1816

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.8, AUGUST 2019

Managing Recurrent Virtual Network Updates in
Multi-Tenant Datacenters: A System Perspective

Zhuotao Liu

, Yuan Cao", Member, IEEE, Xuewu Zhang, Changping Zhu, and Fan Zhang, Member, IEEE

Abstract—With the advent of software-defined networking, network configuration through programmable interfaces becomes practical,
leading to various on-demand opportunities for network routing update in multi-tenant datacenters, where tenants have diverse
requirements on network routings such as short latency, low path inflation, large bandwidth, high reliability, etc. Conventional solutions
that rely on topology search coupled with an objective function to find desired routings have at least two shortcomings: (i) they runinto
scalability issues when handling consistent and frequent routing updates and (i) they restrict the flexibility and capability to satisfy
various routing requirements. To address these issues, this paper proposes a novel search and optimization decoupled design, which not
only saves considerable topology search costs via search result reuse, but also avoids possible sub-optimality in greedy routing search
algorithms by making decisions based on the global view of all possible routings. We implement a prototype of our proposed system,
OpReduce, and perform extensive evaluations to validate its design goals.

Index Terms—Recurrent virtual network, multi-tenant datacenters, routing management

<+

1 INTRODUCTION

LONG with the rise of cloud computing, multi-tenant
datacenters grow into the scale of tens thousands of
servers hosting millions of tenant VMs [1]. Managing multi-
tenancy at such a scale to ensure efficiency, scalability and
agility is a challenging problem drawing considerable
research and engineering attention. Prior proposals [2], [3]
place major management effort at hypervisors for the sake
of easy configuration and implementation, whereas little
effort has been made to manage in-network routings, partic-
ularly at the granularity of tenants. As a result, although the
VM locations of each tenant are decided, datacenter net-
work operators lose the visibility of actual in-network traffic
forwarding for each tenant.
The lack of tenant-level traffic accountability and rou-
ting control could lead to various limitations. From the

Z. Liu is with the College of Internet of Things Engineering, Hohai Uni-
versity, Changzhou 213022, China, and also with Electrical and Com-
puter Engineering Department, University of Illinois at Urbana-
Champaign, Urbana, IL 61801, and also with Google Inc., Mountain
View, CA 94043. E-mail: zliu48@illinois.edu.

Y. Cao and X. Zhang are with the College of Internet of Things Engineering,
Hohai University, Changzhou 213022, China.

E-mail: {20161965, zhangxw j@hhu.edu.cn.

C. Zhu is with the Key Laboratory of Unmanned Aerial Vehicle Develop-
ment and Data Application of Anhui Higher Education Institutes, Wan-
jiang University of Technology, Maanshan 243031, China.

E-mail: cpzhub5126081@163.com.

F. Zhang is with College of Information Science and Electronic Engineering,
Zhejiang University, Alibaba-Zhejiang University Joint Institute of Frontier
Technologies, Institute of Cyberspace Research, and Zhejiang Lab, Hangzhou
310027, China. E-mail: Fanzhang@zju.edu.cn.

Manuscript received 28 Mar. 2018; revised 1 Dec. 2018; accepted 4 Jan. 2019.
Date of publication 16 Jan. 2019; date of current version 8 July 2019.
(Corresponding author: Yuan Cao.)

Recommended for acceptance by Thu D. Nguyen.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2019.2893239

perspective of business, network operators cannot custom-
ize tenant routings in accord with tenants’ service level
agreements (SLA) (e.g., latency, bandwidth, reliability or
security requirements), which may close the door for such a
business model in the virtual private cloud (VPC) market.
From the perspective of management, in case of resolving
hot spots in datacenters, for instance, it is difficult to deter-
mine the affected tenants and effectively re-route their traf-
fic around congestion in time.

Thus, it is desirable to have explicit tenant routing control.
The traditional way to achieve tenant routing management
relies on topology search coupled with an objective function
to greedily find the desired overlay network for each ten-
ant. Although instant network configuration is technically
enabled by SDN [4], the conventional approach still has
at least two shortcomings. First, tenant routing updates in
our production datacenters are recurrent, which can be
triggered by various reasons including network load
dynamics, tenant arrivals/departures, hot spots, link fail-
ures and so on. Repeatedly performing topology search
for each routing update will impose significant search
cost. Second, a tenant routing is updated typically to ful-
fill certain goals. However, it is uncertain that topology
search coupled with an objective function is sufficient to
achieve any goal. For instance, optimizing a performance
metric depending on virtual links (i.e., VM pair commu-
nications) is subject to sub-optimality since the mapping
between physical links and virtual links is unknown dur-
ing topology search (Section 2.3).

To address these issues, we propose OpReduce, a novel
search and optimization decoupled design for routing man-
agement. For each tenant-routing update, OpReduce first
comprehensively searches all desired overlay candidates
considering only the tenant’'s VM locations. Then it applies
a global objective function over these candidates to finalize

1045-9219 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7532-0434
https://orcid.org/0000-0002-7532-0434
https://orcid.org/0000-0002-7532-0434
https://orcid.org/0000-0002-7532-0434
https://orcid.org/0000-0002-7532-0434
https://orcid.org/0000-0001-5227-2241
https://orcid.org/0000-0001-5227-2241
https://orcid.org/0000-0001-5227-2241
https://orcid.org/0000-0001-5227-2241
https://orcid.org/0000-0001-5227-2241
mailto:
mailto:
mailto:
mailto:

LIU ET AL.: MANAGING RECURRENT VIRTUAL NETWORK UPDATES IN MULTI-TENANT DATACENTERS: A SYSTEM PERSPECTIVE

the most desired one. OpReduce’s decoupled model offers
at least two advantages. First, since topology search is not
directed by any objective function, search results are general
and can be reused across routing updates that share the
same VM locations: i.e., regardless of their goals, topology
search for future routing updates is saved as long as their
VM locations have been explored. Second, with the global
view of all routing candidates, objective functions are not
limited to be greedy and local. This eliminates the possibil-
ity of sub-optimality even when optimizing complex perfor-
mance metrics, for instance, involving virtual links.

One concern of the decoupled design may be that compre-
hensively finding all desired overlay candidates for a tenant
can be expensive. However, since the VMs of one tenant are
typically spanning across a few racks, we can reduce the
search space to a subgraph of the entire topology. Further,
most data center topologies (e.g., VL2 [5], fattree [6]) are hier-
archically organized into several layers and network traffic is
never forwarded back and forth between different layers. We
can adopt these properties to further refine the search space.
Our proposed algorithm can perform comprehensive topol-
ogy search in polynomial time (Section 3.1).

We implement a prototype of OpReduce and perform
extensive evaluations to validate its design goals. On the one
hand, we show that OpReduce greatly reduces the search cost
for tenant-routing updates, meanwhile imposing small sys-
tem overhead for managing large scale datacenters (e.g., small
routing cache size and agile network configuration). On the
other hand, we demonstrate that OpReduce is able to achieve
complex optimization goals for routing updates, yielding sig-
nificant networking performance gain over common practice.

2 BACKGROUND AND MOTIVATION

2.1 Managing Per-Tenant Routing

For configuration simplicity, encapsulations protocols such as
VXLAN [7] and NVGRE [8] are widely adopted in cloud [3].
However, by simply tunneling tenant traffic, network opera-
tors lose the traffic visibility and accountability, i.e., they are
not able to identify the origin of network traffic since packets
are sent on behalf of hypervisors and one hypervisor may
host VMs for multiple tenants. Such invisibility becomes even
worse when datacenters run link aggregation and/or per-
form load balancing (i.e., ECMP, Hedera [9], or CONGA [10])
to spread traffic across redundant physical links. As a result,
even if one tenant occupies only a small fraction of computa-
tion resources in the datacenter, its traffic could appear on
many physical links, making network operators unaware of
actual in-network traffic forwarding for the tenant.

The lack of in-network tenant-routing management
causes various operation restrictions. For instance, it is diffi-
cult for network operators to perform monitoring, measure-
ment and trouble-shooting for a tenant as its traffic may
spread across many network links. Further, as virtual pri-
vate cloud gains popularity, more tenants have incentives
to customize their private cloud based on their own needs,
e.g., one tenant may want to promote latency performance
of web servers, whereas someone else may want to optimize
bandwidth for MapReduce tasks. Without explicit tenant-
level routing control, it is difficult to customize routings for
individual tenants.

1817

Thus, it is desirable for network operators to have explicit
control over tenant routings. In particular, for each tenant,
network operators explicitly configure a Virtual Tenant Net-
work (VIN), which is an overlay network connecting the ten-
ant’s VMs. The tenant’s traffic is confined within its VTN and
no other physical links besides the ones in its VIN can carry
the tenant’s traffic. As tenants can be identified by their
VTN, traffic is accountable, which eliminates these manage-
ment limitations. Further, network operators can customize a
tenant’s routing based on its requirement by embedding its
VTN into an overlay that can best satisfy the requirement.

The traditional way of embedding VTN for a tenant relies
on topology search coupled with an objective function to
find the desired overlay. Such an approach, however, has at
least two shortcomings: (i) it runs into scalability issues
when handling frequent VIN embedding requests and (%)
it may be insufficient to find the optimal overlay for com-
plex embedding goals. Next, we elaborate on the two issues.

2.2 Frequent VTN Updating Requests

In production multi-tenant datacenters, managing VTN
embeddings/updates are all-time tasks on the basis of indi-
vidual tenants, which are up to tens of thousands [1]. This is
because that in practice, VTN embedding requests are trig-
gered by many reasons, including network load dynamics,
link congestion and failures, hot spots, tenant demand
change, network capacity augment and so on. Although
efficient graph search algorithms, such as Prim’s and
Kruskal’s, have been proposed for decades, consistently
and frequently performing overlay search in large topology
for a large number of VTN updates still imposes significant
cost. In fact, failing to accurately manage recurrent VIN
updates is one of the primay reason why the today’s cloud
offers limited SLAs for tenant networks. Therefore, resolv-
ing the scalability problem is the very first step towards effi-
cient tenant-routing management.

2.3 Fulfilling VTN Embedding Goals

A VTN embedding/update is as simple as finding a ran-
dom overlay network for the tenant. Instead, the VIN may
need to satisfy various requirements such as guaranteed
bandwidth [11], [12], [13], bounded latency [14], [15],
required security appliances [16], [17], and other perfor-
mance metrics depending on the tenant's SLA. As these
embedding goals become more complex, it is uncertain that
the conventional search & optimization coupled solution
can find the real optimal routing.

We use an illustrative example in Fig. 1 to demonstrate
such sub-optimality. Network operators perform VTN
update for a tenant whose VMs are hosted by the set of hyper-
visors [S1, S, S3]. The embedding goal is to minimize the
communication cost of all virtual links. For simplicity, we
define the communication cost of a virtual link as the number
of physical hops on the path connecting the two VMs of the
virtual link. Thus, if the virtual link between VM1 and VM2
takes path S1—A—C—S,, the communication cost is 3.

This embedding is a minimum spanning tree problem. A
classic way of solving the problem is using a greedy topol-
ogy search algorithm coupled with an objective function,
which proceeds as follows. At certain intermediate state of

1818

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.8, AUGUST 2019

s

s Lo

S1
A o —— A I —— |
o9 o
W | W TR
|
s3 s3

B

s1

A
>e-8
B
1
s3l

s

o

S1

R

|
s3

s o

(a) Intermediate.

(b) Default.

(c) Alternative.

(d) Optimal.

Fig. 1. Due to the lack of mapping between virtual links and physical links, conventional search & optimization coupled solution is subject to sub-optimality

when optimizing performance metrics depending on virtual links.

the overlay search (Fig. 1a), AB has been appended to the
overlay. Since BC' and AC are equally good to be selected,
based on the tie breaker in the search algorithm, BC' may be
appended to the ongoing overlay, and the final overlay
returned by the algorithm is S1—A, S,—C, S3—B, AB, BC
(Fig. 1b). However, given another greedy search algorithm
with a different tie breaker, AC' could be the link to append
after state (a) rather than BC, and the final overlay returned
will the one shown in Fig. 1c. However, no matter how the
search algorithm is designed, the real optimality of an over-
lay is decided by the distribution of VMs. Although VM
locations are known a priori, in an intermediate state, the
search algorithm cannot determine exactly which set of vir-
tual links a physical link will carry traffic for. Thus, no
greedy search algorithm can guarantee to capture the real
optimal overlay (Fig. 1d in this example). In general, due to
the lack of mapping between virtual links and physical
links, the greedy search & optimization coupled solution is
always subject to sub-optimality when optimizing any per-
formance metric involving virtual links.

We note that providing rigid theoretical proof to show the sub-
optimality of the conventional search & optimization approach is
beyond the scope of this paper. Instead, this paper focuses on offer-
ing a system perspective of how tenant routings are managed
based on our experience with enterprise datacenters.

2.4 Decoupling Search and Optimization

To address the above challenges, OpReduce proposes a
search and optimization decoupled design. For a routing
update request, OpReduce first comprehensively finds all
desired overlay candidates considering only VM locations.
Then it applies an objective function, designed with the
global view on all routing candidates, to finalize the optimal
one. In the above example, OpReduce will first obtain all 3
overlay candidates (figures (b), (c) and (d) in Fig. 1) and
then evaluate them to find the optimal one (Fig. 1d). With
the global view on all candidates, OpReduce knows the
exact mapping between virtual links and physical links.
Thus, it can design a global objective function in evaluation
to guarantee optimality. Further, as topology search is not
directed by any objective function, search results are general
so that they can be reused for future VIN updates that have
the same VM locations. In addition, when handling VTN
updates for existing tenants triggered by either link utiliza-
tion change or demand change (two major reasons trigger-
ing VIN updates), no additional search effort is required.
As a result, OpReduce saves considerable cost for perform-
ing frequent VIN updates in large scale datacenters.

3 SYSTEM DESIGN

In this section, we elaborate on the design of OpReduce. Fig. 2
illustrates the architecture of OpReduce. OpReduce is built
upon a network information database and a controller. The
network information database allows OpReduce to retrieve
network related information, such as network topology and
link utilization. The controller is used to manage both compu-
tation and networking resources, such as assigning VMs to
tenants and configuring VINs for tenants. OpReduce’s
decoupled design is achieved by its VTN embedding module
which includes routing search engine, routing cache, objec-
tive functions and network action container.

We now describe the workflow of performing routing
update using OpReduce. Upon receiving a request, OpRe-
duce first obtains a list of desired routing candidates based
on the VM placement. These routing candidates may come
from either the routing search engine or the routing cache if
the VM placement has been explored before. Then OpReduce
evaluates each candidate to determine the most desired one
for achieving a specific goal. To assist evaluation, network
operators propose evaluation methods, defined as objective
functions, to score each routing candidate. The design of
objective functions is facilitated by the global view of all pos-
sible routing candidates. Further, useful network information
(i.e., link loads) is retrieved from the network information
database. Finally, after determining the most desired routing,

I
1
|
1
1
1
1
!
1
% |
1

Network Actions 1
Container 1

OpReduce

S~ g

Controller
//

Network

Information DB (e.g., Openstack,

OpenDayLight)

Information
Retrieval

Fig. 2. The architecture of OpReduce.

LIU ET AL.: MANAGING RECURRENT VIRTUAL NETWORK UPDATES IN MULTI-TENANT DATACENTERS: A SYSTEM PERSPECTIVE

OpReduce enforces the VTN embedding inside the network
by executing network tasks (i.e., switch configuration) via the
network action container.

Although setting up both the network information database
and the network/computation controller takes considerable imple-
mentation efforts, we omit these details to focus on the research
part of OpReduce in this paper. Next, we describe each indi-
vidual component of OpReduce’s VTN embedding module.
Hereafter, we use routing and VTN interchangeably to indi-
cate the overlay network carrying a tenant’s traffic.

3.1 Routing Search Engine
Given a certain VM placement, the routing search engine is
used to produce a list of desired routings (or routing candi-
dates). In the typical layered datacenter network layout (e.g.,
fattree [6], Clos [5], [18]), a routing is desired if traffic between
two VMs does not bounce back and forth more than once
between two different layers. For random topology (e.g., [19],
[20]), we can bound the maximum number of hops on VM-
pair paths to exclude undesired routings. As datacenter fabric
is often built with a high level of path redundancy, exploring
all desired routings will provide sufficient candidates to
achieve the embedding goal of the routing update request.
Next, we propose an algorithm that can produce a com-
prehensive list of all desired routings in layered data center
topology. In the network, we associate each node with a
height. All core switches are assigned height 1 and the initial
height for other nodes is infinity. Then we trace down from
core switches towards other nodes to assign them a height.
The height of a node is the minimum height among all its
neighbours plus one. All nodes with the same height com-
pose a layer whose layer number is the node height. We
define a path as straight if all nodes on the path have different
heights. Straight path is either upward (from a source at a
lower layer to a destination at a higher layer) or downward.
In a desired routing, to connect two hypervisors h; and
hs, h1 needs to have a straight path which shares the same
endpoint with one of h3’s straight paths. The shared end-
point is defined as a common node for the hypervisor set
[h1, hs]. Formally, a node is defined as the common node for
a set of hypervisors if it has at least one straight path to
reach each hypervisor in the set. Then traffic from h; can
first take one straight path to reach the common node and
then bounces back to reach hs via another straight path.
Thus, a routing connecting [h, k3] is composed of the above
two straight paths. Similarly, a routing connecting all VMs
of a tenant is composed of several straight paths, among
which each straight path is originated from one hypervisor
and all these paths are ended at one same common node.
We formulate our search procedure in Algorithm 1. At the
very high level, the algorithm works as follows: (¢) find all
common nodes for the hypervisor set (line 5); (i) for each
common node, find one downward straight path from the
common node to each hypervisor (line 8) and (4i¢) combine
these paths to produce one routing candidate (line 9). Since a
routing candidate can only contain one common node (hav-
ing more will produce loops), Algorithm 1 provably finds all
desired routings in the network. Even though the algorithm
comprehensively finds all desired routings, the algorithm
complexity is polynomial (not exponential). We defer
detailed complexity analysis in Section 8.

1819

Algorithm 1. Routing Search Algorithm

: Input: VM placement H.
: Output: All desired routing candidates.
: for h; € hypervisor setH do

T; — GetUpwardGraphh;; T — |J,7;;
CommonNodes« (,.; 7;.nodes();
foreach ¢; € CommonNodes do

for h; € hypervisor set H do

N; — U, GetDownwardPath (¢;, h;, T;);
: return N — U N5
: Function: GetUpwardGraph (h;)
return The graph containing all upward straight paths

starting from h; and ending at core switches.
: Function: GetDownwardPath (¢;, h;, 7 ;)
13: return The straight path from ¢; to h; in graph 7 ;.

[——
TV IR N7

—_
N

For a random data center topology [19], [20], OpReduce
can first adopt the k-shortest path algorithm [21] to obtain a
set of paths between each hypervisor pair and then combine
these paths to produce routing candidates. k£ can be parame-
terized to exclude undesired routings.

3.2 Tenant-Routing Cache

The search results for routing candidates are cached using a
dictionary (hash table) data structure, where the key is VM
placement and the value is a list of all desired routings for the
VM placement. Each routing is stored as a list of physical link
IDs, which can be used to retrieve link related information
(e.g., utilization, status) from the network information data-
base. Generally, entries in the dictionary are valid as long as
the network topology remains the same. In OpReduce’s pro-
totype, we associate each entry in the dictionary with a rela-
tively long validation period (e.g., few weeks), and re-
perform routing search after an entry is expired.

In OpReduce’s implementation, we allocate 32 bits for
both the hash key and physical link IDs. In Section 5.2.2, we
show that even in large scale k = 32 fat-tree datacenter with
over 10 thousands servers (millions of VMs), the cache size
for managing 10 thousand tenants is about 100 MB, which
can be easily managed by commodity servers. Intuitively,
the cache size is small because the topology size of a single
VTN is small. Therefore, caching the routing search results
would be not a bottleneck in practice.

3.3 Objective Functions

The objective functions are used to evaluate routing candi-
dates so as to determine the most desired one for fulfilling
embedding goals. For instance, a valid objective function can
be as sophisticated as a combination function balancing lat-
ency, bandwidth, the number of hops and so on. Or it can be
as detailed as optimizing specific virtual links for latency
and other virtual links for bandwidth. In general, OpReduce
is open to accept any objective function. But OpReduce offers
global views on all possible routing candidates so that objec-
tive functions are not limited to be greedy and local. Relevant
network information, available in OpReduce’s network
information database, can be applied to evaluate these rout-
ing candidates. By the time of this writing, an instance
of OpReduce deployed in our production datacenter has
pre-installed tens of abstract objective functions that can be

1820

parameterized, allowing network operators to achieve a
wide variety of VIN embedding goals.

3.4 Network Action Container

After determining the most desired routing, the final step is
enforcing the routing inside network. The enforcement pro-
cess is essentially configuring switches on the routing (e.g.,
configuring VLAN tags [22] or adding OpenFlow rules [23])
to guide the switches to perform desired traffic forwarding.
To facilitate routing management in large scale datacenters,
we develop a network action container to perform network
configurations in a batch. For instance, configurations on
different ports of one switch are aggregated in one thread
and configurations on different switches are paralleled via
multi-threading. As shown in Section 5.2.3, the network
action container significantly reduces the overall configura-
tion latency.

4 IMPLEMENTATION

We have a full implementation of OpReduce. We use Open-
Stack to create VMs on hypervisors and assign VMs to ten-
ants. On our testbed dedicated for experiments, the
OpenStack environment has 4 compute nodes as hypervi-
sors that can host about one hundred VMs, one network
node, and one controller node. Because OpenStack is lim-
ited to computation virtualization, we unify it with our
physical network via an OpenDayLight [24] controller that
uses OpenFlow and netcon f [25] protocols to manage Open-
Flow and legacy switches, respectively.

On our testbed, we allocate a dedicate VLAN tag for each
VTN. Then embedding a VTN is about configuring relevant
switch interfaces with corresponding VLAN tags to achieve
reachability. Certainly there could be other network virtuali-
zation solutions, e.g., slices in sliceable switch [26], VLAN tag
stacking [27]. OpReduce’s network controller is extendible to
support these virtualization solutions. We are aware that
VLAN tags are limited to 4096 values which may be insuffi-
cient in large scale datacenters. To resolve this scalability
issue, OpReduce implements a helper component, based on
Panopticon [28], to achieve VLAN tag reuse in hybrid data-
centers with both legacy and OpenFlow switches.

5 [EVALUATION

Our evaluation centers around the followings. (i) In
Section 5.1, we show OpReduce is guaranteed to find the
least congested routings for VIN embeddings under
various settings, which yields significant networking
performance improvement over common practice. (i7) In
Section 5.2, we show that OpReduce greatly reduces the
search cost for managing numerous routing updates and
imposes small system overhead while managing routing
updates in large scale datacenters.

5.1 Congestion-Aware Routing Updates

One representative goal for routing updates in multi-tenant
datacenters is to find the least congested routing to re-accom-
modate a tenant. With a suite of experiments (on testbeds
and simulations) in this section, we aim to demonstrate that
OpReduce is able to find more desired routings to embed

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.8, AUGUST 2019

VTNs, compared with a couple of common practice. As a
result, OpReduce yields improved networking performance.

To find a desired routing, the traditional search & optimi-
zation coupled solution uses Prim’s minimal spanning tree
algorithm with physical link utilization as the edge weight.
However, since network traffic is generated by VM pairs,
minimizing the congestion experienced by virtual links is
the more direct and therefore more accurate goal for finding
the least congested routing. Thus, OpReduce uses the fol-
lowing algorithm to determine the most desired routing.
Assume OpReduce produces m routing candidates

{T1,..., T} for a routing update request that has n virtual
links {l1,...,1,}. Then the most desired routing is
i1 i Frlls
T = mn 2=t X Fill), (6]
T n

where k € [1,m], Fi(l;) is the congestion level experienced
by virtual link /; in routing candidate 7, and J; is the weight
of l;. In OpReduce’s instance deployed in our production
datacenters, both 7 and); are configurable to enable highly
flexible routing customization. For evaluation purpose in
this paper, F(l;) is defined as the highest congestion level
of all physical links in 7, that carry /;, where the congestion
level of a physical link is estimated as its average link utili-
zation. Further, all virtual links are equally weighted.

Besides the conventional search & optimization coupled
solution (referred to as the local solution), we also compare
OpReduce with flow-level ECMP, the common practice for
load balancing and congestion reduction in datacenters,
and the bottomline solution which embeds VIN to a ran-
domly selected routing candidate.

For each embedding request, we compare the routing
determined by OpReduce and the ones selected by the other
three solutions. We use average flow completion time (FCT)
as the metric to quantify the congestion experienced by vir-
tual links (similar to [10], [29]), expecting that a better rout-
ing will have shorter average FCT. Note that we do not claim
that FCT is either the only or the optimal metric. We use FCT for
the sake of quantifiable results.

5.1.1 Testbed Experiments

We start the evaluation on our physical testbed. We build a
network topology illustrated in Fig. 4a. The datacenter has
pre-embedded tenants to generate traffic using our client/
server programs. The clients initiate long-lived TCP connec-
tions to randomly selected servers to request flow transfers.
All VMs run both the client and server programs. Only
intra-tenant communication is allowed.

In this experiment, we perform routing update for a ten-
ant who has 10 VMs that are randomly distributed in all
four hypervisors on our testbed. In total, we perform 40 sets
of experiments under different network utilization. Fig. 4a
shows the snapshot of network utilization in one experi-
ment set. In each experiment set, we perform 3 individual
routing updates using OpReduce, ECMP and the bottom-
line solution. After the tenant VTN is embedded, its virtual
links (VM pairs) start to generate traffic using our client/
server programs. Flow sizes are randomly sampled from
the empirical datacenter workload [10]. To ensure fair com-
parison, the set of flow sizes used for the 3 experiments in

LIU ET AL.: MANAGING RECURRENT VIRTUAL NETWORK UPDATES IN MULTI-TENANT DATACENTERS: A SYSTEM PERSPECTIVE

1 [Flow size = Bytes — | 1 [Flow size = Bytes — |
st st
Co.4 Co.4
0.2 0.2
ol I I 0 I I I
1 1000 1E+06 1E+09 1 1000 1E+06 1E+09

Flow size (Bytes)
(a) Enterprise workload[10]

Flow size (Bytes)
(b) Data-mining workload[5]

Fig. 3. Empirical workloads used in evaluation.

each experiment set is identical. We compute the average
FCT among all flow transfers as our performance metric.

Fig. 4b illustrates the desired routing produced by ea-
ch solution for the network utilization shown in Fig. 4a.
Since OpReduce first outputs all routing candidates (.e.,
E1—Ci—E, E1—Cy—Es, E{—C3—E>) and then applies the
objective function (Equation (1)) to determine the most
desired one, it can always find the least congested routing
(E1—C41—E> in this case). However, both ECMP and bottom-
line are unaware of the link utilization. Consequently, their
static hashing could result in overwhelming these more con-
gested links.

Fig. 4c plots the average FCT in each experiment set
when using enterprise workload [10] (results for using data-
mining workload [5] are similar, and we omit them for brev-
ity). Although the bottomline solution and ECMP may pro-
duce different FCTs in one set, their average FCTs over all
sets are close. Comparing with these two solutions, OpRe-
duce can consistently find the optimal routing, yielding
~30 percent less FCTs on average and up to ~5x reduced
FCTs in some sets (outside the plot scope of Fig. 4c).

Note we do not compare OpReduce with the local solu-
tion in our testbed experiments. This is because the local
solution and OpReduce will produce the same routing in
such a small topology. Next we show that given large net-
work topologies, it is very likely for the local solution to
return sub-optimal overlays, which results in significant
performance degradation.

5.1.2 Large Scale Simulations

In order to investigate how OpReduce’s performance is
affected by various factors that are not covered by our
small-scale testbed experiments, we perform detailed simu-
lations using large scale datacenter topologies and empirical
workloads obtained from production datacenters (Fig. 3).
As summarized in Table 1, we thoroughly evaluate the per-
formance of OpReduce under the impact of five factors: the
topology, the network/fabric load, the traffic workload, the
average number of VMs occupied by a tenant, and the aver-
age VIN scale.

Various Fabric Loads (Exp NO. 1). In multi-tenant
datacenters, fabric load can be quantified as the VM over-
subscription ratio, which is defined as the ratio of worst-
case achievable aggregate bandwidth among VM pairs to
the total capacity of the topology. A fat-tree fabric has an
hypervisor over-subscription of 1:1 because all hyper-
visors may potentially send at the full bandwidth of their
network interfaces. Thus, if the average number of VMs
hosted by a hypervisor is N, the VM over-subscription
ratio is N:1. Hereafter, we use the VM over-subscription
ratio as load degree.

1821

Cc1 c2

. E2

/7 \ /7 \
i v i l [|LJ U Lj
H1 H2 H3 H4 H1 H2 H4

(a) Background utilization (b) Desired routings pro-
in one snapshot duced by each solution

)

EE [ECMP_¢ OpReduce ® Bottomline

£ g25 * ¢

<5 . * L 2

g% 2 .

o815 ¢ *? N ¢

(N°] 1 -4 P POPPP . 2008

w* SOOGS0 0000000400 0000 000000

2E05 e 0 °° %o T

<2 jle_0 S L e
0 5 10 15 20 25 30 35 40

Experiment set number

(c) Average FCT in each experiment set

Fig. 4. Testbed experiments for improving FCTs.

We tune the datacenter load degree in the range of 1:1-7:1
by varying the number of embedded tenants. For each load,
we create 5 different snapshots to avoid bias. For each snap-
shot, we randomly pick a tenant to perform routing update
using all four solutions: OpReduce, the local solution, ECMP
and the bottomline solution. Thus, we perform 4 independent
experiments for the tenant. In each solution, after the desired
routing is finalized, we assign each virtual link a randomly
sampled flow size to generate traffic and compute the aver-
age FCT among all flow transfers. Among all 4 experiments
for the same tenant, we use the same set of flow sizes. After
finishing the current tenant, we recover the network snapshot
and re-sample another tenant to continue evaluation. In total,
100 routing updates are performed for each snapshot.

Fig. 5 plots the min-median-max distribution of the aver-
aged FCT across all 5 snapshots for each load degree. As illus-
trated in the Fig. 5a, OpReduce significantly outperforms
ECMP and bottomline: up to 80 percent FCT reduction for
small fabric loads and at least 40 percent FCT reduction for all
loads. Again, this is because ECMP and bottomline are static
solutions that are unaware of the network utilization. Further,
as load degree increases, OpReduce offers less FCT reductions
since there is less routing optimization space in heavily uti-
lized network. Since production datacenters are typically
over-provisioned, we can expect large performance benefits
offered by OpReduce in production datacenters.

Due to the lack of exact mapping between virtual links and
physical links, the local solution often produces sub-optimal

TABLE 1
Experimental Settings

Exp. Fabric # VMs Average
NO. Topology load Workload per tenant VTN scale
1 k=8 FT * enterprise 20 4

2 k=8 FT 3:1 * 20 4

3 * 3:1 enterprise 20 4

4 k=8 FT 3:1 enterprise 20 *

5 k=8 FT 3:1 enterprise * 4

11

refers to that we vary the factor to isolate its impact in the experiment.

1822
_ 60 —
_E 1 —%—*—‘—4—‘—;—‘—
E s ¢
S0.8 | =
£ ¢ o ¢ ¢ ¢ Zaf
Qg6 L 6 e o 2
e * [
: [
Eoa ¢ bottomline —— | 29 |
2 OpReduce @ iy
Co02r @ local &
8] ECMP A
'S 0 1 1 1 1 T T T 0

1 2 3 4 5 6 7 1234567

Load degree Load degree

(a) FCT min-mean-max distribution. (b) False rate.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.8, AUGUST 2019

_— 60 —
_g 1 —é—é—;—‘—i—‘—ﬁ—

Sos [$ ¢ ¢ ¢ g

g 4 ; o o a0
a o O @
206 - ® g

: [
Eo4 - ® bottomline — | 29 |-
2 é OpReduce @ iy
=02 local &

(8} ECMP A

'8 1 1 1 1 T T T

o

1 2 3 4 5 6 7
Load degree

1234567
Load degree

(c) FCT min-mean-max distribution. (d) False rate.

Fig. 5. Impact of the fabric load on OpReduce’s performance. The normalized FCT is used as the performance metric. Part (a) and (b) use the

enterprise workload [10]. Part (c) and (d) use the data-mining workload [5].

routings. As shown in Fig. 5b, with high probabilities (up to
~60 percent), the local solution returns an overlay different
from the one produced by OpReduce. Consequently, these
sub-optimal routings result in 1.2—4x FCT inflation, com-
pared with the routings produced by OpReduce (Fig. 5a).

Datacenter Traffic Workload (Exp NO. 2). In Figs. 5a and 5b,
we use the enterprise datacenter workload. We repeat the
same experiment using the data-mining workload to learn
the impact of traffic workload on OpReduce’s performance.
The results, plotted in Figs. 5¢c and 5d, show that OpReduce
provide similar benefits for data-mining workload.

Fabric Topologies (Exp NO. 3). We investigate four datacen-
ter topologies: three organized topologies (Clos, k = 8 and
k = 16 fat-tree) and another organized topology added with
random short-cuts. The Clos topology has the same number
of hypervisors as the k = 8 fat-tree topology except that the
over-subscription ratio is 2:1. All three organized topologies
have different routing redundancy. In particular, they have
8, 16 and 64 shortest paths between two randomly chosen
hypervisors in different pods, respectively. The short-cut
topology is built by adding random links into the k = 8 fat-
tree topology. The links are randomly added between ToR
switches to inter-connect different pods so that besides tra-
versing through the core switches, the inter-pod communica-
tion can alternatively use the short-cut bridges as well. We
set the load degree as 3:1 in all these topologies.

For each topology, we perform the similar experiments
as in evaluating the impact of fabric loads. Fig. 6 plots the
CDF of all obtained FCT reductions (compared with the bot-
tomline solution). By comparing the results of all 3 fat-tree
topologies, we conclude that OpReduce offers more benefits
for topologies built with more redundant links. This is
because OpReduce has larger optimization space in more
redundant topologies.

We further investigate how topology short-cuts may
affect the performance of OpReduce. In organized datacenter

Clos ¥

k=8 FT ==
k=16 FT -@-
Short-cut 6=

0 0102 03 04 05 06 07 08 09 1
FCT reduction

Fig. 6. Impact of datacenter topology on OpReduce’s performance of
FCT reduction.

topologies, alternative routing options typically have less
diversity in the sense that they all have the same number
of hops, although they are varying in terms of utilization. In
contrast, short-cut topology can create more diverse routi-
ngs with different numbers of hops as well as different utili-
zation. Thus, OpReduce has even larger optimization space
in the short-cut topology so as to produce more performance
benefits.

We also investigate the average VTN scale NV, (the average
number of hypervisors used by a tenant’s VMs) and the aver-
age per-tenant VM count \V,. We consider N, = [3,4, 5] and
N, = [10, 20, 30] since they are the common cases in our pro-
duction datacenters. We find that OpReduce consistently
provides performance benefits in these settings (Fig. 7).

5.2 System Properties
5.2.1 Search Cost Reduction

The number of routing update requests is affected by the
amount of embedded tenants, i.e., the load degree. Fig. 8a
plots search cost reduction under various loads for k£ = 16
fat-tree topology. Although the absolute number of routing
updates increase as load degree increases, the normalized
search cost actually reduces. This is because OpReduce’s
knowledge base about routing candidates for various VM
locations also expands as the load degree increases. As a
result, the cache hit ratio dramatically increases as well

1

0.8
w 0.6
S 0.4
: Avg. VTN scale 3 I
0.2 Avg. VTN scale 4
Avg. VTN scale 5 =@= |

0 Il Il Il Il
0 01 02 03 04 05 06 0.7 08 09 1
FCT reduction
(a) Average VTN scale (Exp NO. 4)

0.8
0.6
0.4
0.2

CDF

Avg. 10 VMs per-tenant I
Avg. 20 VMs per-tenant
Avg. 30 VMs per-tenant =@= |

0 Il Il Il
0 01 02 03 04 05 06 07 08 09 1
FCT reduction
(b) Average per-tenant VM count (Exp NO. 5)

Fig. 7. OpReduce offers consistent benefits for different VTN scales and
different per-tenant VM counts.

LIU ET AL.: MANAGING RECURRENT VIRTUAL NETWORK UPDATES IN MULTI-TENANT DATACENTERS: A SYSTEM PERSPECTIVE

Non-cache 1=
With OpReduce

Search cost (Norm. to Non-cache)

7 8 9 0o 1 2 6 7 8 9

0 1 2

3 4 5
Load degree
(b) Cache hit ratio

3 4 5
Load Degree
(a) Search cost reduction

Fig. 8. In spite of the numerous routing updates as load degree
increases, OpReduce introduces small search cost since the cache hit
ratio increases dramatically.

(Fig. 8b). Thus, in spite of the numerous routing updates,
OpReduce introduces small topology search cost.

5.2.2 Routing Cache Size

The routing cache size is affected by two factors: the topol-
ogy and the average VIN scale. The topology affects the
cache size because it affects the number of routing candi-
dates for one VM placement. The VIN scale affects the
cache size since it determines the number of physical links
in one routing candidate.

Fig. 9a plots cache sizes with respect to the number of
tenants and the average VTN scales in k = 16 fat-tree topol-
ogy. The cache size increases with the average VTN scale
and linearly grows with the number of tenants. However,
even with very sporadically distributed VINSs, i.e., large
average VTN scales, caching routing candidates for 10K ten-
ants consumes no more than 40 MB memory. Even if we
consider a much larger k = 32 fat-tree datacenter with over
8K servers, the cache size for 10K tenants is about hundreds
of Megabytes (Fig. 9b), which can be easily managed by
commodity servers with gigabytes of memory.

5.2.3 Switch Configuration Latency

Both SDN switches and legacy switches may co-exist in
today’s datacenters [30]. Configurations on OpenFlow
Switches can be finished almost in real time via SDN con-
trollers such as OpenDayLight [24], but it takes non-trivial
time to configure legacy switches. Thus, to ensure that rout-
ing enforcement does not become the bottleneck for routing
update, OpReduce designs a network action container to
properly aggregate configuration tasks so as to reduce the
overall configuration delay.

In OpReduce’s prototype, one switch configuration task is
about associating one VLAN tag on a certain port of a switch.
We notice that configuring a single port on a legacy switch

Avg. VTN Scale 2 k=16 Fat-tree
Avg. VTN Scale 3 e Clos (2:1) ==
40 Avg. VTN Scale 4 =@= 100 || k=32 Fat-tree
Avg. VTN Scale 5 ==
I @ 80
S30 s
g g
3 ‘» 60
o o
520 S
8 &
10 20
0 0
2 10 2 10

4 6 8 4 6 8
of tenants (K) # of tenants (K)

(a) Various VTN scales (b) Various topologies

Fig. 9. The routing cache size under various settings.

1823

1000
z 1 port &
-~ 8 ports
g 24 ports A
E’ 100
e
o
(8]

10 | | |
0 24

8 16
of VLAN tags

Fig. 10. Delay measurements for configuring legacy switches. The dash
line indicates the configuration time without using the network action
container.

takes almost the same amount of time as configuring multiple
ports on the switch. Thus, our network action container agg-
regates all configuration tasks on the same switch together
to perform batch configuration so as to reduce the overall
configuration delay. Meanwhile, batch configurations for
different switches are executed simultaneously via multi-
threading. Fig. 10 plots the measured configuration delay on
our testbed. The results show that even if we simultaneously
configure 24 ports on one switch and on each port we config-
ure 24 VLAN tags (576 single configuration tasks), the overall
configuration time is less than 1.5 times the delay for config-
uring just one VLAN tag on a single port. Thus, with the net-
work action container, routing enforcement can be finished
timely so that it will not be a bottleneck in practice.

6 RELATED WORK AND DISCUSSION

Multi-Tenancy Management. Prior designs for multi-tenant
datacenters, such as NVP [3] and Netlord [2], focus on
multi-tenancy management at hypervisors. For instance,
NVP maintains virtual switches on each hypervisor and lev-
erages a set of tunnels between each pair of hypervisors to
deliver traffic for tenant VMs. The actual tenant traffic for-
warding in the physical network is not managed. Several
prior works have considered to perform one-time in-net-
work routing management to achieve various goals, such as
guaranteed bandwidth [11], [12], [13], [31], low or bounded
latency [14], [15], [32] and user/service isolation [33]. OpRe-
duce, instead, focuses on managing recurrent routing
updates in multi-tenant datacenters.

A Wide Variety of Performance Enhancement. Many app-
roaches have been proposed to improve datacenter network-
ing performance. For instance, load balancing approaches [9],
[10], [34], [35], priority queuing approaches [36], [37], [38],
[39], deadline-aware approaches [40] and DCTCP [41] are
proposed to improve latency performance. Portland [42] and
fat-tree [6] propose scalable datacenter architectures to sup-
port high bandwidth between servers whereas VL2 [5] virtu-
alizes datacenters into server pools to allow applications to
obtain high throughput. Although OpReduce is not proposed
to explicitly improve certain performance, its efficient tenant
routing management and decoupled design allow network
operators to enhance a wide variety of customer-interested per-
formance metrics, and some of these metrics cannot be opti-
mized using prior approaches.

Achieving Agile Routing Updates. To be readily deployable,
OpReduce is augmented by SDN to perform agile in-net-
work routing updates. B4 [43] and SWAN [44] also adopt
SDN to perform traffic engineering in wide area networks
to achieve high inter-datacenter throughput.

1824
TABLE 2

One-time Comprehensive Search Cost for Fattree Topologies
Topo. Intra-Pod Inter-Pod (nodes,edges)
k=8 5N, 21N, (200, 384)
k=16 IN, TIN G, (1296,3072)
k=32 17N, 273N}, (9248,24567)
k R D LT

Ny, is the average VTN scale.

7 CONCLUSION

In this paper, we present OpReduce, a system for managing
virtual tenant network update in multi-tenant datacenters.
Conventional solutions that rely on topology search coupled
with an objective function to find desired routings have
at least two shortcomings: scalability issue for handling
recurrent routing updates and the inefficiency for satisfying
various routing requirements. To address these issues, OpRe-
duce proposes a novel search and optimization decoupled
design, which enables routing search result reuse and
guaranteed routing optimality. We implement a prototype of
OpReduce and perform extensive evaluations to valid
OpReduce’s design goals. Evaluation results show that (7)
Even for complex VIN embedding goals, OpReduce ensures
routing optimality which yields significant networking per-
formance improvement over conventional approaches; (i)
OpReduce greatly reduces search cost for managing numer-
ous routing updates and imposes small system overhead.

8 APPENDIX

In this section, we analyze the complexity of Algorithm 1 in
Section 3.1. The first step of the algorithm is to find the
upward graph for each hypervisor in H. Essentially, it is a
breadth-first search process. Thus the search complexity is
O(|E|) where | E| is the number of edges in the upward graph.
Note that the upward graph is much smaller than the entire
network. Specifically, |E| = Z,ﬁzQ Rj. - Ni., where R;. denotes
the link redundancy ratio at layer &, N}, is the number of nodes
atlayer & in the upward graph and L is the number of layers in
the upward graph. The link redundancy ratio at layer k is
defined as the number of links that one node in layer % can
has to reach nodes in layer k—1. For instance, in k=8 fat-tree
topology with 4 layers, Ry = 1, R3 = Ry = 4. There is no R;
since layer 0 does not exist. Thus | /| = 21, which is very small
compared with entire network size (| E| = 384). For simplicity
of presentation, we assume all nodes in layer & have the same
Ri. However, both our search algorithm and complexity
analysis are not restricted by this assumption.

The second search step is that in upward graph 7 ;, find-
ing the downward straight paths from the common node to
hypervisor h;. It is depth-first search, which has O(|E|)
worst-case complexity. However, in topologies like fat-tree
and Clos [18], 7, turns out to be a tree rooted at h; with all
the common nodes as its leaves. Thus only L—1 edges need
to visited to find a downward straight path from the com-
mon node (leaf) to h; (root), which introduces constant (neg-
ligible) overhead.

Table 2 summarizes the search cost (the number of visited
edges) for finding all desired routing candidates in different

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.8, AUGUST 2019

fat-tree topologies. We list the number of nodes and edges in
the network to show that the search space is much smaller.
N}, is the average number of hypervisors used by one tenant.
We consider the complexity for both intra-pod (all the hyper-
visors are located within one pod) and inter-pod (the tenant
spreads across at least two pods). For the special case that
the all hypervisors in H are sharing the same ToR switches,
there will only one routing connecting them. It is clear that
even in large scale datacenters with thousands of servers,
the one-time comprehensive search cost is small and accept-
able. Mathematically, we derive that algorithm complexity is
O(Vg), where V is the number of nodes in the fattree topology
Thus, although our algorithm performs comprehensive
topology search, the complexity is still polynomial.

For other topologies with larger over-subscription ratio
(e.g., 2:1 Clos topology) than the fat-tree topology (1:1),
search cost will further be reduced due to the smaller num-
ber of redundant paths in these topologies.

ACKNOWLEDGMENTS

We thank the authors listed in [45] who made substantial
contributions to the work initially. This work was sup-
ported by the National Natural Science Foundation of China
(61601168, 61671202), National Key R&D Program of China
(2016YFC0401606), the Fundamental Research Funds for the
Central Universities (2019B22714), Ministry of Education of
the Peoples Republic of China, the Fundamental Research
Foundation of Shenzhen (JCYJ20170302151209762), Major
Scientific Research Project of Zhejiang Lab (Grant No.
2018FD0ZX01) and Alibaba-Zhejiang University Joint Insti-
tute of Frontier Technologies.

REFERENCES

[1] Amazon Data Center Size. (2012). [Online]. Available: http://
huanliu.wordpress.com/2012/03/13/amazon-data-center-size /

[2] J.Mudigonda, P. Yalagandula, J. Mogul, B. Stiekes, and Y. Pouffary,
“NetLord: A scalable multi-tenant network architecture for virtual-
ized datacenters,” ACM SIGCOMM Comput. Commun. Rev., vol. 41,
no. 4, pp. 62-73,2011.

[3] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda,
B. Fulton, I. Ganichev, J. Gross, N. Gude, P. Ingram, etal., “Network
virtualization in multi-tenant datacenters,” in Proc. 11th USENIX
Conf. Networked Syst. Des. Implementation, 2014, pp. 203-216.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow:
Enabling innovation in campus networks,” ACM SIGCOMM
Comput. Commun. Rev., vol. 38, pp. 6974, 2008.

[5] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A scalable
and flexible data center network,” in Proc. ACM SIGCOMM Conf.
Data Commun., 2009, pp. 51-62.

[6] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commod-
ity data center network architecture,” ACM SIGCOMM Comput.
Commun. Rev., vol. 38, pp. 63-74, 2008.

[7]1 T. Sridhar, L. Kreeger, D. Dutt, C. Wright, M. Bursell, M.
Mahalingam, P. Agarwal, and K. Duda, “Virtual eXtensible
local area network (VXLAN): A framework for overlaying vir-
tualized layer 2 networks over layer 3 networks,” IETF, 2014.

[8] Y.-S. Wang and P. Garg, “NVGRE: Network virtualization using
generic routing encapsulation,” RFC 7637, Oct. 2015.

[9] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and

A. Vahdat, “Hedera: Dynamic flow scheduling for data center

networks,” in Proc. 7th USENIX Conf. Networked Syst. Des. Imple-

mentation, 2010, p. 19.

M. Alizadeh, et al., “CONGA: Distributed congestion-aware load

balancing for datacenters,” in Proc. ACM Conf. SIGCOMM, 2014,

pp- 503-514.

[10]

http://huanliu.wordpress.com/2012/03/13/amazon-data-center-size/
http://huanliu.wordpress.com/2012/03/13/amazon-data-center-size/

LIU ET AL.: MANAGING RECURRENT VIRTUAL NETWORK UPDATES IN MULTI-TENANT DATACENTERS: A SYSTEM PERSPECTIVE

[11]

[12]

[13]

[14]

[15]

[16]

[171

[18]
[19]
[20]
[21]
[22]

[23]

[24]
[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in Proc. ACM SIGCOMM Conf.,
2011, pp. 242-253.

C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “Secondnet: A data center network virtualization archi-
tecture with bandwidth guarantees,” in Proc. Proc. 6th Int. Conf.,
2010, Art. no. 15.

J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee,].-M. Kang, and
P. Sharma, “Application-driven bandwidth guarantees in da-
tacenters,” ACM SIGCOMM Comput. Commun. Rev., vol. 44,
pp. 467-478, 2014.

K. Jang, J. Sherry, H. Ballani, and T. Moncaster, “Silo: Predictable
message latency in the cloud,” in Proc. ACM Conf. Special Interest
Group Data Commun., 2015, pp. 435-448.

M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson,
A. W. Moore, S. Hand, and J. Crowcroft, “Queues dont matter
when you can JUMP them!” in Proc. USENIX NSDI, 2015, pp. 1-14.
S. Shin and G. Gu, “CloudWatcher: Network security monitoring
using OpenFlow in dynamic cloud network,” in Proc. 20th IEEE
Int. Conf. Network Protocols, 2012, pp. 1-6.

S. Shin, H. Wang, and G. Gu, “A first step toward network secu-
rity virtualization: From concept to prototype,” IEEE Trans. Inf.
Forensics Secur., vol. 10, no. 10, pp. 2236-2249, Oct. 2015.

W.J. Dally and B. P. Towles, Principles and Practices of Interconnec-
tion Networks. Amsterdam, The Netherlands: Elsevier, 2004.
A.Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Network-
ing data centers randomly,” in Proc. USENIX NSDI, 2012, pp. 1-6.
J.-Y. Shin, B. Wong, and E. G. Sirer, “Small-world datacenters,” in
Proc. 2nd ACM Symp. Cloud, 2011, Art. no. 2.

D. Eppstein, “Finding the k shortest paths,” in Proc. IEEE Annu.
Symp. Found. Comput. Sci., 1994, pp. 652-673.

P.]. Frantz and G. O. Thompson, “VLAN frame format,” U.S. Pat-
ent 5,959,990, Sep. 1999.

OpenFlow specification. [Online]. Available: https://www.
opennetworking.org/sdn-resources/onf-specifications /openflo
w, Accessed on: 2016.

OpenDaylight. [Online]. Available: http://www.opendaylight.
org/, Accessed on: 2016.

R. Enns, M. Bjorklund, and J. Schoenwaelder, “NETCONF config-
uration protocol,” RFC 6241, 2011.

Trema: Full-stack OpenFlow framework in ruby and C. [Online].
Available: http://trema.github.io/trema/, Accessed on: 2015.
Cisco stacked VLAN processing. [Online]. Available: https://
www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/
qing.html, Accessed on: 2016.

D. Levin, M. Canini, S. Schmid, F. Schaffert, A. Feldmann, et al.,
“Panopticon: Reaping the benefits of incremental SDN deploy-
ment in enterprise networks,” in Proc. USENIX Annu. Tech. Conf.,
2014, pp. 333-345.

N. Dukkipati and N. McKeown, “Why flow-completion time is
the right metric for congestion control,” ACM SIGCOMM Comput.
Commun. Rev., vol. 36, no. 1, pp. 59-62, 2006.

H. Lu, N. Arora, H. Zhang, C. Lumezanu, J. Rhee, and G. Jiang,
“HybNET: Network manager for a hybrid network infra-
structure,” in Proc. Ind. Track 13th ACM/IFIP/USENIX Int. Middle-
ware Conf., 2013, Art. no. 6.

Z. Liu, K. Chen, H. Wy, S. Hu, Y.-C. Hut, Y. Wang, and G. Zhang,
“Enabling work-conserving bandwidth guarantees for multi-ten-
ant datacenters via dynamic tenant-queue binding,” in Proc. IEEE
Conf. Comput. Commun., 2018, pp. 1-9.

S. Hu, W. Bai, K. Chen, C. Tian, Y. Zhang, and H. Wu, “Providing
bandwidth guarantees, work conservation and low latency simul-
taneously in the cloud,” in Proc. 35th Annu. IEEE Int. Conf. Comput.
Commun., 2016, pp. 1-9.

R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. M. Parulkar, “Can the production network
be the testbed?” in Proc. 9th USENIX Conf. Operating Syst. Des.
Implementation, 2010, pp. 365-378.

T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine
grained traffic engineering for data centers,” in Proc. 7th Conf.
Emerging Netw. Exp. Technol., 2011, Art. no. 8.

S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load bal-
ancing without packet reordering,” ACM SIGCOMM Comput.
Commun. Rev., vol. 37, pp. 51-62, 2007.

C.-Y. Hong, M. Caesar, and P. Godfrey, “Finishing flows quickly
with preemptive scheduling,” in Proc. ACM SIGCOMM Conf. Appl.
Technol. Archit. Protocols Comput. Commun., 2012, pp. 127-138.

1825

[37] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,

and S. Shenker, “pFabric: Minimal near-optimal datacenter trans-
port,” in Proc. ACM SIGCOMM Conf. SIGCOMM, 2013, pp. 435—446.

[38] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail:

Reducing the flow completion time tail in datacenter networks,”
in Proc. ACM SIGCOMM Conf. Appl. Technol. Archit. Protocols Com-
put. Commun., 2012, pp. 139-150.

[39] W.Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang, “Pias: Prac-

tical information-agnostic flow scheduling for commodity data cen-
ters,” IEEEJACM Trans. Netw., vol. 25, no. 4, pp. 1954-1967,
Aug.2017.

[40] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware data-

center TCP (D2TCP),” Proc. ACM SIGCOMM Conf. Appl. Technol.
Archit. Protocols Comput. Commun., 2012, pp. 115-126.

[41] M. Alizadeh, et al., “Data center TCP (DCTCP),” ACM SIGCOMM

Comput. Commun. Rev., vol. 40, pp. 63-74, 2011.

[42] N. Mysore, et al., “Portland: A scalable fault-tolerant layer 2 data

center network fabric,” in Proc. ACM SIGCOMM Conf. Data Com-
mun., 2009, pp. 39-50.

[43] C.-Y. Hong, et al., “B4 and after: Managing hierarchy, partition-

ing, and asymmetry for availability and scale in Google’s soft-
ware-defined WAN,” in Proc. Conf. ACM Special Interest Group
Data Commun., 2018, pp. 74-87.

[44] C.-Y.Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,

and R. Wattenhofer, “Achieving high utilization with software-
driven WAN,” in Proc. ACM SIGCOMM Conf. SIGCOMM, 2013,
pp. 15-26.

[45] Q. Xu, C. Lumezanu, Z. Liu, N. Arora, A. Sharma, H. Zhang, and

G. Jiang, “Optimization framework for multi-tenant data centers,”
U.S. Patent 9,813,301, Nov. 2017.

Zhuotao Liu received the BS degree from Shanghai Jiaotong Univer-
sity, in 2012 and the PhD degree from the University of lllinois at
Urbana-Champaign, in 2017. Currently, he works in Network Infra-
structure Team at Google, maintaining Google’s global-scale private
WAN. His research interests include Internet security & privacy, data
center networking and blockchain infrastructure.

Yuan Cao (S'09-M'2014) received the BS degree from Nanjing Uni-
versity, the ME degree from Hong Kong University of Science and
Technology, and the PhD degree from Nanyang Technological Univer-
sity in 2008, 2010 and 2015, respectively. Currently he works as an
assistant professor with the College of Internet of Things Engineering,
Hohai University. His research interests include hardware security, sili-
con physical unclonable function, and analog/mixed-signal VLSI cir-
cuits and systems. He is a member of the IEEE.

Xuewu Zhang received the ME and PhD degrees from Hohai Univer-
sity, in 2006 and 2011, respectively. Currently he works as a full profes-
sor with the College of Internet of Things Engineering, Hohai
University. His research interests include information security and
cryptographic engineering.

Changping Zhu received the MS degree from Huazhong University of
Science and Technology, in 2002 and PhD degree in communication
and information system from China University of Mining and Technol-
ogy, in 2010, respectively. He is a professor with Hohai University and
Wanjiang Institute of Technology. His research interests include com-
munication circuit and power ultrasonic technology. His research inter-
ests include underwater security.

Fan Zhang received the PhD degree from the Department of Com-
puter Science and Engineering, University of Connecticut, in 2012. He
is an associate professor with the College of Information Science and
Electronic Engineering, Zhejiang University, China. He is also jointly
appointed as an associate professor with the Institute of Cyberspace
Research, Zhejiang University, an associate professor with Zhejiang
Lab, and a visiting professor in Pillar of ISTD of SUTD Singapore.
He also works for State Key Laboratory of Cryptology and Alibaba-
Zhejiang University Joint Institute of Frontier Technologies. His main
interests include general information security, cryptography, computer
architecture, and wireless network. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

https://www.opennetworking.org/sdn-resources/onf-specifications/openflo w
https://www.opennetworking.org/sdn-resources/onf-specifications/openflo w
https://www.opennetworking.org/sdn-resources/onf-specifications/openflo w
http://www.opendaylight.org/
http://www.opendaylight.org/
http://trema.github.io/trema/
https://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/qinq.html
https://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/qinq.html
https://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/qinq.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

