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CRPA operation. The array is composed of three identical antennas,
and each antenna consists of the radiating patch and parasitic strips
to achieve circular polarization. To improve the isolation, the shape
of each antenna was transformed from the conventional rectangular
shape to the arc shape to maximize the edge-to-edge distance, and the
ground slot was inserted for further improvement. The proposed array
was fabricated, and its antenna characteristics were measured in a full
anechoic chamber. The array showed that the reflection coefficient is
−10.8 dB, and the bore-sight gain is 1.1 dBic. The axial ratio band-
width is 16 MHz with the minimum value of 1.9 dB, and the HPBW
is greater than 100◦. The mutual coupling strength was improved by
9.1 dB compared to the rectangular-shaped antenna array due to the
increased edge-to-edge distance, and the null depth was improved
by 3.5 dB in the azimuth direction. The results demonstrate that the
proposed array is suitable to increase the null depth at low-elevation
angles with improved isolation characteristics.
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Yu Mao Wu, Weng Cho Chew, Ya-Qiu Jin, Li Jun Jiang, Hongxia Ye,
and Wei E. I. Sha

Abstract—In this communication, we propose a frequency-independent
approach, the numerical steepest descent path (NSDP) method, for com-
puting the physical optics scattered electromagnetic field on the quadratic
hyperbolic surface. Due to the highly oscillatory nature of the physical
optics integral, the proposed method relies on deforming the integration
path of the integral into the NSDP on the complex plane. Numerical results
for the PO-based EM fields from the hyperbolic surface illustrate that the
proposed NSDP method is frequency independent in computational cost
and error controllable in accuracy.

Index Terms—Critical-point contributions, hyperbolic surface,
numerical steepest descent path (NSDP), physical optics.

I. INTRODUCTION

In electromagnetics (EM), when the product of the external wave
number k and the size of the considered object L, i.e., kL ranges
from tens to thousands, the analysis of the scattered EM field belongs
to the high frequency problem. In this case, the classical physical
optics (PO) current approximation [1] has been accepted as an effi-
cient method to calculate the PO-based EM fields scattered from the
electrically large scatterers. PO-based EM fields E(s)(r) from the con-
sidered perfect electric conductor scatterers can be represented as three
surface integrals [3] of the type

I(k, r) =

∫
∂Ω1

s(r, r′)eikv(r,r
′)dS(r′). (1)

They are called the surface PO integrals, and ∂Ω1 denotes the sur-
face of the lit region of the considered object, as shown in Fig. 1.
The PO integrand in (1) contains the slowly varying amplitude term
s(r, r′), and the exponential of the phase function term eikv(r

′). Due
to the highly oscillatory phase behavior of the PO integrand, it is quite
challenging to calculate the PO integral with frequency-independent
workload and error controllable accuracy.

For the calculation of the PO-based EM fields, direct PO solvers
[4]–[5] make the computational cost dramatically increase with k. In
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Fig. 1. PO current on the perfect electric conductor scatterer.

this sense, efficient algorithms for calculating the PO-based EM fields,
especially frequency-independent algorithms, are in great demand.
The traditional high-frequency asymptotic (HFA) approach [6]–[10]
can provide the calculation of the PO-based EM fields with frequency-
independent workload. In [10], the authors treated the PO integrals
from a curved surface with curvilinear edges and relatively general
boundary conditions. The canonical integrals in the uniform geo-
metrical theory of diffraction (UTD) were used in the evaluation of
PO integrals. Furthermore, the authors developed the efficient algo-
rithm to calculate the “transition functions” in canonical integrals [11]
and [12].

Recently, the numerical steepest descent path (NSDP) approach
[16]–[20] provides an efficient way to evaluate the highly oscillatory
PO integral. The similarity of our work and the work in [17] is that
the contour deformation technique via steepest descent paths on the
complex plane is adopted to evaluate these PO integrals. However,
there are three main differences between these two works. First, in
[17], the Abel’s summation method, the Lebesgue integral theory
and poles extraction technique in complex analysis were adopted
for the development of NSDPs from the hyperbolic phase term. In
this work, we avoid the Abel’s summation and the Lebesgue inte-
gral theory and obtain all NSDPS. Second, in [17], the phase function
g(x, y) = xy is considered. In this work, the phase function g(x, y) =
x2 ± y2 is considered via affine transformation technique. Hence,
the NSDPs obtained in this communication are different from those
in [17]. Importantly, we provide the NSDPs. Third, high-frequency
wave physics, such as the contributions from the stationary phase
point (SPP), the boundary resonance points, and the vertex points,
was captured by the proposed NSDP method. In [21], for the com-
putation of scattering from rough surfaces with very large surface
heights, an acceleration algorithm was successfully developed by the
steepest descent path contour deformation for the Hankel function. In
[22], the equivalence between the modified edge representation line
and the PO surface integration was developed by the Stokes theorem
and the asymptotic technique. Furthermore, a criterion on the acceler-
ation of the PO surface integration with the SPP method was clearly
given.

The contributions in this work are that the PO-based EM fields
from the hyperbolic patches are considered. Then, the integrand of
the PO integral takes the hyperbolic phase behavior, which is differ-
ent from the work in [19]. In this case, all NSDPs are changed and
reconstructed compared to the work in [19]. With the high-frequency
wave physics viewpoint, the formulations of the SPP and the bound-
ary resonance point are all changed. Furthermore, the coalescence of
high-frequency critical points is considered. We have considered the

Fig. 2. (a) Electromagnetic wave impinges on the quadratic hyperbolic surface
∂Ω, governed by equation z = f(x, y). (b) Projection of ∂Ω onto the x–y
plane, ∂Ωxy .

PO-based EM fields from the parabolic and hyperbolic quadratic sur-
faces, and have further adopted the NSDP algorithm knowledge to
calculate the scattered fields.

This communication is organized as follows. In Section II, the
PO-based EM fields from the hyperbolic surface is discussed. In
Section III, the surface PO integral is first transformed into several
highly oscillatory line integrals. Then, we propose the NSDP method
to treat these highly oscillatory line integrals. High-frequency critical-
point contributions on the derived NSDPs are extensively studied in
Section IV. In Section V, numerical experiments are shown to verify
the efficiency of the proposed NSDP method. We make the conclusion
in Section VI.

II. SURFACE PHYSICAL OPTICS INTEGRAL ON THE QUADRATIC

HYPERBOLIC SURFACE

In this communication, the time harmonic dependence of e−iωt is
adopted for the EM wave. We consider that the EM wave is imping-
ing on the quadratic hyperbolic surfaces ∂Ω, as demonstrated in
Fig. 2(a). The hyperbolic surface is governed by the quadratic equa-
tion z = f(x, y), i.e., f(x, y) is a second-order polynomial in the xy
cartesian coordinate system. For the PEC with the electric conductiv-
ity σ = ∞, we denote the size of the considered hyperbolic surface
as L = diam(∂Ω), and the distance of the observation point r to the
origin as r = |r|.

In this work, we consider the far-zone of the scatterer with r �
2L2/λ and the PO approximation of the accurate electric equiva-
lent current. λ is the wavelength. Then, for the incident plane wave,

E(i)(r) = E0
(i)eikr̂

(i)·r, the PO-based EM fields can be written in
(1), with
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Fig. 3. (a) Highly oscillatory PO type integrand, f(x) = (5− 3x−
x2)eik(−x2+(ax+b)2), with k = 500. (b) The integration domain is defined

on V1V2V3V4, [L1, L2]× [ax+ b, 0] for integrand eik(−x2+y2) with
a = 0.25, b = −0.5.

s(r, r′) = − ikeikr

2πr
r̂× r̂×

(
n̂(r′)× r̂(i) ×E0

(i)
)

(2)

v(r, r′) =
(
r̂(i) − r̂

)
· r′. (3)

In (2) and (3), r̂ = r/r and r̂(i) = k̂(i) are the unit vector of r and
the unit vector of k(i), respectively. n̂(r) is the outward unit nor-
mal vector from the hyperbolic surface. Equations (1)–(3) are the
bistatic scattered electric field under the PO approximation. The vec-
tor function s(r′) in (2) is known as the vector amplitude function,
and v(r′) in (3) is the phase function. The integrand of the vector PO
surface integral in (1) is highly oscillatory when k goes large. The
highly oscillatory property of the PO integrand makes the computa-
tional effort grow up dramatically with the increasing k, as depicted
in Fig. 3(a). Furthermore, for the quadratic surface, the PO integrand
of the scattered field in (1) contains the quadratic phase function term
v(x, y) [19]. With the asymptotic technique, the steepest descent path
method could be adopted to evaluate the PO integral in an efficient
way.

To simplify the PO surface integral in (1) to its canonical form, we
follow the procedure in [19]. First, we proceed the projection process
from the surface ∂Ω to ∂Ωxy with polygonal boundary in the x′y′

plane, as shown in Fig. 2(b). Next, we conduct the affine transforma-
tion as that given in [19], ∂Ωxy is transformed to another polygonal
domain D. In this manner, the PO integral from the hyperbolic surface
can be simplified into the following two canonical forms

I =

∫
D

p(x′, y′)e±ik(−x′2+y′2)dy′dx′. (4)

The x′ and y′ variables in the above integrand correspond to the inte-
gration variables in the x′y′ plane. The amplitude function p(x′, y′)
takes the formulation

p(x′, y′) = α1 + α2x
′ + α3y

′ + α4x
′2 + α5y

′2 + α6x
′y′ (5)

and αj are complex numbers, j = 1, 2, . . . , 6. Here, the domain D is a
polygonal domain on the x′–y′ plane. In detail, we first decompose the
surface into several smaller triangular patches. Hence, the polygonal
boundary is formed after the discretization procedure.

III. NSDP METHOD

We assume D as the trapezoidal domain in (4), as shown in
Fig. 3(b). We denote the x-values of vertex points V1 and V2 as
L1 and L2, respectively. The governing line equation for edge V3V4

is y = ax+ b, with a > 0. The slope “a” of the edge y = ax+ b
could also be a < 0. Then, after a projection of the 3-D surface to a

plane of (x, y), the PO surface integral could be simplified into highly
oscillatory line integrals in the following way:

I(a,b) =

∫ L2

L1

∫ 0

ax+b

p(x′, y′)eik(−x′2+y′2)dy′dx′

=

∫ L2

L1

(
J
(0,0)
2 (x′)− J

(a,b)
2 (x′)

)
e−ikx′2

dx′. (6)

Here, the coordinate system for (x, y) is defined with respect to the
use of the polygonal boundary.

J
(0,0)
2 (x) and J

(a,b)
2 (x) have the formulations

J
(0,0)
2 (x) = j1(x) + j

(0,0)
2 (x)

J
(a,b)
2 (x) = j1(x) erfc

(√−ik(ax+ b)
)
+ j

(a,b)
2 (x) eik(ax+b)2 .

where

j1(x) = −
√
π

2
√−ik

(
α1 + α2x+ α4x

2 − α5

2ik

)
j
(a,b)
2 (x) =

α3 + α6x+ α5(ax+ b)

2ik
,j

(0,0)
2 (x) =

α3 + α6x

2ik
.

Hence, the original PO integral I(a,b) in (6) can be rewritten as

I(a,b) = I
(0,0)
2 − I

(a,b)
2 (7)

where

I
(a,b)
2 =

∫ L2

L1

J
(a,b)
2 (x′)e−ikx′2

dx′

I
(0,0)
2 =

∫ L2

L1

J
(0,0)
2 (x′)e−ikx′2

dx′. (8)

Here, I(a,b)2 and I
(0,0)
2 are line integrals associated with edges V1V2

and V3V4, respectively. J
(a,b)
2 (x) has complicated formulations

involving the complementary error functions. Importantly, the differ-
ence between this communication and the paper in [19] is that the
phase term e−ikx2

was adopted in this work, while eikx
2

was con-
sidered in [19]. This difference is due to the consideration of the
hyperbolic surface in this communication.

The integrand J
(a,b)
2 (x) in (8) has the following asymptotic

behavior:

J
(a,b)
2 (x) =

⎧⎨
⎩ς1(x)e

ik(ax+b)2 , x ∈ D1

2j1(x) + ς2(x)e
ik(ax+b)2 , x ∈ D2

(9)

with ς1(x) and ς2(x) denoted as slowly varying functions.
D1 and D2 are the domains separated by the Stokes’ line on the

complex plane, with the expressions

lStokes(x) : Im(x) = −Re(x)− b

a
(10)

D1 := a (Re(x) + Im(x)) + b > 0 (11)

D2 := a (Re(x) + Im(x)) + b < 0. (12)

For the case x ∈ D2 in (9), the first term 2j1(x) comes from the
Stokes’ phenomenon of the complementary error function as shown
in Fig. 4, details could be found in [19]. After substituting (9) into (8),
we get two phase function terms for I(a,b)2 . They are

g1(x) = −x2 + (ax+ b)2, g2(x) = −x2. (13)
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Fig. 4. Stokes’ phenomenons of the complementary error functions,
erfc

(√−ik(0.5x+ 1)
) − 2 and erfc

(√−ik(0.5x+ 1)
)
.

The Stokes’ phenomenon of complementary error function makes the
phase behaviors of the PO integrand I

(a,b)
2 be discontinuous.

Now we consider the phase function g1(x) of I
(a,b)
2 in (13).

Physically, there may exist a point xs, at which the phase behavior
of g1(x) is different from others. It is called the stationary phase point
(SPP). SPP corresponds to the point at which the specular reflection
occurs in the high frequency ray physics regime. Mathematically, the
SPP xs satisfies the condition g′1(xs) = 0. As a result, we have the
expression of xs as

xs =

{
ab

1−a2 , |a| �= 1

no SPP, |a| = 1.
(14)

Remark 1: For the case |a| = 1 in the above formulation, the phase
function in (13) reduces to a linear form g1(x) = 2abx+ b2. Hence,
there is no SPP.

Now, we see the term eikg1(x) in the PO integrand

eikg1(x) = eik [Re(g1(x))+iIm(g1(x))] = e−k Im(g1(x))+ik Re(g1(x)). (15)

Here, g1(x) is a real function. In this work, we adopt the NSDP
method. We consider the real and imaginary parts for the considera-
tion of the NSDP on the complex plane. The NSDP method relies on
the transformation of the above highly oscillatory functions to expo-
nential decay functions on the complex plane. In detail, for a starting
point L∗, we define a complex path function x = ϕL∗(p) as that in
[2], satisfying the following identity:

−ϕL∗(p)
2 + (aϕL∗(p) + b)2 = −L2

∗ + (aL∗ + b)2 + ipl (16)

with l = 1 for integration end points L1 and L2, and l = 2 for the
SPP xs, respectively. Here, p is the path parameter for the path func-
tion on the complex plane. In (16), L∗ could be used to represent the
integration end points L1 and L2, as demonstrated in Fig. 4.

After substituting L1, L2, and xs into (16), the corresponding
NSDPs are

ϕLm (p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sgn(L′
m)√

a2−1

√
L′

m
2
+ ip+ xs, if |a| > 1

sgn(L′
m)√

1−a2

√
L′

m
2 − ip+ xs, if |a| < 1

Lm + ip
2ab

if |a| = 1

(17)

ϕxs(p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
ip√

|1−a2|
+ xs, if |a| > 1

√−ip√
|1−a2|

+ xs, if|a| < 1

no NSDP, if|a| = 1

(18)

Fig. 5. (a) PO surface integral I�1
defined on the triangular patch, Δ1.

(b) NSDPs diagram for I(a1,b1)
2 defined on the edge V1V2 of Δ1. (c) NSDPs

diagram for I(a2,b2)
2 defined on the edge V2V3 of Δ1. (d) NSDPs diagram

for I(a3,b3)
2 defined on the edge V1V3 of Δ1.

with p ∈ [0,∞) and p ∈ (−∞,∞) in (17) and (18), respectively.
Here,

L′
m =

√
|1− a2|

(
Lm − ab

1− a2

)
=

√
|1− a2|(Lm − xs)

m = 1, 2. For instance, the diagrams of NSDPs in (17) and
(18) with |a| = 1, |a| > 1, and |a| < 1, are demonstrated in
Fig. 5(b)–(d), which correspond to three NSDPs defined on three edges
of the triangular patch.

IV. PO FORMULATIONS ON TRIANGULAR PATCHES BY THE

NSDP METHOD

After finding the NSDPs in Section III, we give the result of PO
surface integral formulations in (4) on triangular patches. First, the
surface PO integral defined on Δ1 in Fig. 5(a) can be separated into
three line integrals

IΔ1 = I
(a1,b1)
2 + I

(a2,b2)
2 − I

(a3,b3)
2 . (19)

Then, on invoking the Cauchy’s integral formulation and following the
similar mathematical manipulations as those in [19], the above three
highly oscillatory line integrals can be rewritten as

I
(a1,b1)
2 = I

(a1,b1)
2,V1,x

− I
(a1,b1)
2,V2,x

(20)

I
(a2,b2)
2 = I

(a2,b2)
2,V2,x

+ I
(a2,b2)
2,Xr,2,x

− I
(a2,b2)
2,V3,x

+K2 ((V3,x, 0))−K2

(
A(2)

)
(21)

I
(a3,b3)
2 = I

(a3,b3)
2,V1,x

+ I
(a3,b3)
2,Xr,3,x

− I
(a3,b3)
2,V3,x

+K2 ((V3,x, 0))−K2

(
C(3)

)
. (22)

Here, in (20)–(22), Vn = (Vn,x,Vn,y) denotes the vertex points of
Δ1, n = 1, 2, 3. The variables Vn,x,Vn,y represent the x- and y- val-
ues of the vertex points Vn. A(2) and C(3) denote the intersection
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points between the NSDPs and the Stokes’ line [19]. The superscripts
“2” and “3” represent the second and third edges of the triangular
patch, as shown in Fig. 4. The resonance points Xr,m in Fig. 5(a) are
denoted as

Xr,m = (Xr,m,x,Xr,m,y) =

(
ambm
1− a2

m

,
bm

1− a2
m

)
(23)

am and bm correspond to the variables from three edges of Δ1, with
the formulations ym(x) = amx+ bm, m = 2, 3. The above I

(an,bn)
2,Vm,x

and I
(an,bn)
2,Xr,m,x

in (20)–(22) are similar as (30) and (31) given in
[19] except the different NSDPs in (17) are adopted. K2(x) takes the
formulation

K2(x) =
( π

2k
α1 +

π

4ik2
α4 − π

4ik2
α5

)
erfc

(√
ikx

)
+

( √
π

2ik
√−ik

α2 +

√
πx

2ik
√−ik

α4

)
e−ikx2

. (24)

Remark 2: ****The PO surface integral can always be reduced to
highly oscillatory integrals defined on polygonal edges. In other words,
for assembled triangular patches, internal vertex and resonance points’
contributions are canceled with each other [18].

A. Analysis of Critical-Point Contributions by the NSDP Method

When the working frequency is high, the PO-based EM fields in
(1) can be separated into high-frequency critical-point contributions
[2], [7]. In Fig. 5(a), these critical points consist of the SPP Xs (SPP),
the boundary resonance points Xr,m (RSPs) and the vertex points Vn

(Vexs), m = 2, 3, n = 1, 2, 3.
Similarly to the discussions in [20], on invoking the NSDP method,

the critical-point contributions for the PO integral in (19) take the
forms

I
(NSDP, SPP)
�1

=K2

(
C(3)

)
−K2

(
A(2)

)
︸ ︷︷ ︸

contributions from lStokes

(25)

I
(NSDP, RSPs)
�1

= I
(a2,b2)
2,Xr,2,x

− I
(a3,b3)
2,Xr,3,x︸ ︷︷ ︸

contributions from two RSPs

(26)

I
(NSDP, Vexs)
�1

= I
(a1,b1)
2,V1,x

− I
(a3,b3)
2,V1,x

+ I
(a2,b2)
2,V2,x

− I
(a1,b1)
2,V2,x︸ ︷︷ ︸

+ I
(a3,b3)
2,V3,x

− I
(a2,b2)
2,V3,x︸ ︷︷ ︸

contributions from three vertex points

. (27)

Here, I(NSDP, SPP)
�1

, I(NSDP, RSPs)
�1

, and I
(NSDP, Vexs)
�1

denote the contribu-
tions coming from Xs, Xr,m, and Vn, respectively. As a result,
comparing (25)–(27) with I�1 in (19), we arrive at

I�1 = I
(NSDP, SPP)
�1

+ I
(NSDP, RSPs)
�1

+ I
(NSDP, Vexs)
�1

. (28)

The above critical-point contributions via the HFA method are pre-
sented in [9], [14], and [20]. Furthermore, by the HFA theory, the
asymptotic behaviors of contributions coming from SPP, RSPs, and
vertices are of orders O

(
k−1

)
, O

(
k−1.5

)
and O

(
k−2

)
, respectively.

In other words, the specular reflection contribution by the SPP is the
dominant term in the PO-based EM fields [9], [14]. Furthermore, we
shall note the similarity and difference of the uniform asymptotic solu-
tions in [9] and [14]. By performing uniform asymptotic techniques
in [9] and [14] for high-frequency critical points, nonuniform leading
terms have the similar formulations. However, when the observation
points lie around shadow boundaries, formulations are different in [9]
and [14]. Thus, different accuracies in [9] and [14] will be generated
from asymptotic solutions.

Fig. 6. (a) PO surface integral I� defined on the triangular patches, which are
moving along the line l(x) = 0.5x denoted by the red color row. (b) Amplitude
of the PO surface integrals from the triangular patches that are moving along
the line l(x) = 0.5x, x ∈ [−3, 5].

V. NUMERICAL RESULTS

We first consider the coalescence of the critical points on the trian-
gular patch with the hyperbolic phase behavior, which are shown in
Fig. 6(a). The triangular patches are moving along a line l(x) = 0.5x,
x ∈ [−3, 5]. In particular, with x = −2, the edge V2V3 is governed
by the line y = −2x. Then, the SPP Xs and the resonance point Xr,3

come together. As shown in Fig. 6(b), the contributions by the NSDP
and brute force methods agree well with each other, even when Xs

and Xr,3 come together. To compare the results among the NSDP,
the HFA and the BF methods, we consider the case x = 0. Then, the
SPP lies inside of the triangular patch. The PO integral results are
IΔ = 0.0291, 0.0290, 0.0278 by the NSDP, BF, and HFA methods,
respectively.

We consider the hyperbolic surface in Fig. 2(a). The gov-
erning equation of the hyperbolic surface is f(x, y) = 1− 0.06(−x2 + xy + y2

)
. The resultant PO-based EM fields is expressed

in (1). ∂Ωxy is the quadrilateral domain V1V2V3V4 shown
in Fig. 2(b), with the vertex points V1 = (−5.6036, 0.7987),
V2 = (2.3455, 5.7115), V3 = (2.9254,−4.1142), and V4 =
(8.9043, 5.0974). The incident wave propagates along
r̂(i) =

[
0.5, 0.5,−√

2/2
]

direction, and the observation point is
set along the direction r̂ =

[√
2/4,

√
6/4,

√
2/2

]
.

By applying the NSDP method, we could generate the PO-based
EM fields results. Meanwhile, another way to generate PO-based EM
fields results is the HFA method [7], [9]. In this communication, we
consider the case that the critical points are isolated. Hence, we adopt
the nonuniform solutions for the PO-based EM fields. Meanwhile,
we note that critical-point transitional behaviors are neglected in the
asymptotic analysis, which leads to low-accuracy results generated for
the PO-based EM fields. If the uniform asymptotic technique with the
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Fig. 7. Comparisons of the RCS (dBsm unit) values of the PO-based EM fields
on the hyperbolic surface by using the NSDP and BF methods.

Fig. 8. Comparisons of the CPU time (second unit) for the PO-based EM fields
by using the NSDP and BF methods.

TABLE I
COMPARISONS OF THE ERRORS OF E(s)(r) RESULTS BY USING THE

NSDP AND HFA METHODS RELATIVE TO THE BF METHOD

UTD transition function is adopted, one could estimate high accuracy
as the consideration of transitional contributions for critical points. We
will consider the uniform-asymptotic technique in the future.

In Fig. 7, we apply the NSDP method to calculate the bistatic RCS
values of E(s)(r), which are in good agreement with the results gener-
ated by the BF method. Fig. 8 demonstrates the frequency-independent
computational effort for the scattered electric field. Finally, Table I
gives comparisons of the errors of E(s)(r) produced by NSDP and
HFA methods relative to the BF method. Compared with the HFA
method, the advantage on improving the scattered electric field accu-
racy by the NSDP method is again confirmed in Table I. In summary,
on invoking the proposed NSDP method, the PO-based EM fields on
the quadratic hyperbolic surface could be calculated with frequency-
independent workload and error controllable accuracy.

VI. CONCLUSION

In this communication, we propose the NSDP method to calculate
the PO-based EM fields on the quadratic hyperbolic surface. The scat-
tered electric field can be reduced to several highly oscillatory PO
surface integrals. By deforming the original PO integration path to the
NSDP on the complex plane, each PO integrand decays exponentially.
Extensive numerical experiments are given to show the efficiency of

the NSDP method. In conclusion, the NSDP method for calculating the
electric scattered field on the quadratic hyperbolic surface is frequency
independent and error controllable.
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A Novel Simple and Compact Microstrip-Fed Circularly
Polarized Wide Slot Antenna With Wide Axial Ratio

Bandwidth for C-Band Applications

Mubarak Sani Ellis, Zhiqin Zhao, Jiangniu Wu, Xiaoxiang Ding,
Zaiping Nie, and Qing-Huo Liu

Abstract—This communication presents a design of a new compact cir-
cularly polarized (CP) slot antenna fed by a microstrip feedline. The 3-dB
axial ratio band can be achieved by simply protruding a horizontal stub
from the ground plane toward the center of the wide slot (WS) and then
feeding the WS with a microstrip feedline positioned to the side of the WS,
underneath the protruded stub. The feedline and metallic stub are perpen-
dicular to each other, and they resemble a T shape when viewed from the
top. The proposed antenna is fabricated with an area of 25 × 25 mm2.
Measurement results show that the antenna attains an S11 ≤ −10 dB
impedance matching bandwidth of 90.2%, from 3.5 to 9.25 GHz, and a
broadband 3 dB-AR bandwidth of 40%, ranging from 4.6 to 6.9 GHz. A
peak gain of 0.8–4.5 dBi is achieved within the AR band. The proposed
antenna is suitable for circular polarization applications in C band.

Index Terms—Axial ratio, circularly polarized (CP), slot antenna.

I. INTRODUCTION

Recently, due to the increasing demands for communication sys-
tems, the research on small antennas with various radiating elements,
feeding structures, and polarizations have attracted enormous atten-
tions. Due to its advantages of better mobility and weather penetration
compared with linearly polarized (LP) antennas, the circularly polar-
ized (CP) antenna is getting popular in wireless communication
systems. In recent years, lots of researches have gone into designing
CP WS antennas because of the advantages of wide bandwidth, low
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TABLE I
CP BANDS AND SIZES OF SOME EXISTING RING- AND WIDE-SLOT

ANTENNAS

profile, and easy integration with monolithic microwave-integrated
circuits. The operating principle of CP antennas is to excite two orthog-
onal modes with equal amplitude and in-phase quadrature. This can
be achieved by introducing some symmetric and/or asymmetric per-
turbations into the wide-slot (WS) or ring-slot (RS) antenna [1]–[12].
These include embedding two L-ground strips on opposite corners of
a square-slot antenna [1], [2], and adding a third L-grounded strip in
the square slot to enhance the AR bandwidth [3]. Also utilizing per-
turbations in the forms of: feed lines [4]–[6], slot structures [7]–[10],
and array configurations [11], [12] have also been proposed. However,
antenna configurations of these designs are so complicated that they
lead to complexity in antenna designs and fabrications.

In this communication, a new, yet structurally simple, and compact
broadband CP antenna is proposed. The presented antenna consists of a
rectangular slot, a microstrip feedline, and a horizontal stub protruded
from the ground plane. A broadband CP operation can be achieved
by simply positioning the microstrip feedline beneath the extended
stub. The proposed antenna possesses a large AR bandwidth with its
simple configuration and compact structure. In this design, the 3-dB
AR bandwidth reaches as large as 2.3 GHz which is about 40% (rel-
ative to its center frequency of 5.75 GHz) to cover the WLAN (5.2,
5.8 GHz), WiMAX (5.5 GHz), and other wireless systems in C band.
Table I shows the performances of the proposed antenna and antennas
in references [1]–[12].

II. ANTENNA DESIGN

The geometry of the proposed CP slot antenna is illustrated in
Fig. 1. As shown in Fig. 1, the proposed antenna is fed by a 50−Ω
microstrip feedline printed on top of the FR4 substrate (relative permit-
tivity εr = 4.4, height = 1.6 mm). The width of the feedline is 3 mm.
The ground plane is printed on the bottom of the substrate. A large slot
is introduced in the ground plane of the antenna. A stub is then pro-
truded from the right side of the ground plane toward the center of the
slot. A gap is created on the ground plane above the feedline to reduce
coupling between the feedline and the ground plane. The overall size is
25× 25 mm2, and the antenna is printed on the xoy plane. To realize
broadband CP operation, the microstrip feedline is placed on the right
edge of the antenna beneath the protruded stub.

The evolution of the proposed antenna is depicted in Fig. 2 to
explain the CP performance of the antenna. Four antennas have been
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