

Orbital Angular Momentum Detection Using Geometric-phase Based Metasurfaces

Menglin L. N. Chen^{1*}, Li Jun Jiang¹, and Wei E. I. Sha² ¹The University of Hong Kong, Hong Kong, China ²Zhejiang University, Hangzhou, China

*Contact: menglin@connect.hku.hk

Introduction	Orbital Angular Momentum of LightLiterature Review
Design	 Methodology for Multiple OAM-Beam Detection Simulation Results Side-Lobe Suppression
Conclusion	SummaryContributions

- > Spin angular momentum (SAM), value $S = 0, \pm \hbar$
- > Orbital angular momentum (OAM): value $L = l\hbar$

Ultrathin Complementary Metasurface

M. Chen, et al, IEEE Trans. Antennas Propag., 65 396 (2017)

Composite PEC-PMC Metasurface

M. Chen, et al, J. Appl. Phys., 119 064506 (2016)

Photonic Crystals

M. Chen, et al, Phys. Rev. Appl., accepted.

$$J_z \approx \epsilon_0 \int \operatorname{Re}\{xE_zB_x^* - yE_yB_z^*\}\mathrm{d}V.$$

Radio Sci. 45 RS4007 (2010)

Modal Decomposition New J. Phys. 15 073025 (2013)

Local Topological Charge Analysis Opt. Express 24 5 (2016)

- The metasurface converts an OAM beam to a Gaussian beam. The beam axis depends on the order of incident OAM.
- > By locating the Gaussian beam, the incident OAM can be determined.

Transmission function of an aperture

Generation of multiple OAM beams

$$t(r,\phi) = \sum_{m} A_{m} e^{j(l_{m}\phi + k_{xm}x + k_{ym}y)}$$

r is the radial position, φ is the azimuthal position, A_m is the weight of the *m*th beam, l_m is the corresponding OAM index, and k_{xm} , k_{ym} are the transverse wave numbers of the *m*th beam.

Far-field response

✤ Fourier transform

$$E = F\{E_{\rm in} \cdot t\}$$

> Example

✤ Five-beam generation: $l_1 = 2$, $l_2 = 1$, $l_3 = 0$, $l_4 = -1$, $l_5 = -2$

At the directions of $\theta = 40^{\circ}$ and $\varphi = 90^{\circ}$, 18°, 306°, 234°, 162° ($k_{x1\sim5}, k_{y1\sim5}$)

Plane wave incidence

> Under the incidence of Laguerre-Gaussian Beam (LG_{0l_0})

$$E_{\rm in}(r,\phi) = r^{l_0} e^{-r^2/w^2} e^{jl_0\phi}$$

w is the beam waist.

> Far-field response

♦ At the k-space position (k_{xm}, k_{ym}) , the OAM order is $l_m + l_0$.

$$E = F\{E_{in} \cdot t\} = \sum_{m} A_{m} F\{E_{OAM(l_{m}+l_{0})}(k_{xm}, k_{ym})\}$$

Detection process

Measure beam intensity at (k_{xm}, k_{ym}) \rightarrow Detect the Gaussian beam (k_{xM}, k_{yM}) \rightarrow $l_{\theta} = -l_M$

- Geometric-phase metasurface
 - Phase of transmission function is extracted: $\arg(t(r, \phi))$
 - Phase profile is reconstructed using complementary split ring resonators (CSRRs)

Aperture Implementation (cont.)

Geometric-phase metasurface

- Phase profile is discretized by 11×11 pixels
- Each pixel is implemented using CSRRs

Simulation approaches

- Full-wave simulations, CST MWS
- Equivalent magnetic dipoles

Top view of the metasurface

Comparison between the simulation results using equivalent dipole model and commercial software

Reason for high side lobe

- Constructive interference among multiple beams, especially between two adjacent beams
- Modified transmittance function

$$t_{\rm mod}(r,\phi) = \sum_{m} e^{j(l_m\phi + k_{xm}x + k_{ym}y + \alpha_m)}$$

Example

- The beam with l=1 is rotated by -90°.
- The rotation changes the phase of the beam at the previous interference area, resulting in a weakened field intensity.

Original: $\alpha_{1,2,3,4,5} = 0$

> Optimization objective

Maximizing the minimum peak-to-sidelobe ratio

> Optimal solution

Comparison results

- Field intensity along the azimuthal coordinate is plotted at $\theta = 40^{\circ}$.
- Overall, we can observe suppressed side lobes and increased field intensities at desired locations.

Menglin CHEN

- ✓ Orbital angular momentum (OAM), $L = l\hbar$
- ✓ An innovative OAM-detection approach is proposed
 - The OAM wave is converted to a zero-OAM wave whose directivity depends on the incident OAM order.
 - A metasurface that can detect five OAM orders is implemented using CSRRs.

• A novel modified transmission function is proposed to optimize the metasurface.

Reference:

1. M. L.N. Chen, L. J. Jiang, and W. E.I. Sha, "Orbital Angular Momentum Generation and Detection by Geometric-Phase based Metasurfaces", *Appl. Sci.*, vol. 8, pp. 362, Mar. 2018.

2. M. L.N. Chen, W. E.I. Sha, and L. J. Jiang, "Detection of Orbital Angular Momentum with Metasurface at Microwave Band", *IEEE Antennas Wireless Propag. Lett.*, vol. 17, no. 1, pp. 110–113, Jan. 2018.

3. M. L.N. Chen, L. J. Jiang, and W. E.I. Sha, "Ultrathin Complementary Metasurface for Orbital Angular Momentum Generation at Microwave Frequencies", *IEEE Trans. Antennas Propag.*, vol. 65, no. 1, pp. 396–400, Jan. 2017.

4. M. L.N. Chen, L. J. Jiang, and W. E.I. Sha, "Artificial Perfect Electric Conductor-Perfect Magnetic Conductor Anisotropic Metasurface for Generating Orbital Angular Momentum of Microwave with Nearly Perfect Conversion Efficiency", *J. Appl. Phys.*, vol. 119, no. 6, pp. 064506, Feb. 2016.

Menglin CHEN

Dept. of Electrical and Electronic Engineering The University of Hong Kong

Thanks for your attention!

Contact: menglin@connect.hku.hk

