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Abstract— A high-order symplectic FDTD (SFDTD) scheme using the diagonal split-cell
model is presented to analyze electromagnetic scattering of the curved three-dimensional perfectly
conducting objects. One the one hand, for the undistorted cells, the fourth-order accurate spatial
difference is employed. On the other hand, for the completely distorted cells, the treatment of the
curved surfaces is based on the diagonal split-cell model. Finally, for the partially distorted cells,
the interpolation strategy is proposed to keep the field components continuous. The numerical
experiments suggest that the diagonal SFDTD scheme can obtain more accurate results than
both the staircased SFDTD scheme and the traditional diagonal FDTD method. Furthermore,
in view of the high numerical stability, the improved symplectic scheme does not need to decrease
time increment to comply with the stability criterion.

DOI: 10.2529/PIERS060903035033

1. INTRODUCTION

As the most standard algorithm, the traditional finite-difference time-domain (FDTD) method [1],
which is second-order accurate in both space and time, has been widely applied to the electromag-
netic computation and simulation. Unfortunately, for electrically large domains and for long-term
simulation, the method consumes large computational resources owing to the limit of numerical dis-
persion and stability. Up to now, some more efficient solutions have been presented. For example,
in 1989, Fang proposed high-order accurate FDTD method [2], which is fourth-order accurate in
both space and time. But the method is hard to treat the varying of permittivity and permeability
in the inhomogeneous domain on account of the application of third-order spatial derivatives to
substitute for third-order correctional temporal derivatives. Another approach is to use fourth-
order accurate Runge-Kutta (R-K) method [3] in the time direction and central-difference with Yee
lattice in the space direction, yet, the method is dissipative and requires additional memory.

The symplectic schemes have demonstrated their advantage in energy conservation for the Hamil-
tonian system over other high-order methods [4]. A symplectic FDTD (SFDTD) scheme [5–7],
which is explicit fourth-order accurate in both space and time, was introduced to the computa-
tional electromagnetism by Hirono for analyzing waveguide’s eigenmode. It has been verified that
the SFDTD scheme is nondissipative and saves memory. Moreover, the total field and scattered
field technique and the near-to-far-field transformation [8, 9] have been further developed, by which
the radar cross section (RCS) of dielectric sphere was successfully computed.

However, considering the high-order difference approximation for the spatial derivatives and the
staircase model for the curved surfaces, the advantage of the SFDTD scheme cannot extend to
electromagnetic scattering of the curved three-dimensional perfectly conducting objects. Here the
diagonal SFDTD scheme is presented to overcome the problem. The Yee cells in the scheme are
classified and discriminatingly handled, which not only eliminates the spurious solutions, but also
maintains the numerical results accurate.

The paper is organized as follows. The formulation of the SFDTD scheme is given in Section 2,
followed by the diagonal split-cell model for treating curved surfaces specified in Section 3, numerical
results are presented in Section 4, and summary is concluded in Section 5.
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2. GENERAL FORMULATION

The formulation of the x component of the normalized electric field (Ẽx =
√

ε0/µ0Ex) for the
SFDTD scheme can be written as [7]
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where ∆y, ∆z are, respectively, the lattice space increments in the y and z coordinate directions,
∆t is the time increment, dl are the constant coefficients of the symplectic integrator, i, j, k, n, l
and m are integers, n + l/m denotes the l-th stage after the n-th time step, and m is the total
stage number. Here we use m = 5, a five-stage fourth-order symplectic integrator is constructed.
In addition, when λ1 = 1 and λ2 = 0, the expression is second-order accurate in space, and when
λ1 = 9/8 and λ2 = −1/8, that is fourth-order accurate in space.

3. DIAGONAL SPLIT-CELL MODEL

For high-order spatial difference, every H-component is surrounded by eight E-components, and
vice versa. In Fig. 1(a), the near four circulating E-components equidistant to the H-component
can link one closed loop referred to as L1, and those far can link another loop L2. The closed PEC
surface is notated by S. The L1, L2 and S can be viewed as the point set. We treat all the cells
drawn in Fig. 1(b)∼(d) according to the following strategies.

Figure 1: (a) The locations of the H-component and
the E-components, (b) Undistorted cell, (c) Com-
pletely distorted cell. The black area denotes the
diagonal split-cell, (d) Partially distorted cell.

Figure 2: The bistatic RCS of conducting cylinder.

(1) Undistorted cells ((L1
⋃

L2)
⋂

S = ∅). Here the fourth-order spatial difference is employed.
The parameter λ1 and λ2 in (1) are taken to be 9/8 and −1/8.
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(2) Completely distorted cells (L1
⋂

S 6= ∅). The E-fields are treated in the traditional staircased
FDTD way by setting λ1 = 1 and λ2 = 0. The H-fields are handled according to the diagonal split-
cell model [11]. If and only if the circulating E-fields are designated as split along the cell diagonal,
the H-fields are to be updated by setting λ1 = 2 and λ2 = 0. Besides, λ1 = 1 and λ2 = 0 should be
set.

(3) Partially distorted cells (L1
⋂

S = ∅ and L2
⋂

S 6= ∅). Both E-fields and H-fields are
initially computed by using the traditional staircased FDTD approach. Then, in order to eliminate
the reflection from the undistorted cells to the completely distorted cells, the partially distorted
cells are specially treated to keep the field components continuous. The interpolation equations for
the E-fields and H-fields are proposed as

Fδ(h) = W1Fδ(h) + W2 ×
[
1
2

(Fδ(h + 1) + Fδ(h− 1))
]

(3)

F = Ẽ, H, δ = x, y, z, h = i, j, k (4)

where W1 and W2 are weighting coefficients satisfying W1+W2 = 1. Generally, for W1 ∈ [0.87, 0.97],
the stable and accurate numerical results can be obtained. What’s more, if the incident plane wave
is a unit Gaussian pulse, the largest magnitude of the field values at the partially distorted cells is
below the order of 10−3.

Figure 3: The absolute RCS Error. Figure 4: The location of spatial cells for the Hz

component. The points denote the undistorted
cells, the circles denote the partially distorted cells,
and the pluses and triangles denote the completely
distorted cells using the staircased and the diagonal
approximation.

4. NUMERICAL RESULTS

Without loss of generality, it can be assumed that the incident plane wave with frequency of
300MHz propagates along the z direction, and the electric field is polarized along the x direction,
and the cubic grid is adopted, i.e., ∆x = ∆y = ∆z = ∆δ and CFLx = CFLy = CFLz = CFLδ.

1. The scattering of conducting cylinder with the radius of 1 m and the height of 1 m is consid-
ered. The space increment and the Courant-Friedrichs-Levy (CFL) number are set to ∆δ = 0.1m
and CFLδ = 0.5, respectively. The H-plane bistatic RCS plotted in Fig. 2 is computed by the
SFDTD scheme using the diagonal split-cell model. The result calculated by the diagonal SFDTD
scheme is in a good agreement with the reference solution calculated by the moment methods. The
absolute RCS error curves are illustrated in Fig. 3. It can be seen that the diagonal SFDTD scheme
can obtain more accurate results than the staircased SFDTD scheme. Similarly, the relative 2-norm
error for the diagonal SFDTD scheme is 0.0556 compared with 0.0816 for the traditional diagonal
FDTD method.

2. The monostatic RCS of conducting sphere with the radius of 1 m is calculated. The space
increment is unchanged and the CFL number is retaken to CFLδ = 0.70. The Fig. 4 shows



PIERS ONLINE, VOL. 2, NO. 6, 2006 718

Figure 5: The monostatic RCS of conducting
sphere.

Figure 6: The bistatic RCS of conducting prism.

the location of spatial cells for the Hz component. Because of the utilization of low-order spatial
difference near the curved boundaries and the symplectic structure in the time direction, the SFDTD
solution shown in Fig. 5 still keeps accurate and stable after 5000 time steps.

3. The proposed scheme is employed to analyze the far response of conducting prism displayed
in Fig. 6. The side length of the prism are, respectively, 1m, 1m, and

√
2m, and the height is

chosen to be 1 m. Under the same relative error condition, the diagonal SFDTD scheme occupies
71 × 71 × 71 cells with ∆δ = 1.0/8.0 and CFLδ = 0.65, by contrast, the traditional staircased
FDTD approach occupies 111 × 111 × 111 cells with ∆δ = 1.0/15.1 and CFLδ = 0.50. About
32.4% memory and 39.5% CPU time are saved by the proposed scheme.

5. CONCLUSION

The high-order SFDTD scheme using the diagonal split-cell model can accurately and efficiently
solve the scattering of three-dimensional perfectly conducting objects with curved metal boundaries.
The high numerical stability of the scheme can obviate the instability problem due to the traditional
diagonal approximation. Further more, the improved SFDTD scheme is easy to implement and
places little additional computations on the original scheme. The future work will focus on the
development of the proposed scheme in conjugation with the subgridding method.
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