πc( j)] (6)

Proof: After columns of matrix M0 are permutated
according to πc, the πc( j)-th column of matrix M0 will
become the j -th column of matrix M1. Each column vector
does not change, and only their positions have changed. The
value COLINT1[ j ] (or COLINT0[πc( j)], respectively) is only
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dependent on the j -th (or πc( j)-th, respectively) column
vector of matrix M1 (or M0, respectively), regardless of the
positions of columns. �

Claim 2: If M1 = COLPERMUTE(M0, πc) for some per-
mutation πc over [n], then at the end of Algorithm 1, the
following conditions hold

∀ j ∈ [n], MATCHEDCOL[ j ] ∈ {πc( j),⊥} (7)

Proof: If MATCHEDCOL[ j ] �= ⊥, Line 15 of
Algorithm 1 is executed: MATCHEDCOL[k] := j . Therefore,
all of pre-conditions of Line 15 hold: (1) COLINT0[ j ] is
unique among COLINT0[1..n]; (2) COLINT1[k] is unique
among COLINT1[1..n]; (3) COLINT1[k] == COLINT0[ j ].
Combining these 3 conditions with Claim 1, Claim 2 is
implied. �

APPENDIX B
PSEUDOCODE OF PASSIVE ATTACK IN

SECTION V AND ITS ANALYSIS

The attack is presented in the pseudocode of Algorithm 2
and 3 and the analysis of the algorithm is given as follows.

Define function f : N
l×n → N

l×1 as below

f (M0) = f (

⎛
⎜⎜⎝

...
�ri
...

⎞
⎟⎟⎠

i∈[l]

) =

⎛
⎜⎜⎝

...∑n
j=1 ri, j

...

⎞
⎟⎟⎠

i∈[l]

, (8)

where vector �ri = (ri,1, . . . , ri, j , . . . , ri,n ).
Claim 3: For any matrix M and any permutation πc

over [n] and any permutation πr over [l],
f (COLPERMUTE(M, πc)) = f (M) (9)

f (ROWPERMUTE(M, πr )) = ROWPERMUTE( f (M), πr ).

(10)

Assumption 1: In Algorithm 2, the two input
matrix M0 and M1 satisfy this relationship: M1 =
COLPERMUTE(ROWPERMUTE(M0, πr ), πc)) for some
permutation πr over [l] and some permutation πc over [n].

In the loop of Algorithm 2, both M0 and M1 could be
updated by setting some entries to zero. For ease of exposition,
let M(ζ )

0 denote the M0 at the end of the ζ -th loop iteration, and
M(ζ )

1 denote the matrix M1 at the end of the ζ -th loop iteration.
In addition, let M(0)

0 and M(0)
1 refer to the input matrix M0

and M1, respectively. It is easy to see that, during the execu-
tion of Algorithm 2, in the data structures MATCHEDROWS,
MATCHEDCOLS, ROWSUMS0, COLSUMS0, ROWSUMS0, and
COLSUMS0, the value of any variable (e.g. array element,
vector element) will not be overwritten, that is, once a variable
is assigned to some value other than special symbol ⊥,
this variable will not be assigned to any other value again.
In addition, the values of these variables at the beginning of
(ζ + 1)-th iteration, are identical to those at the end of ζ -th
iteration, ζ ∈ [N−1], where N is the total number of iterations
before the loop terminates.

Lemma 2: If Assumption 1 holds and the loop terminates
after N iterations, for every integer ζ ∈ [N], then at the end

of ζ -th iteration of the loop in Algorithm 2 (i.e. Line 45 of
Algorithm 2), the following conditions hold:

∀i ∈ [l], ROWSUM1[i ][1..ζ ] = ROWSUM0[πr (i)][1..ζ ]
(11)

∀ j ∈ [n], COLSUM1[ j ][1..ζ ] = COLSUM0[πc( j)][1..ζ ]
(12)

∀i ∈ [l], MATCHEDROWS[i ] ∈ {πr (i), ⊥} (13)

∀ j ∈ [n], MATCHEDCOLS[ j ] ∈ {πc( j), ⊥} (14)

M(ζ )
1 = COLPERMUTE(ROWPERMUTE(M(ζ )

0 , πr ), πc))

(15)

Proof of Lemma 2: It is easy to see that, in Algorithm 2:
a) Equation (11)(12)(13)(14)(15) hold trivially at the beginning
of the 1st iteration; b) Values of all variables at the beginning
of some iteration of the main loop, are identical to the values
of those variables at the end of previous iteration. Based on
the above two simple facts, Lemma 2 can be directly implied
by the following Lemma 3. �

Lemma 3: Let N be specified as in Lemma 2. Let ζ ∈ [N].
If Equation (11)(12)(13)(14)(15) hold at the very beginning of
the ζ -th loop iteration, then these equations also hold at the
end of the ζ -th loop iteration. Note that the dimension of the
vector ROWSUM[i ] (or COLSUM[ j ], respectively) is (ζ − 1)
at the beginning and is ζ at the end of the ζ -th loop iteration.

Proof of Lemma 3 for Equation (11) and Equation (12):
At the end of the ζ -th loop, the dimension of ROWSUM0[i ]
increases by 1, and a new element ROWSUM0[i ][ζ ]
is appended from the tail. According to Algorithm 2,
ROWSUM0[i ][ζ ] is the sum of all entries in the i -th row of
M(ζ−1)

0 . Thus, at the end of ζ -th loop⎛
⎜⎜⎝

...
ROWSUM0[i ][ζ ]

...

⎞
⎟⎟⎠

i∈[l]

= f (M(ζ−1)
0 ) (16)

Similarly, ⎛
⎜⎜⎝

...
ROWSUM1[i ][ζ ]

...

⎞
⎟⎟⎠

i∈[l]

= f (M(ζ−1)
1 ) (17)

By applying homomorphism of function f , we have

f (M(ζ−1)
1 ) (18)

= f (COLPERMUTE(ROWPERMUTE(M(ζ−1)
0 , πr ), πc)))

(19)

= f ((ROWPERMUTE(M(ζ−1)
0 , πr ))) (20)

= ROWPERMUTE( f (M(ζ−1)
0 ), πr ) (21)

= ROWPERMUTE(

⎛
⎜⎜⎝

...
ROWSUM0[i ][ζ ]

...

⎞
⎟⎟⎠

i∈[l]

, πr ) (22)

=

⎛
⎜⎜⎝

...
ROWSUM0[πr (i)][ζ ]

...

⎞
⎟⎟⎠

i∈[l]

(23)
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Algorithm 3 Enhanced Attack Under Type II Assumption
Input: An l × n matrix M0 and an l × n matrix M1
Output: MATCHEDCOLS[1..n] and MATCHEDROWS[1..l], where MATCHEDCOLS[ j ] = k means the k-th keyword corresponds
to the j -th token, and MATCHEDROWS[i ] = k means the k-th file identifier corresponds to the i -th file.
1: Invoke Algorithm 2 with input (M0, M1), and obtain output MATCHEDROWS and MATCHEDCOLS.
2: Initialize a l × n matrix M2 with every entry equal to 0.
3: for each i ∈ [l] do
4: let i ′ := MATCHEDROWS[i ]
5: if i ′ �= ⊥ then
6: let the i ′-th row of matrix M2 equals to the i -th row of matrix M1
7: end if
8: end for
9: for each j ∈ [n] do

10: let j ′ := MATCHEDCOLS[ j ]
11: if j ′ �= ⊥ then
12: let every entry in the j ′-th column of M0 and every entry in the j -th column of M2 be 0.
13: end if
14: end for
15: Invoke Algorithm 1 on the two matrix M0 and M2 to obtain MATCHEDCOLS

return MATCHEDROWS and, the combination of MATCHEDCOLS and MATCHEDCOLS

Combining Eq (17) and Eq (23), we have

∀i ∈ [l], ROWSUM1[i ][ζ ] = ROWSUM0[πr (i)][ζ ]. (24)

Recall that, we assume Equation (11) holds at the beginning
of the ζ -th loop iteration, that is, ∀i ∈ [l],
ROWSUM1[i ][1..(ζ − 1)] = ROWSUM0[πr (i)][1..(ζ − 1)]

(25)

Combination of Eq (24) and Eq (25) leads to Eq (11) directly,
as we desired. We can prove Eq (12) in a similar way, and
thus save the details. �

Proof of Lemma 3 for Equation (13) and Equation (14):
It is easy to see that, during the execution of Algorithm 2,
MATCHEDROW[i ] will be assigned to a value rather than ⊥
for at most once. At the end of the ζ -th iteration, for any
i ∈ [l], there are exactly 3 possible cases which are mutually
exclusive: 1) MATCHEDROW[i ] = ⊥; 2)MATCHEDROW[i ] �=
⊥ at the beginning of the ζ -th iteration; 3) MATCHEDROW[i ]
is assigned to some value i ′ (i ′ �= ⊥) during the ζ -th iteration.

If Case 1) occurs, then Equation (13) holds trivially at the
end of ζ -th iteration. If Case 2) occurs, then by our assumption
that MATCHEDROW[i ] ∈ {πr (i),⊥} at the beginning of the
ζ -th iteration, we can derive MATCHEDROW[i ] = πr (i).

Now we handle the Case 3). In Case 3), Line 24 of
Algorithm (2) has been executed at the ζ -th iteration.
Therefore, the following 3 conditions hold:

• ROWSUM1[i ] = ROWSUM0[k]
• ROWSUM1[i ] is unique among ROWSUM1[1..l]
• ROWSUM0[k] is unique among ROWSUM0[1..l]

The above 3 conditions and Equation (11) together lead to
πr (i) = k, i.e. MATCHEDROW[i ] = k = πr (i) as desired.
Consequently, Equation (13) is proved. Equation (14) can be
proved in a similar way and we save the details. �

Proof of Lemma 3 for Equation (15): Recall that a part
of precondition of Lemma 3 is that Equation 15 holds at the

beginning of the ζ -th iteration, i.e.

M(ζ−1)
1 = COLPERMUTE(ROWPERMUTE(M(ζ−1)

0 , πr ), πc))

(26)

From the Algorithm 2, we can see that entries of matrix
M0, M1 are only updated

• in rows at Line 25 and Line 26, where MATCHEDROW[i ]
is set to k and k-th row of matrix M0 and i -th row of
matrix M1 are set to zero vectors;

• in columns at Line 36 and Line 37, where
MATCHEDCOL[ j ] is set to k, and k-th column of
matrix M0, and j -th column of matrix M1 are set to
zero vectors.

By Case 3) of our proof of Lemma 3 for Equation (13)
and Equation (14), we have MATCHEDROW[i ] = k = πr (i)
and MATCHEDCOL[ j ] = k = πc( j) (Note that here the two
occurrences of symbol k represents two independent tempo-
rary variables). Therefore, after this updating, the relationship
in Equation (15) still holds. �
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