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ABSTRACT: A novel high-order time-domain scheme with a four-stage
optimized symplectic integrator propagator is presented for 3D electro-
magnetic scattering problems. The scheme is nondissipative and does
not require more storage than the classical finite-difference time-domain
(FDTD) method. The numerical results show the scheme has better sta-
bility and more efficiency than the classical FDTD method. © 2006
Wiley Periodicals, Inc. Microwave Opt Technol Lett 48: 1123–1125,
2006; Published online in Wiley InterScience (www.interscience.wiley.
com). DOI 10.1002/mop.21563

Key words: high-order time-domain scheme; symplectic integrator
propagator; finite-difference time-domain (FDTD)

1. INTRODUCTION

As the most standard method, the classical finite-difference time-
domain (FDTD) method, which is 2nd-order accurate both in space
and time, has been thoroughly established and widely used in
computational electromagnetics (CEM) up to the present [1–3].
Unfortunately, for electrically large domains and late-time analy-
sis, the classical Yee method begins to show its limitations due to
the accumulation of phase errors. One solution is to use high-order
schemes. For example, in the work of Fang [4], a 4th-order central-
difference approximation is proposed in conjugation with the Yee
cell [1] and a modified 4th-order leapfrog integrator is employed.
In deriving Fang’s method, a 3rd-order correctional temporal de-
rivative was introduced and then converted into 3rd-order spatial
derivatives through repeated application of the Maxwell’s equa-
tions. So the method is difficult to deal with perfectly matched
layer (PML) absorbing boundary conditions [5] for simulating
unbounded domains and in calculating the varying of the permit-
tivity or permeability in inhomogeneous domains. Another solu-
tion is to make use of the explicit four-stage Runge–Kutta inte-
grator to approximate the temporal derivatives together with a
compact central-difference approximation with the Yee cell to the
space derivatives in the Maxwell’s equations [6]. It should be
noted, however, that the method produces not only phase error, but
also amplitude error. Moreover, it requires additional memory for
temporary storage of data for the internal stages.

Symplectic methods include a variety of different time-discreti-
zation methods designed to preserve the global symplectic struc-
ture of the phase space for a Hamiltonian system. They show
substantial benefits in numerical computation for a Hamiltonian
system, especially in long-term simulations. Since the Maxwell’s
equations can be written as a system of an infinite-dimensional
Hamiltonian system, the proper solution should be obtained using
symplectic methods, which preserve the symplectic structure in the
time direction. Recently, symplectic methods have been adopted
for use in CEM. The advantages of symplectic methods have been
verified in [7–12]. The application of symplectic integrator prop-
agator for solving Maxwell’s Equations was made in [7] to obtain
a 4th-order symplectic FDTD method, and in [13] an optimized
symplectic integrator propagator coefficients was presented. In this
paper, we make use of the four-stage optimized propagator coef-
ficients in [13] to discretize 3D Maxwell’s equations in the time
direction, and use a 4th-order difference operator to discretize the
1st-order space differential operators directly. The bistatic radar
cross section (RCS) of a dielectric sphere are computed using the
present scheme for the first time.

2. THE THEORY

Maxwell’s equations in an isotropic and sourceless medium can be
written in matrix form as

�

�t �H
E� � �A � B��H

E�, (1)

A � ����1�*I3 ���1R
{0}3�3 {0}3�3

�, B � �{0}3�3 {0}3�3

��1R ���1�I3
�, (2)

where � and � are the respective permeability and permittivity, �
and �* are the respective electric and magnetic conductivities,
{0}3�3 is the 3 � 3 null matrix, I3 is the 3 � 3 unit matrix, R is
the 3 � 3 matrix representing the 3D curl operator.
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Since the matrices A and B do not commute (that is, AB �
BA). So in the time direction, after the temporal increment �t, the
symplectic integrator propagator can be adopted to approximate

exp��t�A � B�� � �
l�1

m

exp�Dl�tB�exp�Cl�tA� � O��t
n�1�, (3)

where Cl and Dl are constant coefficients of the propagator. In this
paper, particularly, we use the four-stage optimized propagator
coefficients in [13].

The propagators can be calculated as follows:

exp��tA� � �exp��t�*

� �I3

1 � exp��t�*

� �
�*

R

{0}3�3 I3

�, (4)

exp��tB� � �
I3 {0}3�3

1 � exp��
�t�

� �
�

R
exp��

�t�

� �I3�. (5)

As for the space direction, we use Yee’s cell [1] and a 4th-order
difference operator to discretize the 1st-order space differential
operators as

� �f

� x� �
27� fi�1/ 2 � fi�1/ 2� � fi�3/ 2 � fi�3/ 2

24�x
. (6)

Thus, the proposed scheme is referred to as a novel high-order
time-domain scheme.

In the sourceless and lossless space, as an example, the detailed
expressions of the x component of the normalized E� , that is, E� �
	�0/�0 E, in the scheme can be derived as

E� x
n�l/4� i �

1

2
, j, k� � E� x

n�l/4� i �
1

2
, j, k� �

1

�r
� �Coef1 � �Hz

n��l�1�/4�i �
1

2
, j �

1

2
, k� � Hz

n��l�1�/4�i �
1

2
, j �

1

2
, k�

� Hy
n��l�1�/4�i �

1

2
, j, k �

1

2� � Hy
n��l�1�/4�i �

1

2
, j, k �

1

2�	 � Coef2 � �Hz
n��l�1�/4�i �

1

2
, j �

3

2
, k� � Hz

n��l�1�/4�i �
1

2
, j �

3

2
, k�

� Hy
n��l�1�/4�i �

1

2
, j, k �

3

2� � Hy
n��l�1�/4�1 �

1

2
, j, k �

3

2�	
, (7)

Coef1 �
9

8
Dl � CFL, (8)

Coef2 �
�1

24
Dl � CFL, (9)

CFL �
�t

�s � ��0�0

, (10)

where n � l/4 is the lth stage calculation after the nth step, �r is
the local relative permittivity at point (i � 1/ 2, j, k), and � �
�r�0, CFL is the Courant–Friedrichs–Levy number, and �t and �s

are the temporal and uniform spatial increment, respectively. In the
following numerical examples, we use a similar technique to
discretize a 1D incident field based on a 4th-order approximation,
and the total-field and scattered-field (TF-SF) formulation is re-
vised according to the requirements of consistency between TF-SF
boundaries. The high-order PML absorbing boundary condition is
employed to solve unbounded electromagnetic scattering prob-
lems. In order to obtain the values of scattered fields on every
cell’s center, high-order cubic interpolation is adopted here, and
high-order near-to-far-field transformation is implemented to ob-
tain the bistatic RCS.

3. NUMERICAL RESULTS

Consider a dielectric sphere illuminated by a plane wave propa-
gating in the z direction and E-polarized in the x direction. The
frequency of the incident wave is 300 MHz. The sphere has a
diameter of 1.0 m, relative permittivity �r � 4, and a conductivity
of 0.3. The size of the cell is 5.0 cm. The total computational

domain is 83 � 83 � 83 cells, the total field occupies 34 � 34 �
34 cells, and 10 PML layers are implemented. A Mie series is
presented as an analytical solution. Figure 1 shows the bistatic
RCS in the E-plane simulated within 1700 time steps. The results
computed by our scheme and FDTD are in very good agreement
with the analytical solution when CFL is 0.5. The global relative
root-mean-squares RCS error is 0.2123 using our scheme, as
compared to 0.2247 using the classical FDTD method. In Figure 2,
the results calculated by the FDTD method fail to be consistent
with the analytical solution where CFL � 0.8 and 1.0 (
(1/	3),
the limit of CFL is classical FDTD method), while our scheme still
complies with the analytical solution. Clearly, the results demon-
strate that the present scheme has better stability compared with

Figure 1 E-plane bistatic RCS of the dielectric sphere with CFL � 0.5
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the classical FDTD method and the error achieved by our scheme
is smaller than that by the classical FDTD method.

4. CONCLUSION

A novel high-order time-domain scheme has been presented. The
scheme was obtained by discretization of Maxwell’s equations
with a four-stage optimized symplectic integrator propagator in the
time direction, and a 4th-order difference operator in order to
discretize the 1st-order space differential operators directly. The
scheme is nondissipative and does not require more storage than
the classical FDTD method. Especially, the scheme has better
stability and more efficiency than the classical FDTD method.

The major shortcoming of the scheme is that it consumes more
CPU time than the classical FDTD method when the same cell size
is used. An effective parallel algorithm is an open question for
further study.
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ABSTRACT: A novel beeline compact microstrip resonant cell (BC-
MRC) is proposed in this paper. Its photonic bandgap and slow-wave
effect are evaluated. The compact configuration presents superbroad
stop-band and improved slow-wave characteristics. A low-pass filter,
consisting of three BCMRCs connected in series, is designed and fabri-
cated. The filter has the advantages of low insertion loss in the pass-
band, sharp, high, and wide rejection in the stop-band, and compact
size. Good agreement between the experimental and simulated results is
achieved. © 2006 Wiley Periodicals, Inc. Microwave Opt Technol Lett
48: 1125–1127, 2006; Published online in Wiley InterScience (www.
interscience.wiley.com). DOI 10.1002/mop.21562
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1. INTRODUCTION

Low-pass filters have been studied and exploited extensively as a
key block in modern communication systems. Conventional mi-
crostrip low-pass filters (LPFs) have deep low- and high-imped-
ance lines and serious discontinuities between them, or open stubs
connected to junction elements. To remove these disadvantages,
there has been much effort to develop a variety of compact
microstrip low-pass filters using periodic structures such as pho-
tonic bandgap (BPG) and defected ground structure (DGS). Mi-
crostrip transmission lines incorporating a BPG or DGS structure
exhibit bandstop and slow-wave characteristics, which can be
exploited to reject unwanted frequency and to reduce the dimen-
sions of the microstrip structure. One of the important properties of
PBG and DGS is the increased slow-wave effect, which is caused
by the equivalent inductance and capacitance. Hence, transmission

Figure 2 E-plane bistatic RCS of the dielectric sphere with different
CFL number
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