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Dear editor,
Persistent fault attack is a new type of fault at-
tack that was proposed in CHES 2018 [1]. Its suc-
cess relies on the so-called persistent fault which
persists from one encryption to another and disap-
pears when the target device reboots. The prac-
tical attack is illustrated in [1] at both software
and hardware levels, however, the correspond-
ing persistent fault analysis (PFA) has not been
thoroughly investigated. The contribution of this
study focuses on the theoretical analysis of the per-
sistent fault attack. This study also proposes a
new and generic method which could put the anal-
ysis of previous cases into one nutshell.

PFA. The dual modular redundancy (DMR)
countermeasure is designed to prevent traditional
fault attacks [2]. However PFA can bypass both
redundant encryption based DRM (REDMR) and
inversive decryption based DMR (IDDMR) as
shown in [1]. When a persistent fault injected in
an S-Box used in AES-128, the output ciphertexts
can be different in the statistical perspective, even
with the existence of DMR countermeasures.

In the simplest case, the fault leads to an impos-
sible value in the specific output bytes of substi-
tution layer. Since this output will be XORed by
a fixed round key in multiple encryptions, this im-
possible byte will be easily detected in the faulty
ciphertexts. The adversary can focus on the dis-
tribution of possible values for specific faulty ci-
phertext byte, which is no longer an even dis-
tribution due to the induced persistent fault [1].

If enough ciphertexts are collected, the difference
among those values can be distinguished using sta-
tistical methods, and the corresponding key byte
for the last round key can be extracted.

Previous work. Suppose the total number of
possible values for substitution table is η where
η = n − 1 = 2b − 1. b is the block size and n

is the table size. For AES-128 S-Box, b = 8 and
n = 256. The values ranges from 0x01 to 0xff,
assuming the fault is injected to the first element
of S-Box. Zhang et al. [1] assume that the bytes
in faulty ciphertexts are chosen from η values with
equal probability of 1

η
, due to the randomness of

plaintexts and the avalanche effect of AES.
Suppose the adversary can collect i ciphertexts

after the encryption. Parts of them are faulty. Let
θi be the “average” number of different values that
he has observed for one specific ciphertext byte.
According to [1], θi can be calculated as in (1)
which is detailed in Appendix A.

θi =
1− qi

1− q
, where q =

η − 1

η
. (1)

There are still some problems that have not
been addressed in [1]. First, it only stated that
θi will converge to η = 255 eventually, but did
not give a theoretical expectation value of i when
θi equals η for the first time. The minimal num-
ber of traces on average required to extract that
key byte is of more interests. Second, in fact, θi
is the expectation of a series of random variables
that are not independent to each other. So the
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expectation should not be simply added together
as in [1]. Moreover, the probability of each value
is not the same. For two special values, the corre-
sponding probabilities are 0 and 2

n
, indeed.

Problem statement. Suppose one original value
of the target S-Box is s0, which changes to s1 be-
cause of the induced fault. The goal of this study
is to give a theoretical calculation of i, i.e., the av-
erage number of ciphertexts that are required to
identify s0 or s1. More precisely, the expectation
of i is desired, which also shows how difficult the
attack it is, to some extent.

The problem can be categorized into three cases
according to the probability distribution intro-
duced in [1], which are summarized in Figure 1(a).
Case 1 shows the exact distribution discussed in
last part and also as the vanilla case in [1]. s1 has
the same probability as the rest, while s0 never
appears. Note that there are no countermeasures.
Case 2 shows the scenario where countermeasures,
such as no ciphertext output (NCO) or zero value
output (ZVO) [1], are deployed. Without loss of
generality, the probability for s1 is 2

n
, while that

for the rest is 1
n
instead of 1

n−1 in Case 1. Case 3
shows a more advanced scenario where IDDMR
countermeasure is deployed and a random cipher-
text output (RCO) [1] will be given. s0 still ap-
pears in the ciphertext bytes with a probability of
1−p

n
while s1 holds a probability of 1+p

n
. p is the

probability threshold to differentiate either s0 or
s1 from the rest.
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Figure 1 (Color online) (a) Distribution of values in ci-
phertexts; (b) error rate and number of ciphertexts for all
cases.

Theoretical analysis. Among all cases, s0 has
probability difference from others. The attack
strategy is to identify the special values when in-
creasing the number of ciphertexts.

Case 1. This case can be interpreted as the
classic coupon collector’s problem (CCP) [3] which
can be described as following: a company issues

different types of coupons, each type having a cer-
tain probability of being issued. The CCP asks for
the expected number of coupons that need to be
gathered before a full collection is obtained.

In fact, the ciphertexts can be equivalently
treated as the coupons in CCP, and the values ob-
served in the ciphertext bytes can be viewed as the
types of those coupons.

Suppose tj denotes the number of additional ci-
phertexts required after j− 1 different values have
been observed. T denotes the total number of the
ciphertexts required when all possible values have
been observed. T =

∑n−1
j=1 tj and t1 = 1.

Since the distribution is uniform, when the
(j − 1)-th value has been observed, the next new
value comes with a fixed probability pj = n−j

n−1 .
Also, variables tj are independent. The expecta-
tion of T denoted as E(T ), i.e., the expected num-
ber of ciphertexts required, can be calculated as in
(2). Note that Hn is the n-th harmonic number
and Hn = 1

1 + 1
2 + · · · + 1

n
. More details about

(2) are listed in Appendix B. When n = 256, the
expected number of ciphertexts is about 1565.88.

E(T ) = (n− 1)×Hn−1. (2)

Case 2. In this case, the probability of s1 is
doubled against those of the rest. This problem
can be viewed as a general version of CCP. The
expected number of ciphertexts can be calculated
using similar means proposed in [4], as shown in

E(T ) =

n−2
∑

k=1

(−1)k+1

((

n− 2

k

)

n

k

+

(

n− 2

k − 1

)

n

k + 1

)

+ (−1)n. (3)

For a large n, the formula for E(T ) in (3) is hard
to compute. Using the idea of generating function
(see Appendix C), Eq. (3) can be transformed into
(4) as follows. Note that Eq. (4) is a precise cal-
culation for E(T ) and can be directly computed
much easier. When n = 256, the expected number
of ciphertexts is about 1560.70.

E(T ) = (−1)n − n

∫ 1

0

(1− x)n−2
− 1

x
dx

+n

∫ 1

0

(x(1−x)n−1
−(−1)nxn−1)dx. (4)

Case 3. In this case, PFA can defeat IDDMR
with RCO [1]. When the fault is detected, the
output will be random, which makes every value
occurs with a non-zero probability in faulty cipher-
texts.

To recover the key, the algorithm in [1] is to
perform the statistics by gradually increasing the
number of ciphertexts until the frequency of some
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values reached an empirical threshold. When the
threshold is set to an appropriate value, the ex-
tracted key has a large probability to be the real
key used in the encryption.

Different from [1], this study proposes a new
method to find s0 and s1 without thresholds: sim-
ply find the bytes which holds the smallest (or
largest) frequency as shown in Algorithm 1. Note
that the outputs of Algorithm 1 (i.e., valuemin and
valuemax) may not be the ones associated with the
correct key, whose probability can be denoted as
the error rate ei. It is too difficult to formalize
a unified formula for E(T ) with a fixed ei as (4).
Therefore, this computation of ei is approximated
via a simulation, which will reveal the relation be-
tween the number of ciphertexts and ei.

Algorithm 1 Pseudo code to distinguish two special values

Require: n, j, value[i] (0 6 i 6 j);
1: count[n] ⇐ [0..0]; valuemin ⇐ 0; valuemax ⇐ 0;
2: for i ⇐ 0 to j − 1 do

3: count[value[i]] ⇐ count[value[i]] + 1;
4: end for

5: for value ⇐ 0 to N − 1 do

6: if count[value] 6 count[valuemin] then
7: valuemin ⇐ value;
8: else if count[value] > count[valuemax] then
9: valuemax ⇐ value;
10: end if

11: end for

12: return valuemin, valuemax.

More importantly, this method is generic to be
applied to three cases. All corresponding statisti-
cal analysis can be unified under one nutshell. In
the first two cases, if the adversary collects enough
ciphertexts, most of values will be eliminated as
impossible ones. The last remained value (s0 or
s1) is uniquely determined, which must be the cor-
rect one. But in Case 3, the error rate cannot be 0.
For instance, in one attack, a value sk may be as-
sociated with the smallest frequency. But sk may
not be equal to valuemin. However, the confidence
of the probability that sk equals can be evaluated.

Simulation. To further verify the theoretical re-
sult of our analysis, we implemented a simulation
of the problem. The goal of the simulation is to
find the relationship between the average error rate
and the number of ciphertexts. For a fixed num-
ber of ciphertexts, Algorithm 1 can be executed
for many times to compute the average error rate.

Figure 1(b) shows the relationship between the
error rate and the number of the ciphertexts re-
quired to recover the first key byte. With about
3× 104 ciphertexts, the error rate ei is reduced to
0 (or close to 0 approximately) in all curves. Note
that those curves for Case 3 are independent of p
because no thresholds are used. This figure shows
that the attack’s ultimate success based on enough

ciphertexts that are collected. The total number
of required ciphertexts (at 104 level) is quite rea-
sonable and acceptable in practice.

Case 1 has only one curve since the values of
1

n−1 are applied to all si except s0 and no maxi-
mal value can be distinguished from others as for
s1. Both Cases 2 and 3 have two curves in corre-
sponding to valuemin and valuemax, respectively.

valuemins in Cases 1 and 2 have little differ-
ence, as the distribution is almost the same. Both
the simulation and the computed expectation show
that Case 1 is a good estimation of Case 2. With
similar expectation and error rate curve, Case 1 is
much easier to be computed and derived.

Results of Cases 2 and 3 show that finding the
value which has the smallest probability is a better
way to extract the key effectively and efficiently.
This preference can be applied in the real PFA.

As for Case 3, when the number of ciphertexts
is about 1.3 × 104, e can be less than 3%; when
the number is about 1.2× 104, e is 6.2% as shown
in Figure 1(b). The error rate is small enough to
extract the key in practice. This is consistent to
the results of practical attacks mentioned in [1],
which states that 12000 ∼ 13000 ciphertexts are
required.

Conclusion. The study focuses more on the the-
oretical calculation of those complexities and prob-
ability used in [1]. Our results are consistent to
those in [1] but with more formal computation ex-
tended from the well-known CCP problem.
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