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1.  Maxwell’s Equations

       ( ' )

   ( ' )

0              ( ' )

             ( ' )

Faraday s law of induction
t

Generalized Ampere s law
t

Gauss s law for magnetic field

Gauss s law for electric field


 = −




 = +



  =

  =

B
E

D
H J

B

D

d dc s t


 = −  



B
E l S

d d dc s s t


 =  +   



D
H l J S S

0S d  =B S

S d dv   = D S

differential form

Integral form

Ref: Xie, Section 2.6

Why is Maxwell equation 

important to optoelectronics?

Maxwell equation governs 

absorption, radiation, 

propagation, and scattering 

of light.

Assignment: How about the 

Faraday’s law when a 

conductor moves in time-

varying magnetic field?

( )d ds ct



= −  +   



B
S v B l

induced       +   motional 

electromotive force
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2.  Displacement Current (1)

Could time-varying electric field induce magnetic field? 

A contradictory thought experiment … 

( )A
d I = H l

( )
0

A
d


 = H l

Since no current flows across A’Ampere’s Law

The value of contour integral should be the same for both cases, since the 

surfaces A & A’ are bounded by the same contour.

Ref: Xie, Section 2.5.2 
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The difficulty can be resolved by assuming the existence of a displacement 

current through the vacuum between two plates of a capacitor. 

( ) ( ) ( )A A A

d d d =  +    D
H l J S J S

2.  Displacement Current (2)

( )A
d I = H l

( )
D

A
d I


 = H l

DI I=

The displacement current JD in the vacuum must be the same as the 

summation of the conduction current J and displacement current JDw in 

the wire, although JDw << J.  For perfect electric conductor, σ → ∞, E → 

0, J is finite, JDw → 0.
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2.  Displacement Current (3)

S v

dQ d d
I d dv

dt dt dt


= →  = − → = − J S J

Ampère-Maxwell Equation 

 =DGauss law

Current continuity

t


 = +



D
H J

Displacement current is defined in terms of the rate of change of electric 

displacement field. Displacement current has the units of electric current 

density, and it has an associated magnetic field just as actual currents do. 

However it is not an electric current of moving charges (conduction current), 

but a time-varying electric field. The idea was conceived by James Clerk 

Maxwell in his 1861.

Total current continuity =0
t

 
  + 

 

D
J
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3.  Current Continuity in Optoelectronic Devices

( )

( )

d
q G R

dt

d
q G R

dt





 = − + −

= − + −

J

J

( )

( )

  Hole

 Electron

p

n

dp
G R

dt q

dn
G R

dt q


= − + −


= + −

J

J

G: generation rate; R: recombination rate

steady case

DC current
( )+ 0n p =J J

( )+ 0n p d = J J S
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4. Different Forms of Maxwell’s Equations (1)

Maxwell’s equations (time-harmonic form by Fourier transform)

0

j

j







 = −

 = +

  =

  =

E B

H J D

B

D

0

i

i







 =

 = −

 =

  =

E B

H J D

B

D

exp( )j t exp( )i t−

 ( , ) Re ( )exp( )A r t A r j t=  ( , ) Re ( )exp( )A r t A r i t= −

Maxwell’s equations is linear ! 

Ref: Xie, Section 4.5.1-4.5.3 
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0 0 0

0

( )

1
( )

0

t

t t
  





 = −



 
 = + + +

 

  = − 

  =

B
E

P E
B J M

E P

B

tot pol mag
t


= + + = + +



P
J J J J J M

total pol   = + = − P

4. Different Forms of Maxwell’s Equations (2)

Maxwell’s equations (microscopic form or general form)

What is the fundamental 

difference between acoustic wave 

and electromagnetic wave?

Electromagnetic fields are 

matters themselves which are 

independent of any media.

Sound waves are not 

independent matter but the 

disturbance of material media.
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5.  Constitutive Equations and Boundary Conditions (1)

0 = = +D E E P 0 0  = = +B H H M

Linear, non-dispersive, isotropic

Linear, dispersive, isotropic

( ) ( ) ( )   =D E ( ) ( ) ( )   =B H

low frequency

0

0 0

0

= ( ) ( )

( )
( ) ( )

r

r r

j j

j j j

     

 
     



 = + +

 
= − = 

 

H J D E E

E E

Complex permittivity

Complex refractive index

Refractive index n

Extinction coefficient k
( ) ( ) ( ) ( ) ( )c r rn n jk      = = −

complex

Ref: Xie, Section 2.5.2 
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Active materials in optoelectronic devices are highly 

dispersive at optical frequencies !

Silicon, GaAs, GaP, AlGaAs, polymer, perovskite, etc…

5.  Constitutive Equations and Boundary Conditions (2)

Why do Maxwell’s equations have 

strong prediction capability? 

GaAs bandgap ~1.42 eV
complex refractive index is the only 

parameter ! 
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5.  Constitutive Equations and Boundary Conditions (3)

=D εE =B μH

x xx xy xz x

y yx yy yz y

z zx zy zz z

D E

D E

D E

  

  

  

    
    

=     
    
    

Linear, non-dispersive, anisotropic

Linear, non-dispersive, bi-anisotropic

= +D εE ξH

Nonlinear, dispersive

(1) (2)

0 0 0

(2) (1)

( ) ( ) ( ) ( ) ( , ; ) ( ) ( )

Nonlinear effect is weak  

i j i j i j              



= + + = + + 



D E E χ E E

χ

= +B μH ςE

x xx xy xz x

y yx yy yz y

z zx zy zz z

B H

B H

B H

  

  

  

    
    

=     
    
    

Material is rich! An advanced nanocoating technique

film.mp4
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Boundary Conditions (General)

1 2

1 2

1 2

1 2

( ) 0

( )

( )

( ) 0

S

S

 − =

 − =

 − =

 − =

n E E

n H H J

n D D

n B B

Js: surface conduction current ρs: surface free charge

Boundary Conditions (Dielectric-Dielectric)

0S =J 0S =

5.  Constitutive Equations and Boundary Conditions (4)

An interesting case: how to write the boundary condition for a dielectric-graphene 

-dielectric structure?  Graphene is a very thin sheet compared to dielectric layer; 

and can be seen as an infinitely thin layer.

dielectric 1

dielectric 2

1 2( )

-

 − =

=  

S t

t

n H H E

E n n E

Ref: Xie, Section 2.7 
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Energy Conservation (Harmonic Field) 

1 1
( , ) ( , ) ( , ) ( , ) Re ( ) ( )0 2

Tt t t t dt
T

  =  =   E r H r E r H r E r H r

1

2

= S E H

1 * 2 ( )
2

m ej W W− =  + −S E J

( ) ( ) ( )    =   −  E H H E E H

Complex Poynting vector

*

4
mW


=

H B

4
eW


=

E D

time averaged stored energy density

reactive energy density

6.  Energy Conservation (1)

1 *

2
E J

active/real power density

Ref: Xie, Section 4.3 and 4.5.6 
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6.  Energy Conservation (2)

total emitted power from a dipole
6

1
Re ( ) ( )

2
S

d    E r H r S

S4

S3

S2

S1

S5

S6

dissipation power in metal cathode
1 2

1
Re ( ) ( )

2
S S

d

+

 −    E r H r S

emission power in air
1

Re ( ) ( )
2

upperS

d


    E r H r S

1D light emitting diode structure

EP of a dipole source =

EP in air (20%) +

DP in device (80%)

EP: emission power

DP: dissipation power
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7.  Scalar and Vector Potentials (1)

0 =B

j = −E B

= B A

( ) 0j + =E A j = − −E A

Vector potential A

Scalar potential ϕ

j = +H J D
1

( )j j  

 = + − −A J A

2k j   = + − A J A 2 2k j   − = + − A A J A

Generalized Ampere’s law by A and ϕ (homogeneous space)

Ref: Xie, Section 4.2 and 4.5.5; Chew Section 23.1.3 
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7.  Scalar and Vector Potentials (2)

j  = −A
Lorenz Gauge

2 2k  + = −A A J

 =D ( )j


 


  − − =A
2 2k


 


 + = −

Governing equation of vector potential

Governing equation of scalar potential

Gauge Transformation

A A

j  

→ +

→ − 
j = − −E A= B A

Gauge is not unique but E and B are unique!

2 2 0k  +  =
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7.  Scalar and Vector Potentials (3)

Gauge has deeper meaning …. (Optional)

Symmetry (momentum, energy, angular momentum conservation, ..)

Electromagnetism (A), Strong interaction (B), Weak interaction (C)

A: Quantum electrodynamics (1940) — Symmetry group U(1) 

B-: Yang-Mills gauge theory (1954) — Symmetry group SU(2)

C: Electroweak theory (1971) — Symmetry group SU(2)×U(1)

B+: Quantum chromodynamics (1973)  — Symmetry group SU(3)

A & B & C: Standard model (1975) — Symmetry group SU(3)×SU(2)× U(1)

Final target (Optional)

Unify Gravitation (D) with Electromagnetism, Strong interaction, and Weak 

interaction.
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8.  Dyadic Green’s Functions (1)

j

j





 = −

 = +

E B

H J D
2

0 0 0j j     = −  = − +E B J E

2

0 0k j − = −E E J Vector wave equation (free space)

2

0( , ) ( , ) ( )k    − = −G r r G r r I r r Dyadic Green’s function (free space)

0 ( , ) ( )j dv   = − E G r r J r

xx xy xz

yx yy yz

zx zy zz

G G G

G G G G

G G G

 
 

=  
 
 

( ) −I r r

( , ) ( )dv   =  H G r r J r

Radiation field calculation

E-field produced by 

y polarized source

Hertzian dipole source

Ref: Xie, Section 8.1 and 8.2 
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8.  Dyadic Green’s Functions (2)

2 2

0( , ) ( , ) ( )g k g    + = − −r r r r r r

Scalar Green’s function

| |0

( , )
4 | |

jk
e

g


− −

 =
−

r r

r r
r r

2 2

0 0k  + = −A A J

2 2

0

0

k


 


 + = −

Solutions to scalar and vector potentials

0( ) ( , ) ( )g dv   = A r r r J r

0

1
( ) ( , ) ( )g dv  


  = r r r r

0

0

0

0

0

( , ) ( ) ( , ) ( )

1
( , ) ( ) ( , ) ( )

( , ) ( )

j j g d g dv vj

j g d g dv vj

j dv

    


  


 


      = − − = − +   

     = − +   

  = − 

E A r r J r r r J r

r r J r r r J r

G r r J r

2

0

( , ) ( , )g
k

 
 = + 

 
G r r I r r

Solution to E-field

Dyadic Green’s function
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8.  Dyadic Green’s Functions (3)

0( ) ( , ) ( )j dv   = − E r G r r J r
2

0

( , ) ( , )g
k

 
 = + 

 
G r r I r r

1 2( ) ( ) ( ) R RR G R G R= +G I a a

2 2

1 2 3

2 2

2 2 3

( ) ( 1 )
4

( ) (3 3 )
4

jkR

jkR

e
G R jkR k R

k R

e
G R jkR k R

k R





−

−

= − − +

= + −

3

2

1
( )~

1
( )~

1
( )~

R

R

R

E r

E r

E r

Near-field

Mid-field

Far-field

| |R = −r r

Why does E-field decay 1/R at far field and 1/R3 at near field?

The former is due to energy conservation. The latter is due to 

electrostatic physics by the Hertzian dipole source.

( ) zIl =J r a
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Far-field condition

E-field is transverse at far-field region!

Radiation of E-field is Fourier transform of source!

Radiative E-field of dipole source

9.  Near-Field and Far-Field (1)

r

r

aR

R r  −  Rr a

0

0

j

j





 = −

 =

E H

H E

0 0

0 0

j j

j j





 = −

 =

k E H

k H E

𝑟 → ∞

far-field radiation pattern

( )

( )

( )

( )

0

0

0

0

( ) ( , ) ( )

( , ) ( )

( )exp( )
4

( ) exp( )
4

   

   

   

 

 

 


 


−

−









  = − − 

  = − + 

  = − +  

  = − + 

v R R

v

jkr

v R

jkr

v R

j g d

j g d

e
j jk d

r

e
j J J jk d

r

E k I a a r r J r

a a a a r r J r

a a a a J r r a

a r a r a

𝑟 → ∞
angular spectrum



Wei SHASlide 23/24

Near-field

k

Far-field

k

1. E-field is concentrated along the polarization (horizontal) direction at 

near-field and along the propagation (vertical) direction at far-field;

2. E-field intensity at near-field is much stronger than that at far-field 

(x10,000 times in figure).

reactive

D: size of object

mid field

9.  Near-Field and Far-Field (2)

E
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9.  Near-Field and Far-Field (3) —— Applications

1. Radar and Laser

2. Imaging and Scanning Near-Field Optical Microscope (SNOM)

3. Organic Solar Cells (OSCs)

laserradar

imaging

SNOM OSCs


