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Abstract—To solve the low-frequency breakdown inherent from
the electric field integral equation (EFIE), an alternative new form
of the EFIE is proposed by using the Coulomb-gauge Green’s
function of quasi-static approximation. Different from the commonly
adopted Lorentz-gauge EFIE, the Coulomb-gauge EFIE separates
the solenoidal and irrotational surface currents explicitly, which
captures inductive and capacitive responses through electrodynamic
and electrostatic Green’s functions, respectively. By applying
existing techniques such as the loop-tree decomposition, frequency
normalization, and basis rearrangement, the Coulomb-gauge EFIE
also can remedy the low-frequency breakdown problem. Through
comparative studies between the Lorentz-gauge and Coulomb-gauge
EFIE approaches from mathematical, physical and numerical aspects,
the Coulomb-gauge EFIE approach shows the capability of solving
low-frequency problems and achieves almost the same accuracy and
computational costs compared to the Lorentz-gauge counterpart.

1. INTRODUCTION

The electric field integral equation (EFIE) method is one of commonly-
adopted methods for modern simulations of scattering, radiation,
and circuit problems [1, 2]. The popularity of the EFIE stems from
the efficient surface triangulation, excellent numerical precision, and
powerful capabilities to handle open and complex geometries. However,
when the frequency tends to zero, the method-of-moment (MoM)
solution of the EFIE using the Rao-Wilton-Glisson (RWG) basis
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functions [3] suffers from the low-frequency breakdown, where the
contribution from the vector potential is extremely imbalanced with
that from the scalar potential. As a result, the matrix representation
of the EFIE operator is highly ill-conditioned and cannot be inverted
reliably and efficiently.

Over the past few years, various approaches have been
proposed to overcome the problem. As a quasi-Helmholtz
decomposition and robust low-frequency solver, the loop-tree or loop-
star decomposition [4–8] separates the surface current into solenoidal
and irrotational parts to capture the inductance and capacitance
physics, respectively. After frequency normalization, however, the
matrix is still ill-conditioned giving rise to bad convergence especially
for a dense mesh. Hence, robust preconditioning techniques, either
based on the basis rearrangement [7] or incomplete factorization [9], are
required to lower the condition number of the matrix. Unfortunately,
these strategies indeed do not modify the spectrum properties of the
EFIE kernel whose eigenvalues agglomerate around the origin and
at infinity. Thanks to the self-regularizing feature of the EFIE, the
Calderón multiplicative preconditioner [10–12] incorporating with the
Buffa-Christiansen (BC) [13] or hierarchical basis functions [14] has
been introduced to shift the spectrum of the preconditioned EFIE
operator far away from both zero and infinity [15].

The recent developed augmented EFIE (A-EFIE) method [16–
18], which employs current and charge as independent unknowns, can
remedy the low-frequency breakdown and meanwhile avoid searching
for loop bases. Furthermore, a similar A-EFIE method in conjugation
with the Calderón multiplicative preconditioner [19] in nature removes
the internal resonance corruption and preserves other merits of the
EFIE.

One special method bridging electromagnetics and circuit theories
is the partial electrical element circuit (PEEC) method [25–28].
Interestingly, it starts with the EFIE but does not has the low-
frequency breakdown issue. This is due to the fact that it always
considers the loss term in the system and employs the modified
nodal analysis (MNA) to solve the resultant matrix equation [25, 26].
Hence, it obeys both Kirchhoff’s voltage law (KVL) and Kirchhoff’s
current law (KCL) simultaneously in its solving process. This is
equivalent to using the decoupled electric field and magnetic field for
low frequencies [7]. PEEC has been conveniently applied in both time
and frequency domains. And it has been successfully used for both
coupling and scattering problems.

One reason that motivates us to use EFIE based method instead
of the PEEC to solve low frequency problems is that we are looking
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for a unified method that could solve both coupling and scattering
problems based on the first principle supported by computational
electromagnetic methods. PEEC is more popularly used for the
coupling problem but not the scattering problem that is dominated by
the wave physics. EFIE based methods were more popularly used for
the scattering but not the coupling problem that is dominated by the
circuit physics. Because the SPICE solver does not general accepts the
retardation and does not favor densely coupled circuit network, most
PEEC applications are static or quasi-static. EFIE based methods can
use full wave dense matrixes and can be accelerated easily by many
existing computational electromagnetics methods [20–24].

All algorithms mentioned above formulate the EFIE using the
Lorentz-gauge Green’s function [4, 16, 19]. In this paper, we investigate
the Coulomb-gauge based EFIE and explore its application in solving
the low-frequency problem, which is a new method that was not
discussed before. It not only provides a novel low frequency EFIE
method, but also a comparative study for EFIE based on two different
gauges through physical interpretations and detailed numerical results.
Relative to PEEC, the proposed method has less number of unknowns
and provides a novel low-frequency solution for MOM based methods.
With the help of the quasi-static approximation of the Coulomb gauge
Green’s function, the Coulomb-gauge EFIE is reformulated with a
more elegant mathematical form and suitable to remedy the low-
frequency breakdown of the EFIE operator. It will also be shown that
most well-developed techniques adopted in the loop-tree or loop-star
method can be directly applied to the Coulomb-gauge EFIE at low
frequencies.

The paper is organized as follows. Section 2 describes the
mathematical foundations and physical interpretations of the EFIE
using the Coulomb-gauge Green’s function. Particularly, the quasi-
static version of the EFIE is reformulated and discretized by loop-
tree basis functions with the frequency normalization and basis
rearrangement strategies. Numerical examples are presented in
Section 3 for demonstrating the validity of the Coulomb-gauge EFIE
and comparing it to the Lorentz-gauge EFIE for the low-frequency
problem. Section 4 summarizes the paper.

2. THEORY

2.1. Lorentz and Coulomb Gauges

The introduction of auxiliary potentials is a common procedure in
dealing with electromagnetic problems. In this way one can recast
Maxwell’s equations into simple forms that can be numerically treated
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by a variety of techniques. Due to a lack of uniqueness in the definition
of potentials, we can conveniently impose conditions on potentials
without affecting the results of electromagnetic fields. Such choices
are gauges, and the most common ones are Lorentz and Coulomb
gauges [29].

From Maxwell’s equations, the scalar and vector potentials satisfy

∇2φ + jω(∇ ·A) = −ρ

ε
(1)

∇2A + k2A−∇ (∇ ·A + jωµεφ) = −µJ (2)

where ε and µ are the permittivity and permeability of homogeneous
space, and A and φ are the vector and scalar potentials, respectively.
Moreover, k = ω

√
µε is the wave number and ω is the angular

frequency. In addition, harmonic time convention ejωt is assumed in
this paper.

Using the Lorentz gauge ∇·AL = −jωµεφL, we will decouple the
pair of (1) and (2) and obtain the following two wave equations

∇2AL + k2AL = −µJ (3)

∇2φL + k2φL = −ρ

ε
=

1
jωε

∇ · J (4)

The superscript “L” denotes the Lorentz gauge.
Alternative gauge for potentials is the Coulomb or transverse

gauge, i.e., ∇ · AC = 0. Consequently, the scalar potential satisfies
the Poisson equation

∇2φC = −ρ

ε
=

1
jωε

∇ · J (5)

with the solution of

φC = − 1
4πjωε

∫

V ′

∇′ · J(r′)
| r− r′ | dr

′ (6)

where the superscript “C” denotes the Coulomb gauge. The scalar
potential is just the instantaneous Coulomb potential without the
phase delay, which is the origin of the name “Coulomb gauge”. The
vector potential satisfies the wave equation

∇2AC + k2AC = −µJ + jωµε∇φC (7)

According to the Helmholtz’ theorem, we can decompose the
current density (or any vector field) into a solenoidal (transverse) part
Jsol and an irrotational (lamellar or longitudinal) part Jirr

J = Jsol + Jirr (8)
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It has been shown that Jsol and Jirr could be constructed explicitly
as follows [29]

Jirr = − 1
4π
∇

∫

V ′

∇′ · J(r′)
| r− r′ | dr

′ (9)

Jsol =
1
4π
∇×

∫

V ′

∇′ × J(r′)
| r− r′ | dr′ (10)

Taking the gradient of (6) together with (9) yields

Jirr = jωε∇φC (11)

Substituting (11) into (7), we obtain

∇2AC + k2AC = −µJsol (12)

Here the source of the wave equation for AC can be expressed entirely
in terms of the solenoidal (transverse) current, which is different
from (3).

Critically different from the Lorentz gauge whose both potentials
propagate with finite speed and retardation effects, the scalar potential
under the Coulomb gauge is defined by the Poisson Equation (5).
It means that the scalar potential “propagates” instantaneously
everywhere in space. This is significantly different from the Lorentz
gauge case. As to the vector potential, it is directly contributed
from the solenoidal current Jsol through the Helmholtz Equation (12)
instead of the total current J. Based on (10), it is easily seen that
Jsol is of the volume distribution. From the equivalent principle and
extinction theorem, an inhomogeneous scattering problem involving a
perfect electric conductor (PEC) can be converted into a radiation
problem if we impress the induced current on the scatterer in the
homogeneous space excluding the scatterer. In view of the Lorentz
gauge, the equivalent surface current and charge can be regarded
as surface sources for the wave equations of potentials as shown
in (3) and (4). However, when the Coulomb gauge is adopted, the
solenoidal current Jsol in (12) will extend over all space due to its
nonlocal property from (10). Hence, regarding the Coulomb gauge,
the nonphysical solenoidal Jsol cannot be numerically quantified by
the surface integral equation (SIE) method.

2.2. Quasi-static Approximation of Coulomb Gauge Green’s
Function

Coulomb gauge Green’s function enables us to resolve the nonphysical
problem by replacing the solenoidal volume current Jsol with the
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surface current Js. The Green’s function equation pertaining to (12)
is

∇2ḠC
A + k2ḠC

A = −δ̄δδ
sol (r− r′) (13)

Notice that the Coulomb gauge dyadic Green’s function ḠC
A is

solenoidal because the solenoidal part of the Delta function is used
as the excitation source. The solenoidal Delta function δ̄δδ

sol = 1
4π∇ ×

∇×( Ī
R) is an everywhere nonzero function of positions, albeit the Delta

function δ̄δδ(r− r
′
) = − Ī

4π∇2 1
R is nonzero only at r = r′. The Coulomb

gauge Green’s function is essentially the solenoidal component of the
Lorentz gauge Green’s function that can be found by [30]

ḠC
A = ḠLsol

A (r, r′) =
∫

V
′′
δ̄δδ
sol (r− r

′′
) · ḠL

A(r
′′
, r′)dV

′′

=
1
4π
∇×∇× Ī

∫

V
′′

ḠL
A(r

′′
, r′)

| r− r′′ | dV
′′

= Īg(r, r′) +
1
k2
∇∇ (

g(r, r′)− gs(r, r′)
)

(14)

where g(r, r′) = e−jkR

4πR and gs(r, r′) = 1
4πR are the scalar

Green’s functions for the Helmholtz equation and Poisson equation,
respectively.

Using the Coulomb gauge Green’s function, the scattered electric
field Esca generated by the equivalent surface current Js on the PEC
is given as

Esca = −jωµ

∫

S′
ḠC

A(r, r′)Js(r′)dr′

+
1

jωε
∇

∫

S′
gs(r, r′)∇′ · Js(r′)dr′ (15)

Although the Coulomb gauge Green’s function has more complex
mathematical expression in comparison with the Lorentz gauge
Green’s function that is commonly employed in the mid-frequency
electromagnetic problem, we will demonstrate that the quasi-static
approximation of the Coulomb gauge Green’s function shows a very
elegant form and significant physical meaning for the low-frequency
problem.

The Helmholtz’ theorem can also be applied on a surface [31]. The
surface current density Js can be rigorously split into a solenoidal part
and an irrotational part, i.e.,

Js = Jsol
s + Jirr

s (16)
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It is worth mentioning that the solenoidal surface current Jsol
s is

fundamentally distinguished from the solenoidal volume current Jsol .
When the frequency is low, we have the quasi-static assumptions [1]

Jirr
s ∼ O(ω),

∣∣Jirr
s

∣∣ ¿
∣∣∣Jsol

s

∣∣∣ , ω → 0 (17)

Moreover, in the quasi-static regime, the operator ∇(g(r, r′)−gs(r, r′))
in (14) can be approximated with the Taylor expansion. Ignoring the
third-order term, we obtain

∇ (
g(r, r′)− gs(r, r′)

) ≈ ∇
(−jkR− (kR)2/2

4πR

)

= − k2

8π
∇(R) = − k2

8π
eR (18)

where eR = R/R is the unit vector of R. Substituting (16) and (18)
into (15), the vector potential in (15) becomes

AC(r) = µ

∫

S′

(
g(r, r′)− 1

8π
∇(eR)

)
·
(
Jsol

s (r′) + Jirr
s (r′)

)
dr′ (19)

With the help of integration by parts, (19) can be rewritten as

AC(r) = µ

∫

S′
g(r, r′)Jsol

s (r′)dr′ + µ

∫

S′
g(r, r′)Jirr

s (r′)dr′

−µ

∫

S′

1
8π

eR∇′ · Jirr
s (r′)dr′ (20)

The irrotational Jirr
s and its divergence are on the order of the

frequency ω, which are much smaller than the solenoidal Jsol
s . As

a result, the last two terms of (20) can be ignored under quasi-static
assumptions. Finally, the vector-potential term can be approximated
as

AC(r) ≈ µ

∫

S′
g(r, r′)Jsol

s (r′)dr′ (21)

The EFIE represented by the Coulomb gauge Green’s function at
low frequencies is now modified to be a more elegant form

−n̂×Einc(r) = n̂×
(
−jωµ

∫

S′
g(r, r′)Jsol

s (r′)dr′

+
1

jωε
∇

∫

S′
gs(r, r′)∇′ · Jirr

s (r′)dr′
)

(22)

where n̂ is the outward unit vector of the surface and Einc denotes the
incident electric field.
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In the right-hand side of (22), the first term captures the inductive
response corresponding to the magnetoquasistatic field produced
by the solenoidal (eddy) current; and the second term captures
the capacitive response corresponding to the electroquasistatic field
produced by the irrotational current. At the low frequency, the
irrotational term dominates over the solenoidal one leading to a null
space of the above EFIE, which resembles the EFIE using the Lorentz
gauge Green’s function [1]. When the low-frequency breakdown
problem inherent from the EFIE operator occurs, the matrix
representation of the operator becomes extremely ill-conditioned.

2.3. Frequency Normalization and Basis Rearrangement

The remedy to rectify the low-frequency breakdown is to solve the
problem in such a way that the inductive response and the capacitive
response are well separated and accurately balanced. We use the
quasi-Helmholtz decomposition adopted in the loop-tree and loop-
star algorithms [4] to separate the total current, and normalize the
produced matrix system to obtain a stable and balanced system with
a good condition number.

First, we expand the surface current as follows

Js(r′) =
Nl∑

n=1

ILnJLn(r′) +
Nt∑

n=1

ITnJTn(r′) (23)

where JLn(r′) is the loop basis function, JTn(r′) the tree basis function,
and Nl and Nt are respectively the number of the loop and tree
basis functions. The loop-tree basis functions can be spanned by a
superposition of the RWG basis functions

JL(r) = F̄LR · JRWG(r) (24)
JT (r) = F̄TR · JRWG(r) (25)

where JL(r) and JT (r) are the column vectors including JLn(r) and
JTn(r). Additionally, F̄LR and F̄TR are the connection matrices
between the loop-tree and RWG basis functions [32].

Then, substituting (23) into (22) and applying the Galerkin testing
procedure, we have the matrix equation[

Z̄LL 0̄
Z̄TL Z̄TT

]
·
[
IL

IT

]
=

[
VL

VT

]
(26)

where
Z̄LL = F̄LR · Z̄V

RWG · F̄t
LR (27)

Z̄LT = F̄LR · Z̄V
RWG · F̄t

TR (28)

Z̄TT = F̄TR · Z̄S
RWG · F̄t

TR (29)
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and

Z̄V
RWG = −jωµ〈JRWG(r), g(r, r′),Jt

RWG(r′)〉 (30)

Z̄S
RWG = − 1

jωε
〈∇ · JRWG(r), gs(r, r′),∇′ · Jt

RWG(r′)〉 (31)

Here the superscript t denotes the transpose of the matrix. Likewise,
the right-hand side of (26) can be represented by

VL = F̄LR · V̄RWG (32)
VT = F̄TR · V̄RWG (33)

where
V̄RWG = −〈JRWG(r),Einc(r)〉 (34)

Finally, frequency normalization is implemented to produce a well-
balanced matrix system

[
ω−1Z̄LL (O (1)) 0̄
Z̄TL (O (ω)) ωZ̄TT (O (1))

]
·
[

IL (O (1))
ω−1IT (O (1))

]

=
[
ω−1VL (O (1))

VT (O (1))

]
(35)

The above can be expressed compactly as

Z̄′ · I′ = V′ (36)

If we define

F̄′LR =
1√−jω

F̄LR (37)

F̄′TR =
√
−jωF̄TR (38)

the frequency-scaled impedance matrix Z̄′ is

Z̄′ =
[

F̄′LR · Z̄V
RWG · F̄

′t
LR 0̄

F̄′TR · Z̄V
RWG · F̄

′t
LR F̄′TR · Z̄S

RWG · F̄
′t
TR

]
(39)

Obviously, the matrix representation by the Coulomb gauge
Green’s function is simpler and easier to be handled compared with
that by the Lorentz gauge Green’s function. However, for solving large-
scale problems, the new matrix equation still converges very slowly
when an iterative solver is used. Basis rearrangement [17] is utilized to
further improve the convergence property of the matrix equation. It
transforms the tree basis for irrotational current density to the pulse
basis for charge density as it converges rapidly. When expanding the
surface charge density on a connected object in terms of the pulse
basis set, because of charge neutrality, the charge has only Nt degree
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of freedom. A mapping matrix between charge pulse basis and tree
expansion basis K̄ is thus defined as

−jωQ = K̄ · IT (40)

where Q is a column vector represents the charge density coefficients,
and K̄ ∈ RNt×Nt is a sparse matrix given by

[K]mn = 〈Pm(r),∇ ·Λn(r)〉 (41)

where Pm represents the normalized pulse basis. The iterative
solver is preferred for large scale computation. In this paper,
the Krylov subspace iterative solver generalized minimal residual
(GMRES) approach [33] is adopted with the restart number of 50.
For acceleration purpose, the final matrix equation may be written in
terms of a sequence of matrix-vector products as:

[
Ī 0̄
0̄

(
K̄t

)−1

]
· Z̄′ ·

[
Ī 0̄
0̄ K̄−1

]
·
[
IL

Q

]
=

[
w−1VL(

K̄t
)−1 ·VT

]
(42)

3. NUMERICAL RESULTS

This section presents three numerical examples to demonstrate
properties of the Coulomb-gauge EFIE and compare it to the Lorentz-
gauge EFIE for the low-frequency problem.

3.1. PEC Sphere

A canonical PEC sphere with the radius of 1 m is illuminated
by an x-polarized plane wave propagating along the z direction.
The sphere is discretized by triangular meshes involving 2427 inner
edges. Figure 1 shows the E-plane bistatic radar cross section (RCS)
at the frequency of 3 × 10−6 Hz calculated by the Coulomb-gauge
and Lorentz-gauge EFIE approaches. The numerical techniques as
described in Section 2.3, such as the loop-tree decomposition, frequency
normalization, and basis rearrangement, are implemented for both
approaches. The Coulomb-gauge and Lorentz-gauge EFIE approaches
agree very well with the Mie series solution. Hence, the proposed
method can solve the scattering problem at very low frequency.

Figure 2(a) shows the backward RCS as a function of the
incident frequency. The numerical precision of the Coulomb-gauge
EFIE approach is comparable to that of the Lorentz-gauge EFIE
approach at low frequencies. However, it should be noted that both
the Coulomb-gauge and Lorentz-gauge EFIE approaches using the
loop-tree decompositions suffer from the high-frequency breakdown
in contrast to the traditional EFIE method using the RWG basis
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Figure 1. The E-plane bistatic RCS of a PEC sphere with the radius
of 1 m at the frequency of 3× 10−6 Hz. The incident plane wave is x-
polarized and propagates along the z direction. The RCS is calculated
by the Coulomb-gauge and Lorentz-gauge EFIE approaches.

functions. And this happens when the size of the object becomes
comparable to the working wavelength.

Figure 2(b) illustrates the condition number of the impedance
matrix for three EFIE schemes. In comparison with the RWG
based EFIE method, the two loop-tree based EFIE approaches can
improve the condition number of the impedance matrix significantly
at low frequencies. The loop-tree based EFIE approaches push the
eigenvalues away from the origin and thus alleviate the singularity or
ill condition of the matrix.

Figure 2(c) presents the iteration numbers of the Lorentz-gauge
and Coulomb-gauge EFIE approaches under the same tolerance of
5 × 10−6 condition. At low frequencies, both approaches achieve
similar iteration numbers. When frequency keep increasing, the
iteration number of both approaches increase, which again indicates
the high-frequency breakdown problem of the loop-tree based EFIE
scheme. Interestingly, quite different from the Coulomb-gauge EFIE,
the iteration number of the Lorentz-gauge EFIE will significantly
increase as the frequency increases, which can be seen in Figure 2(c).
To understand the result, we compute the eigenvalue distributions of
the two loop-tree based EFIE approaches at the frequency of 30MHz as
shown in Figure 3. The Coulomb-gauge EFIE applying the quasi-static
approximation modifies the spectrum shape of the EFIE operator and
compresses the eigenvalues in a more compact manner.
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Figure 2. The simulation results for different EFIE schemes as a
function of the incident frequency. (a) The backward RCS. (b) The
condition number of the impedance matrix. (c) The number of
iterations under the same tolerance condition.

3.2. Spiral Inductor

To benchmark that the new method can be used to solve the low
frequency coupling type of problems, a spiral inductor is excited by a
delta-gap source with the working frequency of 1 kHz. The inductor
is backed by a ground plane with a size of 1.6m × 2.0m in the xoy
plane. The distance between the inductor and the ground plane is
0.1m. The width of the inductor is 0.15m. The excitation is placed
at one end of the inductor located at z = 0.05m. The other end of
the inductor is shorted to the ground. To evaluate the performances of
the Lorentz-gauge and Coulomb-gauge EFIE approaches for the dense
discretization breakdown problem, four different meshes, called A, B,
C, and D, are generated ranging from coarse to dense patterns. The
numbers of the RWG basis functions for the four meshes are 1028,
2298, 5430 and 9007, respectively.

Figure 4 plots the surface current distributions of the spiral
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(a) (b)

Figure 3. The eigenvalue distributions of the Coulomb-gauge and
Lorentz-gauge EFIE approaches at the frequency of 30 MHz denoted
by the arrows in Figure 2(c).

(a) (b)

Figure 4. The surface current distributions of the spiral inductor with
the dense mesh. (a) Lorentz-gauge EFIE. (b) Coulomb-gauge EFIE.

inductor with the dense mesh D. Obviously, both EFIE approaches
with the loop-tree decompositions can capture the low-frequency
circuit physics. The convergence behaviors of the GMRES solver
using different mesh discretizations are demonstrated in Figure 5. The
Coulomb-gauge EFIE approach converges slower as the mesh density
increases because the spectrum properties of the EFIE operator cannot
be changed by the frequency normalization and basis rearrangement
strategies. So does the Lorenz-gauge EFIE approach. Table 1 lists
the relevant computational information in detail. One can observe
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Figure 5. The convergence behaviors of the GMRES solver using
different mesh discretizations where A, B, C, and D range from coarse
to dense grids. The “Lo” and “Co” in the square brackets are the short
notations of the Lorentz gauge and Coulomb gauge.

Table 1. The computational information of a spiral inductor working
at 1 kHz. Nb and Ni are the number of the RWG basis functions
and that of iterations, respectively. Tf and Ti are the CPU time
respectively for the impedance matrix filling and each iteration step.
L denotes the calculated inductance of the spiral inductor. The “Lo”
and “Co” in the square brackets are the short notations of the Lorentz
gauge and Coulomb gauge.

Mesh A [Co] B [Co] C [Co] D [Co] D [Lo]
Nb 1028 2298 5403 9007 9007
Ni 29 39 57 76 76

Tf (S) 12 50 202 436 435
Ti (S) 0.034 0.051 0.192 0.526 0.526

L (10−2H) 4.16 4.02 3.90 3.85 3.85

several common features for both EFIE approaches. On one hand, the
inductance converges to a fixed value of 3.85 × 10−2 H when meshes
become denser and denser. On the other hand, the computational
costs of the Coulomb-gauge EFIE are almost the same as those of the
Lorenz-gauge EFIE. Hence, the proposed method can be used to solve
the low frequency coupling problem.
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3.3. Interconnector

To validate the new coulomb-gauge EFIE approach for capturing the
near field coupling that is important to IC and PCB technologies, an
interconnector shown in Figure 6 is analyzed. There are two layers
in the structure. Every finger on the top layer is connected with the
bottom one through a via. The structure is excited by a delta-gap
source located at the center of the top layer, as illustrated in Figure 6.
The detail geometry dimensions can be obtained from [34]. The color
map of Figure 6 also shows the calculated current distribution based
on the Coulomb-gauge.

Figure 6. An interconnector structure with complicated geometries.
The total size of the interconnector is 300µm × 200µm × 50µm.
The width and thickness of the strip are w = 10 µm and t = 5µm,
respectively. A Delta-gap voltage source is imposed at the center of
the top layer with a width of 20µm. The structure is discretized with
8724 RWG bases. By using the Coulomb-gauge EFIE approach, the
normalized current distribution of the interconnector at the frequency
of 3 GHz is also shown.

The frequency dependent input reactance calculated respectively
by the Lorentz-gauge and Coulomb-gauge EFIE approaches are listed
in Table 2. The results obtained by the High Frequency Structure
Simulator (HFSS) [35] software are also given as a reference. From the
data it can be found that the input reactance is inversely proportional
to frequency, which is exactly expected at the low frequency range. But
when the frequency reaches 100GHz (at which the size of the structure
is around 1/10 of the wavelength), the inductive reactance will become
significant. From this comparison, the Coulomb gauge based method
works almost equally well as the Lorentz gauge based solution.
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Table 2. An interconnector working at different frequencies is modeled
by both Lorentz gauge and Coulomb gauge EFIE approaches. X
denotes the calculated input reactance of the structure. Ni is the
number of iterations. The “Lo” and “Co” in square brackets are short
notations of the Lorentz gauge and Coulomb gauge.

Freq (GHz) 0.3 3 30 100
X (Ω) [Lo] 8.2× 104 8.2× 103 8.1× 102 2.12× 102

X (Ω) [Co] 8.2× 104 8.2× 103 8.2× 102 2.45× 102

X [HFSS] 8.32× 104 8.86× 103 8.76× 102 2.29× 102

Ni [Lo] 48 48 54 169
Ni [Co] 48 48 53 161

4. CONCLUSION

Using the Coulomb gauge, the electromagnetic fields can be expressed
in terms of the scalar potential with the source of the irrotational
current contributing only to the near-field and the vector potential
with the source of the solenoidal volume current attributing to the
transverse radiation fields. The Coulomb gauge Green’s function
conquers the difficulty in numerically quantifying the solenoidal volume
current extending over all the space and connects the equivalent
surface current with the scattered electrical field. Through the
quasi-static approximation of the Coulomb gauge Green’s function,
the corresponding EFIE, which separates irrotational and solenoidal
surface currents to capture circuit physics, can be applied to remedy
the low-frequency breakdown problem. Naturally integrated with
existing techniques, such as the loop-tree decomposition, frequency
normalization, and basis rearrangement, the Coulomb-gauge EFIE
achieves comparable accuracy and computational costs at low
frequencies compared to the Lorentz-gauge EFIE. As the frequency
increases, the Coulomb-gauge EFIE loses its accuracy but remains a
good condition of the impedance matrix. Benchmarks are provided to
demonstrate the discussed features of the Coulomb-gauge EFIE. This
work provides a different angle and method of looking at low frequency
problems of integral equations.
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