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Teaching — Optical Theorem

radar cross section absorption, scattering, and extinction cross section
Microwave Optical (nanoelectromagnetics)
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ECS only depends on forward scattering because of orthogonal properties of plane waves!
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Teaching — Huygens Principle (1)

( ) ( ) ( , ) ( ) ( , )dS j dSs sωμ′ ′ ′ ′ ′ ′ ′= ⋅∇ × − ⋅ E r M r G r r J r G r r

Old teaching case

Every point on a wave-front is considered a source of secondary spherical waves which 
spread out in the forward direction at the speed of light. 
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Teaching — Huygens Principle (2)

New teaching case

Science 334, 333-337, 2011

From Huygens principle, wave-front of a plane wave can be changed if the phase 
distribution of corresponding secondary source is modified. Sub-scatters offer the 
abrupt phase change.  

Nano Letters 12, 6223−6229, 2012
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Teaching — Babinet Principle (1)
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Old teaching case

Input impedances of metal antenna and complementary aperture antenna satisfy

For self-complementary antenna, its input impedance is frequency of independent 
and thus the self-complementary antenna is a kind of broadband antennas.

Teaching — Babinet Principle (2)
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Teaching — Babinet Principle (3)

New teaching case

Physical Review B 76, 033407, 2007 

The reflection peak of the split-ring resonator (SRR) is corresponding to 
the transmission peak of the complementary split-ring resonator (C-SRR). 
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Teaching — Babinet Principle (4)

Emerging application (Menglin L.N. Chen, Li Jun Jiang, Wei E.I. Sha)

IEEE Transactions on Antennas and Propagation, 65, 396-400, 2017.

Bi-layer C-SRRs to generate orbital angular momentum of EM waves with a high transmission.

y pol. x pol.

0

2π

81% conversion efficiency
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In engineering EM courses, energy conservation law has been extensively taught as a 
form of Poynting's theorem. However, momentum conservation law expressed as 
Maxwell stress tensor form was ignored. The momentum conservation law becomes 
more and more important for nanoelectromagnetics.

Teaching — Momentum conservation (1)

f m dst t
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ε ε μ μ= − + −T EE E I HH H IMaxwell’s stress tensor
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A new look at field momentum

Teaching — Momentum conservation (2)

Ep k
c c
ω= = = 

de Broglie hypothesis (wave-particle duality)
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Teaching — Momentum conservation (3)

New teaching case

optical tweezer

spin and orbital angular momenta

Prof. Arthur Ashkin
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Emerging application (Jie Xiong and Weng Cho Chew)

Teaching — Momentum conservation (4)

Casimir force calculation by Maxwell stress tensor
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Teaching — Orbital Angular Momentum (1)
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connect to field momentum in quantum mechanics
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Teaching — Orbital Angular Momentum (2)

0ˆ ˆRe | | ,  
2

0 0 0 0 0 1
ˆ ˆ0 0 1 ,   0 0 0 ,    

0 1 0 1 0 0

0 1 0
ˆ ˆ ˆ ˆ1 0 0 ,  ,

0 0 0

s

x y

z x y z

i i

i i

ε
ω

= = →

−   
   = − = −   
   −   

 
   = − − =   
 
 

L ψ S ψ ψ E E

S S

S S S S



 

 

0ˆ ˆRe | | ,   
2

          Related to Quantum Optics

o ε
ω

= = →L ψ L ψ ψ E E


OAM of photon OAM of electron

ˆ| |o =L ψ L ψ

ˆ ˆ ˆ,   L r p p i= × = − ∇
ˆ ˆ ˆ,   L r p p i= × = − ∇

SAM of photon SAM of electron

ˆ| |

0 1 0ˆ ˆ,   ,    
1 0 02 2

1 0ˆ ˆ ˆ ˆ,  ,
0 12

s

x y

z x y z

i
i

i

=

−   
= =   

   
   = =   − 

L ψ S ψ

S S

S S S S

 

 



Slide 16/22

Teaching — Orbital Angular Momentum (3)

( )( ) ( )( )* *ˆ ˆ ˆ ˆRe Re ( ) ( )
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Orbital angular momentum in k space 

ˆ ˆ( ) ( ) | | ( )B ki= ∇A k E k E k

Berry connection and Berry curvature 

Berry phase and Chern number
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Connect to topological charge
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Ref:  K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori and A. V. Zayats. Nature Photonics 9: 796-808, 2015.
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Teaching — Orbital Angular Momentum (4)

Photon with SAM 

 Spin angular momentum (SAM): value S = 0, ±ħ
 Orbital angular momentum (OAM): value L = lħ

Photon with OAM 

Linear Polarization Circular Polarization

S = 0 S = ±ħ

Plane Wavefront

L = 2ħ

Twisted Wavefront

L = 0

L = ħ

trivial plane wave with
zero topological charge

nontrivial vortex beam 
with nonzero topological charge
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Teaching — Orbital Angular Momentum (5)

1. Limited scattering channels or the degrees of freedom (DoFs) 
bounded by the size Dt of a 2-D planar design of OAM ~ (k0Dt)2

[vortex beams cannot offer infinite number of communication 
channels]

2. Over-quadratic decay of the associated power density along the 
beam axis ~z-2|l|-2

3. Turbulence influence [topologically robust?]

Reference:
1. Nature Photonics, 9: 822, 2015
2. IEEE Access, 6:19814, 2018

Even though many problems are a “done deal” in the physics community, 
they are not a “done deal” in an engineering community. And much 
blood, sweat, and tears are needed.  —— By Prof. Weng Cho Chew

Nature Communications, 5: 4876, 2014
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Learning — New Engineering Courses (PhD students)

Engineering Physics Mathematics

electrodynamics

solid-state physics

quantum mechanics

semiconductor physics

thermodynamics 

fluid dynamics 

numerical method

functional analysis

differential geometry

group theory

PDE

advanced EM theory

microwave engineering

engineering EM

antenna theory

signal processing

machine learning statistics

Incomplete list….
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Commercial Software

FEKO
HFSS
CST,
COMSOL
FDTD Solutions
RSoft
EastWave
…

Lack of compulsory training in CEM leads to : 

 unexpectedly long simulation time
 huge consumption of computer resources
 incorrect modeling results
 unaware mistakes in concepts and designs

Examples for students:  

Do u know the difference between MUMPS and PCG solvers in COMSOL?
Do u know how to truncate guided-wave structures (port v.s. PML)?
Do u know how to treat a dipole source in periodic structures (periodic BC)?
Do u know how to postprocess your data?
…

Commercial software cannot solve cutting-edge multiphysics problems!
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Conclusion

1. As the progress of emerging technology and science, such as 
nanotechnology and quantum science, future engineers are to be 
exposed in circumstances where multidisciplinary research and 
development play more and more critical roles.

2. Educators have to teach EM knowledge with updated physical 
understandings and engineering applications in flexible delivery 
scenarios. The depth and breadth of EM knowledge should be 
enhanced.

3. New engineering course which merges mathematics, physics with 
engineering is an effective solution to tackle the challenges in future 
EM education.

4. Compulsory training in CEM is essential to understand and verify 
physical concepts and to design and optimize engineering applications.
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Thanks for Your Attention!
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