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Abstract: The electromagnetic modeling of practical finite periodic structures is a topic of growing interest.
Due to the truncation of the infinite periodic structures, surface waves will be excited and localized near
the discontinuous interfaces leading to the edge effect of finite structures. In this work, surface waves
are numerically disentangled from the propagating Bloch waves contributions. Based on the universally
exponential decay feature of the surface waves, a novel method is developed by connecting the solution
to the large finite periodic structure with that to a relatively small one resulting in low complexity and
memory consumption. The method numerically reconstructs propagating Bloch waves and surface waves
according to the Bloch-Floquet theorem of periodic structures and translation invariant properties of semi-
infinite periodic structures, respectively. Numerical examples are privided to validate the efficiency and
accuracy of the newly developed method.
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1. Introduction

Periodic structures (PSs) have attracted much attention in the past decades due to numerous applica-
tions such as metamaterials, antenna arrays, frequency selective surface (FSS), photonic band gap (PBG) or
electromagnetic band gap (EBG) structures, etc [1, 2]. Infinite PSs are impossible in a realistic fabrication.
When truncating infinite PSs, discontinuities occur at the interface and surface waves (SWs) will be excit-
ed according to mode conversion [3]. In finite PSs, only allowed Bloch waves (BWs) can propagate, and
SWs become evanescent and localized around the discontinuities, which leads to the edge effects of finite
PSs. The prediction of wave natures in the edge cells of finite PSs is an indispensable procedure during the
design process [4, 5].The conventional element-by-element method is rigorous and suitable for small finite
PSs. However, it requires heavy computational resources for very large ones. The well-established infinite
periodic approximation approach neglecting the edge effect, although reducing the computational domain
to a unit cell, is not sufficiently accurate for engineering applications.

To overcome the difficulties in simulating large finite PSs, two different categories of methods have
be proposed. The first category bypassed the difficulties by improving the computational capabilities of the
existing methods. Among them, the fast multipole method [6] and the domain decomposition method [7]
are very powerful for modeling large finite PSs. The other category of methods consider the edge effect
with the help of the information in an infinite array, i.e. the convolution of the infinite array solution with an
appropriate window function [8].

This paper aims to develop an efficient method for predicting the electromagnetic (EM) response of
large finite PSs accurately from that of relatively small ones. A leaky wave antenna is investigated by the
newly developed method. The results are compared to those calculated by the element-by-element method.
Excellent agreements are obtained and particularly the proposed method saves considerable computer re-
sources. The presence of SWs is critical for the low side-lobe antenna design.



2. Surface Waves in Finite Periodic Structures

It is known that BWs are normal modes of an infinite PS. However, in finite structures, the fields
are given by the superposition of BWs and additional SWs which are excited due to the truncation and
localized near the discontinuous interfaces. The BWs in infinite PSs are referred as infinite periodic Bloch
waves (IPBWs) to distinguish them from BWs in finite structures. To accurately model finite PSs, we
need to take the SWs into account. When the magnitude of SW is large and its decay rate is slow, the
edge effect is important and can’t be ignored. In our previous work, we have demonstrated that the SWs
decay exponentially and are invariant with respect to the increasing array size when the elements N of the
structures is sufficiently large for capturing the information of SWs [9, 10].

3. Field Reconstruction in Large Finite Periodic Structures

(a) (b)

Fig. 1. (a) Mechanism for the field reconstruction in large finite periodic structures from that of relative
small ones. (b) LWA geometry. The dielectric waveguide is perturbed by the grating inside the waveguide.
where nh=1.45, nwg = 1.67, np = 3.48, d = 2ℓ = 0.97 um, w = 1 um, h = 0.3 um, s = 20 um and
N = 60.

The basic idea for efficiently calculating large finite periodic structures is inspired by the universal
decay feature of SWs. For a sufficiently large layer number N , it is reasonable to assume that the center unit
cell only contains IPBWs. As shown in Fig. 1 (a), the center unit cell of the large finite periodic structure
is aligned with that of the small one. We assume that the small finite periodic structure is long enough at
the periodicity direction to guarantee invariant (converged) SWs. We only simulate the small structure by
using rigorous full-wave solvers and obtain its field distributions (or equivalent sources). The procedures to
reconstruct the field for the large structure are as follows:

First, the field distribution of the center unit cell of the large structure will exactly copy from that of the
small one. Second, the IPBW numbers kmB can be extracted by the eigenmode expansion method

E(r) =

m=∞∑
m=−∞

Em(r) exp(−jkmB x) (1)

where E can be electric or magnetic fields and Em are the periodic BW envelope functions: Em(x) =
Em(x+ P ). The BW vectors kmB can be retrieved by using a standard minimization algorithm

min
kB
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(2)

The IPBW vectors in both structures are the same and can be complex due to the radiation or intrinsic
(Ohmic) loss. Third, numerically propagate EM fields forward and backward at the IPBW region of the



large structure by using the extracted BW vectors based on Bloch-Floquet theorem.

E(x+ P ) = E(x) exp(−jkmBP ) (3)

Finally, reconstructing EM fields of the large structure at the surface wave regions by using the translation
invariant properties of semi-infinite PSs. With respect to the left (right) SW region, the right (left) IPBW
regions can be approximately regarded as semi-infinite PSs due to fast decayed SWs. So we have

EL
sw(x)

EL
IPBW (x± lP )

=
ES

sw(x)

ES
IPBW (x± lP )

(4)

where EL
sw and ES

sw are fields at the SW regions for large and small structures, respectively. EL
IPBW and

ES
IPBW are fields at the IPBW regions for large and small structures, respectively. lP is the distance between

the cell in the SW region and its most adjacent cell in the IPBW region (such as the distance between cell 1
and 3 in Fig. 1 (a)).

4. Numerical Examples

An optical leaky wave antenna (LWA) (See Fig. 1 (b)) is efficiently calculated by the developed method
[11]. Instead of calculating the original leaky wave antenna with N = 60, we calculate a relatively smaller
one with N = 30 by using the FDTD method. The middle 10 elements (n=11 to n=20) are considered as the
IPBW region. Two Bloch waves located on the third band propagating forward and backward are considered
in the IPBW region. Thus the field has the form of E(n) = a+E(11)e−jk+d(n−1) + a−E(11)e−jk−d(n−1).
By employ the least mean square interpolation, we get k+ = β − jα = −2.48e5 − j4.40e4, a+ = 1.097
and a− = −0.097. After getting the IPBWs of the small structure with N = 30, the field of the original
large structure with N = 60 can be reconstructed from the information of the N = 30 structure according
to Sec. 3.
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Fig. 2. Comparison of the far-field radiation patterns calculated by different methods.

The magnitude and phase of the field along the radiation aperture of the large finite PSs agree very well
with the element-by-element simulation results. Fig. 2 shows that the far-field radiation patterns obtained by
the proposed method are also in good agreement with the element-by-element results. The side-lobe around
−52◦ due to the presence of surface waves is not predicted by the infinite array method. Hence, the surface
wave effects are critical for predicting the side-lobes of LWA. The radiation pattern from the small structure
with N = 20 is also compared. Only small discrepancies exist which means the N = 30 structure is large
enough to capture all the SWs information. Table 1 compares the computational information of the LWA
with different perturbation elements. The proposed method can save lots of CPU time and memory since it
only needs to simulate a relatively small structure. Other examples will be given during the conference.



Table 1: The computational information of a LWA with different perturbation elements.

Elements N=20 N=30 N=60
Domain (µm2) 32.37× 43.97 42.07× 43.97 71.17× 43.97
Memory (MB) 47 62 104
Time steps (δt) 21440 27840 34240
CPU time (s) 381.65 782.47 1548.84

5. Conclusion

In sum, based on the universally rapid decay character of SWs, an efficient method for modeling large
finite PSs is developed. From a small finite PSs which contains all the information of SWs and IPBWs, we
can accurately predict the performance of large finite ones without ignoring the edge effect. The proposed
method is even more efficient for larger structures.

Acknowledgment

This work was supported in part by HK GRF (713011, 712612, and 711511), China NSFC 61271158,
and US 120018.

References

[1] C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of
three-dimensional photonic metamaterials,” Nat. Photonics, vol. 5, pp. 523–530, Sep. 2011.

[2] B. A. Munk, Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
[3] R. E. Collin, Field Theory of Guided Waves, McGraw-Hill, 1960.
[4] W. L. Ko and R. Mittra, “Scattering by a truncated periodic array,” IEEE Trans. Antennas Propagat.,

vol. 36, pp. 496–503, Apr. 1988.
[5] A. Cucini, M. Albani, and S. Maci, “Truncated Floquet wave full-wave (T(FW)2) analysis of large

periodic arrays of rectangular waveguides,” IEEE Trans. Antennas Propagat., vol. 51, pp. 1373–1385,
Jun. 2003.

[6] W. C. Chew, J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational
Electromagnetics, Norwood, MA: Artech House, 2001.

[7] J. B. Manges, J. W. Silvestro, and K. Zhao, “Finite-element analysis of infinite and finite arrays,”
International Journal of Microwave and Wireless Technologies, vol. 4, pp. 357–364, Jun. 2012.

[8] A. Ishimaru, R. Coe, G. Miller, and P. Geren, “Finite periodic structure approach to large scanning
array problems,” IEEE Trans. Antennas Propagat., vol. 33, pp. 1213–1220, Nov. 1985.

[9] X. Y. Z. Xiong, L. J. Jiang, V. A. Markel and I. Tsukerman, “Numerical Methods for Effective Material
Parameters of Periodic Electromagnetic Composites at the Surface and in the Bulk,” in Applied. Comp.
Electrom. Society, Monterey, CA, pp. 741–746, 2013.

[10] X. Y. Z. Xiong, L. J. Jiang, V. A. Markel and I. Tsukerman, “Surface waves in three-dimensional
electromagnetic composites and their effect on homogenization,” Opt. Express, vol. 21, pp. 10412–
10421, 2013.

[11] S. Campione, C. Guclu, Q. Song, O. Boyraz, and F. Capolino, “An optical leaky wave antenna with Si
perturbations inside a resonator for enhanced optical control of the radiation,” Opt. Express, vol. 20,
pp. 21305–21317, Sep. 2012.


