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Abstract—1t is well known that Green’s function can be expressed
by multipole expansion, plane-wave expansion, and exponential expan-
sion (spectral representation). These three expansions constitute of the
foundations of the fast multipole algorithm (FMA). The plane-wave
expansion has the low-frequency breakdown issue due to its failure in
capturing the evanescent spectra, while the multipole expansion is inef-
ficient at high frequencies. The spectral representation usually involves
in direction-dependent issue. In this communication, the 2-D FMA is
interpreted as Parseval’s theorem in Fourier transform. To achieve a
stable and accurate transition between the multipole expansion and
the plane-wave expansion, a novel diagonalization in the 2-D FMA is
proposed with scaled special functions based on a discrete Fourier
transform. A wideband fast algorithm with high accuracies can be
achieved efficiently.

Index Terms— Discrete Fourier transform (DFT), multipole expansion,
Parseval’s theorem, plane-wave expansion.

I. INTRODUCTION

The fast multipole algorithm (FMA) has been proposed for two
decades because of its initial version for solving coulombic interac-
tions in large-scale particle problems [1], [2]. A lot of research has
made contributions to the study in FMA, among which the multi-
level FMA with interpolation and anterpolation is the most adopted
one [3], [4], which is extended to mixed-form FMA and applied to
dielectric problems [5], [6]. It can be used to solve the problems of
three billion unknowns with the advancements in parallel computer
hardware and efficient implementations [7]. Less attention is paid to
2-D FMA since it is easier, less complicated, and even less applicable
to real situations than the 3-D counterpart. A normalized plane-wave
method for 2-D Helmbholtz problems has been proposed for a wide-
band algorithm [8]. Recent studies in devices with dielectric materials
and imaging with inverse scattering problems require a fast and
efficient algorithm for inhomogeneous media. The 2-D FMA with
the plane-wave expansion has been successfully incorporated for fast
full-wave tomographic image reconstruction, where the Helmholtz
equation is solved without any wave approximation [9]. However,
these implementations suffer from the low-frequency breakdown
and therefore cannot be employed for many ultrasound and seismic

Manuscript received December 24, 2017; revised June 27, 2018; accepted
August 23, 2018. Date of publication September 26, 2018; date of current
version November 30, 2018. This work was supported in part by the NCSA
Petascale Application Improvement Discovery Program and in part by NSF
under Grant EECS 1609195. (Corresponding author: Weng Cho Chew.)

L. L. Meng, M. Hidayetoglu, and T. Xia are with the Department of
Electrical and Computer Engineering, University of Illinois of Urbana—
Champaign, Urbana, IL 61820 USA (e-mail: Imeng9 @illinois.edu; hidayet2 @
illinois.edu; tianxia3 @illinois.edu).

W. E. I. Sha is with the College of Information Science and Elec-
tronic Engineering, Zhejiang University, Hangzhou 310027, China (e-mail:
weisha@zju.edu.cn).

L. J. Jiang is with the Department of Electrical and Electronic Engineering,
The University of Hong Kong, Hong Kong (e-mail: jianglj@hku.hk).

W. C. Chew is with the Department of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN 47907 USA (e-mail:
wcchew @purdue.edu).

Color versions of one or more of the figures in this communication are
available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAP.2018.2872167

imaging methods where the incident wave is a pulse with a wide
bandwidth. Therefore, a scalable, wideband FMA solver is highly
desirable for real-world imaging applications. Besides, the study of
the 2-D FMA provides insights for the solutions to the 3-D case,
as they share the same physics.

The addition theorem of Green’s function can be interpreted as
Parseval’s theorem in Fourier transform for 2-D cases [4]. This
naturally leads to the two forms of FMA, i.e., multipole expansion in
coordinate space and plane-wave expansion in Fourier space. Then,
the diagonalization of FMA from a dense matrix in the multipole
expansion to a diagonal matrix in the plane-wave expansion can be
taken as the transformation of a convolution in coordinate space
to an ordinary multiplication in Fourier space, which reduces the
computational complexity greatly. The plane-wave expansion has
the low-frequency breakdown issue due to its failure in capturing
the evanescent spectra. Mathematically, it is because of a finite
summation of Hankel functions with super large values when the
argument is close to the singularity point. Meanwhile, the multi-
pole expansion is inefficient at high frequency since higher order
multipoles are required, which brings in an impractical cost in
the computation of dense matrices. Similar scenarios exist in the
3-D case. A broadband 3-D FMA can be achieved by the enhanced
mixed-form FMA with rotation matrices in high-order multipoles [5]
or by the approximated diagonalization of Green’s function with
a normalization technique [10], [11]. The spectral representation of
Green’s function can also achieve a broadband scheme by express-
ing the fields with both propagating and evanescent parts explic-
itly. To find an efficient integral path in spectral representation,
it introduces direction-dependence issue (six directions have to be
considered) that requires other techniques (such as rotation [12]
and QR decomposition-algorithm [13]) or more memory storage and
operations in an FMA procedure [14].

In this communication, we focus on the 2-D case due to its
potential applications mentioned before. Besides, we prefer not to
introduce the direction-dependence issue; therefore, the spectral rep-
resentation in the 2-D case is not considered here. To remedy the gap
between them, a novel diagonalization is proposed in this communi-
cation based on the aforementioned idea of Fourier transform with
scaled special functions. This is different from the derivations in [8],
which inserted identities of Kronecker delta function. To clarify
the novelty of this communication, it is noted that the proposed
idea to achieve a broadband FMA is essentially different from the
work [10] (in which the approximated formula of Bessel functions
is used), though both of them use the normalization technique. The
translators in multipole expansions are set up as a set of Fourier
coefficients with a scaling parameter, and therefore, there is no dense
matrix anymore. Then, the subsequent aggregation, translation, and
disaggregation are calculated in Fourier space. Since the Hankel
functions have been normalized, the breakdown issue is overcome
in the gap region with comparable complexity in the plane-wave
expansion. The rest of this communication is organized as follows.
Section II gives the derivation of this novel diagonalization and the
numerical treatments. In Section III, numerical analysis is provided.
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The proposed broadband FMA is applied to the volume integral
equation (VIE) [15] to study the scattering of dielectric cylinders
in 2-D photonic crystals. The analysis of defect modes serves as the
applications in low-frequency regime. On the other hand, the study
of wave propagation in photonic crystal waveguides plays a role in
the applications for high-frequency regime. Section IV concludes the
algorithm and discusses its extensions for the 3-D case.

II. THEORY OF COMBINED-FORM FAST MULTIPOLE ALGORITHM

In this section, the conventional diagonalization in 2-D FMA is
briefly introduced based on the interpretation of Parseval’s theorem.
Then, the discrete Fourier transform (DFT) FMA is proposed with
scaled special functions. Afterward, its extension to multilevel struc-
tures and conversion to the plane-wave expansion are given.

A. Parseval’s Theorem and Diagonalization in FMA

According to the addition theorem, the factorization of Green’s
function has the following multipole expansion [4], if p;; = p;; +
prit Pt
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The radiation pattern {d,} and the receiving pattern {a;} in the
multipole expansion are the Fourier coefficients with ein(¢—m/2)
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which are actually the radiation pattern and receiving pattern in
the plane-wave expansion. The inner summation over n of (1) is
a convolution, which is a product in Fourier space. The periodic
function associated with Hankel functions in a Fourier series form
can be expressed as
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Invoking Parseval’s theorem to (1), we can write Green’s function
as
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Equation (10) is also named plane-wave expansions of Green’s
function, which is based on diagonal matrix calculations.

B. Diagonalization With Scaled Special Functions

Although the diagonalization of the multipole expansion reduces
the computation cost greatly (from dense matrices to diagonal matri-
ces), the plane-wave expansion has the low-frequency breakdown
issue. This can be explained from two factors in mathematics. One is
the summation in a(¢) [see (11)] that is divergent due to the singular
property of the Hankel function for small arguments. The other one
is the inaccuracy of extracting super small values from exponential
functions (as the radiation pattern in the plane-wave expansion)
because of machine precision. The normalization technique can be
applied to scale the Hankel function. However, if we normalize those
Fourier coefficients, the analytical relation of Fourier pairs is not
approachable. We can use DFT to calculate the periodic functions
in Fourier space numerically. We modify a;,, ¢;, and d,; to standard
form, i.e.,

al/n = Jm(kpjl/)eiim(gbj//7”)e*im7r/2 (12)
= Hrgl)(kpl/l)e*inif’///e*i”ﬂﬂ (13)

and
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Furthermore, we split the normalization into two parts based on
the sign of the subscripts of the Hankel functions. It is easier to see
the cancellation of the normalization from the multipole expansion
of Green’s function
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where ¢ is the normalization factor (0 < ¢ < 1). The value of
t is determined according to the asymptotic form of the Hankel
function and its maximum value for a certain argument as ¢t =
(Cmax/all)l/P, where Cy,qx is a preset constant, used to confine
the maximum magnitude of the Hankel function within the range 0 ~
Cinayx- For instance, Cj,4x can be set as 1.0E2; then, the magnitude
values of all the normalized Hankel functions are smaller than 1.0E2,
eliminating those extremely large values in unnormalized Hankel
functions.

To apply DFT, the normalized Fourier coefficients for the positive
part are

Gy = apyt ™" = I (kpjy)e " T mimT/2mm (16
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Fig. 1. (a) Configuration of the test for a set of point-to-point. (b) Error com-

parisons for the one-level multipole expansion, DFT-FMA, and plane-wave
expansion.

For the negative part, we have
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Now, we can write the diagonalization of normalized multipole
expansions as
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(22)

where F denotes the DFT. In implementation, we can use fast Fourier
transform (FFT) to accelerate the algorithm further.

C. Scheme for Wideband Algorithm

The DFT-FMA has the same complexity as the plane-wave expan-
sion. It is stable at low frequency where the plane-wave expan-
sion fails. Error analysis for one-level multipole expansion (named
low frequency (LF)-FMA in convention), DFT-FMA, and plane-wave
expansion can be found in Fig. 1(b) where the worst case is studied
[radiation and receiving points are the diagonal vertexes of the buffer
box as Fig. 1(a) shows].

The multilevel scheme makes the algorithm as a fast solver. Since
the singular property of the Hankel function is rather sensitive to the
argument in low-frequency regime, different normalization factors
should be used at each level. For one matrix-vector product (MVP)
operation, the radiation patterns start as unnormalized Fourier coeffi-
cients. During the process of aggregation, those Fourier coefficients
from the children level are normalized in both negative and positive
forms and then shifted with negative and positive outer-to-outer (020)
translators. Then, the renormalization is applied to the aggregated
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radiation pattern, making them as unnormalized Fourier coefficients
in the parent level.

Ideally, the set of Fourier coefficients recovered from the negative
normalization should be equal to the set from the positive one.
However, due to the finite machine precision, the renormalization
introduces errors (see Fig. 2).

The accurate recovered coefficients can be obtained by combining
the left half from the positive normalization and the right half from the
negative normalization (see the black cross line in Fig. 2). Assuming
that {u,} is the set of Fourier coefficients in the parent level, then,
the 020 translation can be expressed as the following compact form:

(un) = [81- ™"y - [F11- BT [F - {dje ) + 11 = 3]
Aty R B LR {dye

where [F] and [F]~! denote the operations of Fourier transform and
inverse Fourier transform, respectively. Symbolic matrices [S] and
[I — S] represent the manipulation of taking the proper half parts
from the negative and positive renormalized coefficients.

A similar process happens during the outer-to-inner translation
in the DFT-FMA. When the ratio of box size over the wavelength
at a certain level enters the middle-frequency regime (for instance,
the ratio of 2.0 in Fig. 1), no normalization is required, since the
plane-wave expansion works very well. Then, the stored Fourier
coefficients are transformed to the plane-wave form followed by the
020 shifting. Fig. 3 shows the relative error of the radiation pattern
generated from the combined coefficients, recovered coefficients only
from the negative normalization, and recovered coefficients only from

(23)
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Fig. 4. Multilevel structure (partial points shown).
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Fig. 5. Normalized memory for FMA setup in the LF-FMA and the
DFT-FMA.

the positive normalization in reference to the analytical plane-wave
expression. It can be found that the conversion from the DFT-FMA
to the plane-wave expansion is of high accuracy.

It should be noted that the disaggregation part is the transpose
conjugate of the aggregation part, and thus, we can arrive at a
wideband multilevel algorithm with high accuracies.

III. NUMERICAL RESULTS

Numerical analyses of the pure DFT-FMA and the aforementioned
FMA with a combination of different forms (denoted as Comb-form-
FMA, in which the DFT-FMA serves in the transition region between
the multipole expansion and the plane-wave expansion) are given in
this section. Then, this new wideband fast technique is applied to the
VIE to solve the scattering problems of dielectric cylinders in 2-D
photonic crystals.

A. Complexities and Error Analysis of DFT-FMA

First, we compare the performance of the DFT-FMA with the
multipole expansion by changing the number of levels when the leaf
box size is fixed (this changes the number of unknowns). The source
points and field points are distributed on each grid of the whole
domain. A simple illustration of the multilevel structure is given
in Fig. 4, where only partial points are shown. Figs. 5 and 6 show
the normalized memory cost and time cost for the FMA setup with
the number of harmonics of 32, 40, and 58. It can be seen that the
DFT-FMA reduces both the memory and time cost greatly. The Larger
number of harmonics results in larger difference. The normalized
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time cost for MVP is shown in Fig. 7, in which the difference
between the LF-FMA and the DFT-FMA is not as huge as the time
cost in the FMA setup due to the computation of normalization and
renormalization, FFT and inverse FFT for each translation.

The error analysis can be found in Fig. 8 with the number of levels
as 4. Similar to the error of one-level case (see Fig. 1) in Section II,
the plane-wave expansion has the low-frequency breakdown issue,
and the LF-FMA is inefficient in the middle-frequency regime.
However, the Comb-form-FMA works well for the whole range of
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(2)

(b)

)

(d) (e)

Fig. 9. (a) Photonic crystals with a centered defect. (b) Mode 1: quadrupole
(odd-odd). (c) Mode 2: quadrupole (even—even). (d) Mode 3: monopole
(second order). (e) Mode 4: hexapole (even—odd).

frequency. Note that, the accuracy of Comb-form-FMA is slightly
smaller than the LF-FMA. This is because the machine precision of
the inverse FFT cannot recover those extremely small values in the
radiation pattern (or the receiving pattern). Overall, the Comb-form-
FMA can achieve a wideband algorithm with high accuracy and less
computation cost.

B. Defect Modes in Photonic Crystals

The defect modes are the localized states in the bandgap that can
be generated by a point defect. To verify that the proposed DFT-FMA
works well in the low-frequency regime, we apply it into the VIE to
identify the defect modes in 2-D photonic crystals (on xy plane).
Here, the TM modes ({E, Hy, Hy}) are studied as an example.
All the modes can be excited by an incident plane wave along a
nonsymmetric direction of the crystal [16]. We choose the incident
angle of the plane wave to be 60° to excite all the modes. The 2-D
photonic crystals with a defect at the center can be found in Fig. 9(a),
containing GaAs rods with the permittivity of 11.56. The radii of the
defect rod and the regular rod are 0.6a and 0.2a, where the lattice
length a is 1 xm. Note that, for our simulation, a supercell approach is
adopted. In FMA, the ratio of the box size over the wavelength at the
leaf level is set as 0.025 with the resolution of the grids as 0.0025. The
number of levels is 7. By choosing the normalized frequency wa/2z ¢
to be 0.2970, 0.3190, 0.3345, and 0.3916, we can excite quadrupole
(odd—odd), quadrupole (even—even), monopole (second order), and
hexapole (even—odd) [see Fig. 9(b)-(e) where E; is plotted]. The
“odd/even—odd/even” represents the properties of symmetry to the
x- and y-axes. The results match the data from [16] well.
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(a)

© (d)

Fig. 10. (a) Photonic waveguide structure. (b) Energy plot. (c) Incident wave
by a point source. (d) Total field.

C. Photonic Crystal Waveguide

Now, we study the application for this broadband algorithm in the
long wavelength regime. The photonic crystal waveguide with a sharp
bend proposed in [17] is studied to observe the high transmission
of light. Similarly, the TM modes are analyzed in this scenario.
The configuration of the photonic bandgap waveguide is given
in Fig. 10(a). The radius of the GaAs rods is 0.18a, where a is
the lattice constant.

In the setup of FMA, the ratio of the box size over the wave-
length (1) is 0.04 at the leaf level. The number of levels is 8; therefore,
the whole computation domain is 5.124 x 5.121. A point source is
placed at the center of the input port. The high-efficient transmission
can be achieved when the normalized frequency wa/2zc is set as
0.353. It is consistent with the results in [17]. Fig. 10(b)—(d) shows
the energy of the field, the incident field, and the total field in the
waveguide, respectively. Combined with previous simulations, we can
see that the broadband FMA can work well in both subwavelength
and long wavelength problems.

IV. CONCLUSION

In this communication, a novel diagonalization for the 2-D FMA
is proposed to achieve a highly efficient and accurate broadband
FMA. Numerical analyses of the proposed FMA with the applications
in photonic crystals demonstrate its performance completely. The
derivation, based on Parseval’s theorem, provides insights for the 3-D
FMA, in which the spherical harmonic transform can be taken as the
counterpart of the Fourier transform.
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