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A New Conformal FDTD(2,4) Scheme for Modeling
Three-Dimensional Curved Perfectly

Conducting Objects
Wei Sha, Xianliang Wu, Zhixiang Huang, and Mingsheng Chen

Abstract—A new high-order conformal FDTD(2,4) scheme is
proposed to solve the electromagnetic scattering from 3-D curved
perfectly conducting objects. For electric field components, the
update equations do not need to be modified. For magnetic field
components, the inner loop is treated with the locally conformal
technique, and the outer loop is unmodified. Numerical results
demonstrate that the high-order conformal scheme can obtain
better numerical precision under coarse grid condition compared
with the low-order conformal method and the high-order stair-
casing approach, which in turn saves CPU time and memory.

Index Terms—Conformal technique, electromagnetic scattering,
high-order difference, staircasing approach.

I. INTRODUCTION

THE traditional finite-difference time-domain (FDTD)
method [1], which is explicit second-order-accurate in

both space and time, has been widely applied to electromag-
netic computation and simulation. However, the FDTD method
has two primary drawbacks. One is the inability to accurately
model curved complex surfaces and material discontinuities
by using the staircasing approach with structured grids, and
another is the significant accumulated errors from numerical
dispersion and anisotropy. Hence fine grids are required to
obtain satisfying numerical results, which leads to vast memory
requirements and high computational costs, especially for
electrically-large domains and for long-term simulation.

For solving the first problem, a variety of conformal tech-
niques have been proposed in [2]–[6]. For solving the second
problem, Fang put forward the staggered FDTD (2,4) scheme
[7], which can save computational resources by using coarse
grids. However, how to model the curved surfaces with the high-
order difference is an open question. In other words, is it pos-
sible that we can obtain both high accuracy and low dispersion
under curved boundary and coarse grid conditions?

In order to achieve the goal, the one-sided difference [8]
was studied. However, the strategy did not seem to consider
the shape of objects. Another method is the hybrid subgridding
technique [9]. Yet it must adopt spatial and temporal interpola-
tion strategies to eliminate the spurious reflections between the
coarse grids and the fine grids.
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In this letter, we propose a new high-order conformal FDTD
(2,4) scheme to solve the electromagnetic scattering from 3-D
curved perfectly conducting objects. The scheme can obtain sat-
isfying numerical results under coarse grid condition without
spatial or temporal interpolation.

II. HIGH-ORDER CONFORMAL SCHEME

The electric field components depend on the magnetic field
components, hence we only modify the update equations of the
magnetic fields, and keep those of electric fields unmodified.

The update equation for the proportional
field is given as
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where and are the space increments in the and coor-
dinate directions, is the time increment, and and are,
respectively, the permittivity and the permeability of free space.

For deriving the update equations of the magnetic fields,
we just modify the coefficients of electric field components
connected with the inner loop based on the following reasons:
1) Conformal mesh-generating technique for the high-order
FDTD(2,4) scheme is the same with the traditional low-order
locally conformal technique [3]. 2) The electric field com-
ponents connected with the inner loop place more important
part in updating the magnetic field components than those
connected with the outer loop.

The general Faraday’s law can be written as

(5)
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Fig. 1. The general Faraday’s loops for the staggered FDTD(2,4) method. The
dot denotes H . The four electric field components near from H link the inner
loopL , and those far fromH link the outer loopL . l and l are the side
lengths along the x and y directions outside the perfectly conducting object. The
gray region denotes the region inside the object.

Applying (5) and the locally conformal technique [3] to the
inner loop , we can get

(6)

where and are the side lengths along the and di-
rections outside the perfectly conducting object, and is the
area of the modified inner loop outside the object (see Fig. 1).

The outer loop is unmodified, and (5) can be converted to

(7)

Considering that the integral form of Maxwell’s equations is
identical to the differential form of Maxwell’s equations, the

update equation for field can be obtained by adding (6) mul-
tiplied by 9/8 to (7) multiplied by 1/8, i.e.,

(8)

To obtain stable and accurate numerical results, we set

(9)

where is the constant area of the unmodified inner loop ,
and is the threshold. The smaller results in better numerical
precision but smaller time increment to ensure the stability of
the scheme.

Under uniform space increment condition, a rigorous global
stability limit for the 3-D scattering problems can be given as

(10)

where is the maximum length of the four sides con-
nected with the inner loop .

III. NUMERICAL RESULTS

Without loss of generality, we assume that a plane wave of
frequency 300 MHz travels along the direction, the electric
field is polarized along the direction, and the uniform space
increment is adopted. The threshold is set to be 0.01, the
Courant-Friedrichs-Levy (CFL) number is chosen as 0.25, and
10-layered perfectly matched layer(PML) is employed to absorb
the outgoing wave. Furthermore, to obtain accurate far-field re-
sults, the high-order near-to-far-field (NFF) transformation [10]
and the trick reported in [11] are adopted.
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Fig. 2. Relative two-norm errors of bistatic RCS in E-plane for the low-order
conformal method, the high-order staircasing approach, and the high-order con-
formal scheme. (MoM solution is used as reference solution).

Fig. 3. H-plane bistatic RCS of the conducting sphere calculated by the low-
order conformal method, the high-order staircasing approach, and the high-order
conformal scheme.

The scattering from electrically-small conducting circular
cylinder of height 2 m and radius 1 m is considered. The
symmetrical axis of the cylinder is placed along the direction.
Fig. 2 shows the relative two-norm errors of bistatic radar cross
section (RCS) as a function of points per wavelength (PPW). It
can be seen that the high-order conformal scheme can obtain
better numerical precision than the high-order staircasing
approach and the low-order conformal method.

The next example considered is the scattering from electri-
cally-large conducting sphere of diameter 14 m. In particular,
we use only 7 PPW to model the curved surfaces. From Fig. 3,
compared with the low-order conformal method and the high-
order staircasing approach, the high-order conformal scheme
agrees with the analytical solution very well. The relative two-
norm errors of bistatic RCS in H-plane for the low-order con-

TABLE I
CONSUMED CPU TIME AND MEMORY UNDER THE

SAME RELATIVE TWO-NORM ERRORS CONDITION

formal method, the high-order staircasing approach, and the
high-order conformal scheme are, respectively, 7.3%, 12.3%,
and 0.85%.

Under the same relative two-norm errors condition, we
change the settings of the space increment and the CFL
number, and the CPU time and memory consumed by different
algorithms are recorded in Table I.

IV. CONCLUSION

Using the locally conformal technique and the fourth-order
staggered difference, the high-order conformal FDTD(2,4)
scheme is accurate and efficient for modeling the scattering
from 3-D curved perfectly conducting objects. In addition, the
decreased time increment caused by the conformal model can
be offset by using coarse grids.
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