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1. Energy Bandgap (1)
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coupling induces the split of resonant frequency !
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1. Energy Bandgap (2)
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There is no electronic state within bandgap
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1. Enel‘gy Bandgap (3) What’s the fundamental difference between photon and electron?

Electrons satisfy Pauli exclusion principle.

P type intrinsic N type

metal semi-metal , insulator
semiconductor

Fermi level: If there is a electronic state at Fermi level, then this state will have a 50%
chance of being occupied. Below the Fermi level, the occupation probability becomes
larger and larger. At T=0, electronic states are fully occupied below the Fermai level.

Metals have a partially filled conduction band. A semimetal has a small overlap between
the bottom of the conduction band and the top of the valence band. In insulators and
semiconductors, the filled valence band 1s separated from an empty conduction band by
a band gap. For insulators, the magnitude of the band gap 1s larger.
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1. Energy Bandgap (4)

Electronic transitions between valance and conduction bands

R f 1. Intraband transition 1s the transition
band &E between levels within the conduction band.
in;al‘f':‘;: It 1s caused by electron-electron (electron
ransiti .
screening effect) or.electron-phf)non
v nterbang 1ETaction, and mainly responsible for the
Valence / \ ansiion T€A1 part of permittivity.
band

i Which transition is responsible for surface plasmonic effect ?
— e
Intraband transition is responsible for negative permittivity.

2. Interband transition is the transition between conduction and valence
bands. It generates electron-hole pairs, and mainly responsible for the
Imaginary part of permittivity (lossy term).

3. If electron density 1s increased or Fermi level 1s arisen, the interband
transition will be forbidden if excitation (photon) energy is low.
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2. Effective Mass (1)

1. BZ 2
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i Gap /| . ° Which material has zero effective mass ?

Graphene with the Dirac-cone band structure

E.‘k

The effective mass 1s a quantity that 1s used to simplify band structures by
modeling the behavior of a free particle with that mass.

At the highest energies of the valence band and the lowest energies of the
conduction band, the band structure E(K) can be locally approximated as
n’ 2 Il _1dE
2m” m"  h° dk’ ko
where E(K) 1s the energy of an electron at wavevector Kk 1n that band, £, 1s a
constant giving the edge of energy of that band, and m” is a constant (effective
mass). electrons or holes placed in these bands behave as free electrons except
with a different mass.

E(k)=E,+
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2. Effective Mass (2)

Band structures of germanium and silicon are complex!
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The top of valance band (red) and the bottom of conduction band (blue) are not aligned.
In other words, S1 and Ge have indirect bandgap. Thus, phonon absorption i1s
significant during electronic transition due to momentum conservation.

Newton equation of an electron in semiconductor with the effective mass

mzﬂ =—(qE+gvxB)
dt
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3. Doping (1)

Doping 1s the intentional introduction of impurities into
an intrinsic semiconductor for the purpose of modulating its
electrical, optical and structural properties.

Small numbers of dopant atoms can change the ability of a
semiconductor to conduct electricity.

When on the order of one dopant atom 1s added per 100 million
atoms, the doping 1s said to be low or light.

When many more dopant atoms are added, on the order of one per
ten thousand atoms, the doping is referred to as high or heavy.
This 1s often shown as n+ for n-type doping or p+ for p-

type doping.
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3. Doping (2)

By doping pure silicon with Group V elements such as phosphorus, extra valence
clectrons are added that become unbonded from individual atoms and allow the
compound to be an electrically conductive n-type semiconductor.

Doping with Group III elements, which are missing the fourth valence electron,
creates "broken bonds" (holes) 1n the silicon lattice that are free to move. The
result 1s an electrically conductive p-type semiconductor.

In this context, a Group V element is said to behave as an electron donor, and
a group III element as an acceptor.
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3. Doping (3)

Analogy between solid crystals and photonic crystals (optional)

Quantum mechanics Electrodynamics

Field W(r, t) = ¥(r)e H(r, t) = H(r)e ™

Eigenvalue problem H#Y = E¥ OH = (2)'H

Hermitian operator b WT + Vir) B =V x m"ﬁr_x
Electrons in solid crystals Photons in photonic crystals

Wave-like behavior y(r, ¢) in periodic Field H(r, ?) in periodic dielectric
potential of lattice functions
Electronic band structure Photonic band structure

Electronic Doping/Impurity Photonic Defect
y T defect state 1n otomc crystals

Density of States
Photonic Band Gap
Photonic Band Gap

s T

Defect State  Evanescent States
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4. Scattering

Scattering 1s complex

Scattering Mechanisms

|

Defect Scattering

!

l

I

Carrier—Carrier Scattering I

:

I Lattice Scattering I
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4. Relaxation and Characteristic Length (Optional)

Characteristic length is essential to both electron and photon systems!

L<<ly g L~1lo_pn L>>1, g
L<h Lek Fote ke o
Transport regime Quantum Ballistic Fluid Fluid Diffusive
Scattering Rare Rare e—e (many), e—ph (few) Many

Model:
Dnift-diffusion

Hydrodynamic Quantum hydrodynamic

Monte Carlo

Schrodinger/Green’s

Functions

Wave
Applications Nanowires, Ballistic
superlattices transistor Current I[C’s Current IC’s Older IC’s

What is the characteristic length of electronic system?
loon” Lo » A (e-€: electron-electron elastic; e-ph: electron-optical phonon inelastic)
Space: Fermi wavelength (1), mean free path (/) and phase coherence length (/. ;)
Time: momentum relaxation time (7, _.) and energy (phase) relaxation time (t,_,;,)
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4. Mobility, Scattering, and Relaxation (1)

Scattering probability P

initial number of electrons

dN(@t) o R
2 P]l\[(t) N(t)=N,e

the number of free electrons at ¢

Number of scattered electrons between ¢ ~ r+dt
PN, e "dt

Mean free time or relaxation time : time between successive scattering

1 1
=— [ PN e "tdt=—
N P

0

Slide 14/29 Wei SHA



4. Mobility, Scattering, and Relaxation (2)

Newton’s law

v,
m,—=—qE, m —=qE V. mean drift velocity
. "t
Mobility
7% D L) I %
“ 7R m IR m,
Conductivity

J =—p vV =—qnv_=qnu E

Gn :qnll’lnﬂ Gp :qpll’lp

J,=p,V,=qpv,=qpu K
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5. Boltzmann Statistics (1)

Boltzmann law of exponential atmosphere

If the temperature 1s the same at all heights, and N 1s the total number of molecules
in a volume V of gas at pressure P, then we know PV=Nk,T. (Density n=N/V)

The force from below must exceed the force from above by

the weight of gas in the section between 4 and A+dA
N P(h+dh)—P(h)=dP = k,Tdn = —mgndh
NN @_—mgn
E“QS‘;Z?IQEQ?W AEREmE dh kT
lg —mgh —P,
| n=n, exp —Te0 =n, exXp| —=

< k,T k,T

If the energies of the set of molecular states are called, £, £, E,, ..., then in thermal

equilibrium, the probability of finding a molecule 1n the particular state of having
energy E; is proportional to exp(—E /kgT).
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5. Boltzmann Statistics (2)

thermal equilibrium

Two physical systems are 1n thermal equilibrium 1f there is no net
flow of thermal energy between them when they are connected by a
path permeable to heat. A system is said to be in thermal equilibrium
with itself if the temperature within the system is spatially uniform
and temporally constant.

thermal equilibrium in semiconductor

Electrons and holes in semiconductor have a unified Fermi level. The
generation and recombination processes are statistically balanced.
External bias and light i1llumination will break the thermal
equilibrium and thus electrons and holes have different local Fermi
levels under the nonequilibrium state.
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5. Boltzmann Statistics (3) When does the Boltzmann statistics break down?

very low temperature or very high doping scenario !
Carrier concentration in thermal equilibrium

L. -E E —-E
nO:NCexp(— CkTFj pO:Nvexp( VkTF)
B B

/2

. 3/2 x 3

mnkBT mpkBT
2 N, =2 2

27h 27h

n.n.=N N ex —Eg —n’ —
Py = NN, exp| ——— |=n] N, =2
B

E: unified Fermi level for both electrons and holes

N_: effective density of states for conduction band

N,: effective density of states for valance band

n,: electron density in conduction band

po- hole density in valance band

n;: intrinsic carrier density (without doping and defects)
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S. Boltzmann Statistics (4)

Carrier concentration in thermal non-equilibrium

E-E E -E
n=N_ exp| ————* p=N, exp i
k,T k,T
np = n, p, EXpP EriEry | _ n’ exp B~ Ly
— "0 Y
k,T k,T

E: quasi-Fermi level of electrons

Ep,: quasi-Fermi level of holes

1. Fast thermal induced transitions at conduction band or valance band (but not in
between) result in the local equilibrium of carrier concentration at each band.

2. Larger Ep,-Ep,, which suggests larger external bias voltage, more
nonequilibrium carriers (An=n-n,, Ap= p-p,) are generated.

Slide 19/29 Wei SHA



6. Recombination (1)

Band to band (bimolecular) recombination

The net recombination rate

R =B(np—nyp,)

B: bimolecular recombination coefficient

At thermal equilibrium, R=0, generation (absorption) and recombination (emission)
are statically balanced. It 1s the essential physics of black-body radiation.

At thermal nonequilibrium, »n >>n,, p >> p,, R = Bnp

Radiative recombination is the band-to-band recombination.
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6. Recombination (2)

Nonradiative Shockley-Read-Hall (SRH) recombination

1
S 11

R, =c,nN(1-f) G, =¢e N, f R,=c,pN.f Go=e, N(1-f)

c) (d)

(a) electron capture; (b) electron emission; (¢) hole capture; (d) hole emission

electron capture: The recombination rate for electrons is proportional to the density of
electrons 7, and the concentration of the traps N,, multiplied by the probability that the
trap 1s empty (1-f,), R, = c,n N, (1-f,), where c, 1s the capture coefficient for the electrons.

electron emission: The generation rate of the electrons due to this process is G, = e, N,

/,, where e, is the emission coefficient and N,f,, is the density of the traps that are

occupied by the electrons.

hole capture and hole emission: R, =c¢,p N,f, and G, = e, N,(1-f)
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6. Recombination (3)

At thermal equilibrium, we have the detailed balancing G,=R, and G,=R,

e e

o —p L= no =n.p.=n’
= ny, = P> Py =NypPy =1,
c c,

At thermal nonequilibrium, we have stable condition R, -G,=R,,- G,

2
np —n,

R=R,-G,=R, -G, =
Tp(n_l_nl)_l_z-n(p_l_pl)
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6. Recombination (4)

For minority electron, p >>n

R -G, = n
Tl’l
For minority hole, n >>p
P
R -G ~—
p P
TP

SRH recombination can be seen as the monomolecular recombination.
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6. Recombination (5) What is the application of impact ionization?

Nonradiative Auger recombinati OnAvalanche diode for single photon detection !

" .
phonor:e:( : |
I = ¥ "
E. 9 E, o
eeh process ehh process
v v E
E v » ®

v o (o e
: A
| )_F( phonon |
v :

O

Fig. 1. band-to-band Auger recombination  Fig. 2. band-to-band Auger generation
left: n-type; right: p-type (t1mpact 10nization): reverse process of Fig. 1

Band-to-band Auger recombination: An electron in the conduction band recombines
with a hole in the valence band and releases its energy to a nearby electron or hole. The
excited electron or hole will always relax and produce heat (phonon energy).

Impact ionization: one highly-energetic electron (hole) from the conduction (valance)
band transfers its energy to a valance-band electron for generating one e-h pair.
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6. Recombination (6)

For Auger recombination,
Ree = 7/en2p9 th — 7/hnp2

2 2

R0 =719 Po> Rypo = 7310 Py

For Auger generation,
Gee = ge”’ th = ghp
G0 = &Mg> Gio = &1P0

At thermal equilibrium, G ,=R

eel)

tho — tho

ee(?

At thermal nonequilibrium,
1 R :(Ree +th)_(Gee +th)

= (y.n+7,p)np —n;)
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6. Recombination (7)

More about recombination

1. Recombination can occur in bulk or at surface.

2. Recombination can be direct (through valance band and
conduction band) or indirect (thought recombination centers).

3. Energy released from recombination will convert to photon
energy, phonon energy, or excite other carriers.

4. Non-radiative recombination 1s always the dominant electric
loss mechanism for state-of-the-art optoelectronic devices.
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7. Drift-Diffusion Equations (1)

_ [ Ei_EFn)_ [ (¢_¢n)
n=n,exp| — =n, exp| q
thermal kT kT
nonequilibrium E,—E, (0-9,)
P = I’Zl. cXp :I/li CXp| —¢
k,T k,T
. . 4,=p - sl 1og (EJ
quasi-Fermi q n,
(chemical) potential 4 o+ kT log ( P ]
q n,
Vi, =0
electron current J =—qunVe =qunE+tqD Vn
hole current E=-Vo
J,=—qu,pV9,=qu,pE—gD Vp
: : : k,T k.T
Einstein relation ' D, =pu, Z , D, =u, Z
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7. Drift-Diffusion Equations (2)

Semiconductor equations (unknowns n, p, @)

Poisson
. Np, N : doping density
V- (gv (p) — —q(p — n—l—ND — N;) e: dielectric constant (DC)
f V-J -
ap — _ P LG-R Current continuity
dt q R: net recombination rate
9 G: generation rate by light
dn V-J . J,: electron current
Jr — q +G—-R J,: hole current
( o o o
J =qunE +gD Vn Drift-diffusion
d " " D,, D,: diffusion coefficients
— _ U,, 1, mobility
L JP qH p P E P qu Vp E, E;: elgctrostatic fields

E =—Vy, v,=pty/q+ (kBT / q)ln(Nc) E-field is complex!
x: electron affinity, £ : bandgap
E,=-Vy, v =pty/q+E,/q—(k,T/q)In(N,) ;

N., N,: effective DOS
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7. Drift-Diffusion Equations (3) — Boundary Conditions (Optional)

Cathode (Al)

Non-electrode boundaries (green line) ,
ETL (LiF)
BHJ active Iayer\
%, on O HTL (PEDOT:PSS)
iﬁ =0, —- =0, ]z = () Anode (1T0)§ ___________
on on on ~ . . Substrate —
normal direction |
Electrode boundaries (red liney
o =V - W, o =V - . V., V.. external bias for anode and cathode
R S W, W._: work functions for anode and cathode

S . surface recombination velocity for electrons
(‘E +o, j S . surface recombination velocity for holes

—O
po=NVeXp( p]’ o = Ne exp| —, par >0 ,
kgT kyT @ injection barrier for holes
cathode

J,.=qS, .(n-ny), J,.=qS, . (p- o .
e =40 (1=10), S e =45, (P = Py) S,.. surface recombination velocity for electrons

_ —0, _ —£,+®, ) § :surface recombination velocity for holes
n, = N_exp » Po =N, exp
0 c kT 0 v kBT

B
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