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An Efficient Marching-on-in-Degree Solution of
Transient Multiscale EM Scattering Problems
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Abstract— A marching-on-in-degree (MOD)-based time-
domain domain decomposition method is proposed to efficiently
analyze the transient electromagnetic scattering from electrically
large multiscale targets. The algorithm starts with an octree
that divides the whole scattering target into several subdomains.
Then using the equivalence principle algorithm, each subdomain
is enclosed by an equivalence sphere (ES), where both the RWG
and BoR spatial basis functions are employed to expand the
unknown currents. The interactions of the near-field subdomains
are directly calculated by the method of moments, while the
far-field interactions can be converted into the interactions of
corresponding ESs. This scheme implicitly satisfies the current
continuity condition, and the convergence can be accelerated
as well. By harnessing the rotational symmetry of the ESs, the
computational resources are reduced significantly compared
with the traditional MOD method. Several numerical examples
are presented to demonstrate the accuracy and efficiency of the
proposed algorithm.

Index Terms— Electromagnetic (EM) scattering, equivalence
principle algorithm (EPA), time-domain domain decomposition
method.

I. INTRODUCTION

RECENTLY, the multiscale electromagnetic (EM) scat-
tering problem has been an important research topic

in computational electromagnetics society. The multiscale
problem is extremely challenging for traditional numerical
methods because of the bad convergence. A lot of numerical
techniques were proposed to solve the problems with a high
efficiency [1]–[7].

On the other hand, the transient EM scattering problems
have been paid more and more attention due to its rich appli-
cation. The time-domain integral equation (TDIE) is widely
used to analyze wideband EM responses from scatterers. There
are two representative schemes for the TDIE, namely, the
marching-on-in-time (MOT) scheme [8] and marching-on-in-
degree (MOD) scheme [9]. A great number of strategies have
been proposed to speed up the two schemes, such as the multi-
level plane-wave time-domain algorithm [10], the time-domain

Manuscript received October 26, 2015; revised February 23, 2016; accepted
April 25, 2016. Date of publication April 27, 2016; date of current version
July 5, 2016. This work was supported in part by the Fundamental Research
Funds for the Central Universities under Grant 30920140121004 and in part
by the National Natural Science Foundation of China under Grant 61431006,
Grant 61271076, Grant 61171041, and Grant 61371037. (Corresponding
author: Ru-Shan Chen.)

Z. He and R.-S. Chen are with the School of Electrical Engineering and
Optical Technique, Nanjing University of Science and Technology, Nanjing
210094, China (e-mail: 15850554055@163.com; eerschen@njust.edu.cn).

W. E. I. Sha is with the University of Hong Kong, Pok Fu Lam, Hong Kong
(e-mail: wsha@eee.hku.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAP.2016.2559521

Fig. 1. 3-D grouping sketch for an airplane (nonzero subdomains).

adaptive integral method [11], the fast Fourier transform [12],
the UV method [13], and the adaptive cross approximate
algorithm [14]. Unfortunately, all the abovementioned methods
cannot improve the convergence of the matrix equation, which
will result in bad computational efficiency.

In this paper, we proposed an efficient MOD solution to
the transient multiscale EM scattering problems. First, the
whole scattering target is divided into several subdomains with
an octree data structure and each subdomain is enclosed by
an equivalence sphere (ES). Then the interactions between
two near-field subdomains are directly computed with the
method of moments (MoM), while the far-field interactions
can be replaced by the interactions of their corresponding ESs
using the equivalence principle algorithm (EPA). It should be
noted that the current continuity condition can be implicitly
satisfied by this technique. Using the rotationally symmetric
property of the ESs, the computational resources are reduced
significantly [15]–[18]. Moreover, the basis transformation
technique is adopted between the Rao-Wilton-Glisson (RWG)
and body of revolution (BoR) basis sets defined on the ESs.
Finally, both the inner iteration in each local subdomain and
the outer iterations of all the subdomains are simultaneously
employed to solve the whole system with a high convergence
rate.

The remainder of this paper is organized as follows.
The proposed algorithm is described in detail in Section II.
In Section III, a series of numerical examples is given to
demonstrate the accuracy and efficiency of the proposed
method. Finally, the conclusion is given in Section IV.

II. THEORY AND FORMULAS

A. Grouping Implementation

As shown in Fig. 1, a cube is used to enclose the PEC
airplane and the cube can be recursively decomposed into
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Fig. 2. 2-D grouping sketch.

eight subcubes. More specifically, a scattering target can be
divided into several subdomains depending on an octree.

Each subdomain is enclosed with an ES with the same size.
As shown in Fig. 2, the subdomains are defined as the near-
field interaction when their ESs are overlapping with each
other. Otherwise, they are the far-field interaction.

Suppose that a PEC target is illuminated by a plane wave
in free space and it is divided into M subdomains, and the
interaction in the i th subdomain can be calculated as

Zii Ii = Vinc
i +

∑

j∈�n

Vn
i j +

∑

j∈� f

V f
i j

= Vinc
i +

∑

j∈�n

Zi j I j +
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j∈� f

Zi j I j (1)

where Zii is the self-acting matrix of the i th subdomain,
Ii and I j represent the unknown current coefficients for
the i th and j th subdomains, respectively, Zi j denotes the
interaction matrix between the i th and j th subdomains,
Vinc

i is the incident field for the i th subdomain, and �n and � f

represent the near-field and far-field subdomains.
For near-field interactions, the RWG basis functions on

the scattering target are directly calculated with the MoM.
Then the induced electric field of the i th subdomain can be
expressed in terms of the scattered electric current of the j th
near-field subdomain
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However, the interactions of any two far-field subdomains
are calculated by the ones between their corresponding ESs
using the EPA [3], [22], [23]. In this way, the current continuity
condition can be satisfied without tapping the basis functions.
There are four steps for the calculation, namely, outside-in
propagation, solving for the current on the object, inside-out
propagation, and translation operator.

Fig. 3. Outside-in propagation process.

B. Outside-In Propagation

The scattered electric current on the scattering target is
discretized with the RWG spatial basis functions [1] and
the weighted Laguerre polynomial as the temporal basis
functions [9]

Js
PEC,i (r, τ ) =

Ns∑

n=1

Nl∑

v=0

{IPEC,n,v,i fn(r)ϕv(sτ )} (3)

where PEC stands for the perfect electric conductor, IPEC,n,v,i

is the expansion coefficients of scattered electric current on
the scattering target for basis function n and order v in the
i th subdomain, fn(r) denotes the spatial RWG basis functions,
ϕv(sτ ) is served as the temporal basis functions, and Ns and Nl

represent the number of spatial and temporal basis functions,
respectively.

The equivalent scattered electric/magnetic currents on i th
ES are expanded as the RWG spatial basis functions, which
can be written as

Js
ES,RWG,i (r, τ ) =

Ns∑

n=1

Nl∑

v=0

{
I J
ES,n,v,i fn(r)ϕv(sτ )

}
(4)

Ms
ES,RWG,i (r, τ ) =

Ns∑

n=1

Nl∑

v=0

{
I M
ES,n,v,i fn(r)ϕv(sτ )

}
(5)

where ES stands for ES. I J
ES,n,v,i , and I M

ES,n,v,i are the RWG
expansion coefficients.

As shown in Fig. 3, the induced electric field on the
scattering target for the i th subdomain that is illuminated by
the source on the i th ES can be calculated as
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where R = |r − r′|, and ε0 and μ0 are, respectively, the
permittivity and permeability in free space.
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Fig. 4. Inside-out propagation process.

C. Solving for the Current on the Object

The scattered electric current on the PEC scattering target
for the i th subdomain can be computed as
[
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D. Inside-Out Propagation

As shown in Fig. 4, the induced equivalent scattered
electric/magnetic current on i th ES is obtained
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where n̂(r) is the outward normal unit vector of the i th ES.

E. Translation Operator

For the translation operator, the BoR basis
functions [19]–[21] are used to discretize the ES and
can be expressed as
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BoR expansion coefficients of the i th ES for mode α, basis
function n, and order v. f t

α,n(r) and fϕ
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Fig. 5. Interaction between two far-field subdomains.

basis functions in the longitudinal and azimuthal directions,
respectively.

Therefore, the RWG-based electric/magnetic currents on i th
ES should be converted into the BoR-based ones. Moreover,
the coordinate transformation technique is adopted to trans-
form the current coefficients among two different coordinate
systems [22]
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where γ = t, ϕ, 〈,〉 represents the inner-product operation.
Similarly, the BoR-based induced equivalent scattered

electric/magnetic currents can also be converted into the
RWG-based currents using the following equations:

〈
Js

ES,RWG,i (r, τ ), fn(r)
〉 = 〈

Js
ES,BoR,i (r, τ ), fn(r)

〉
(14)

〈
Ms

ES,RWG,i (r, τ ), fn(r)
〉 = 〈

Ms
ES,BoR,i (r, τ ), fn(r)

〉
. (15)

Suppose that the i th and j th subdomains are
far-field interactions, as shown in Fig. 5. The interactions
of two far-field subdomains can be computed as follows:
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For the far-field interactions, the unknowns are expanded
with spatial basis functions defined on the boundary curve and
Fourier series in the azimuthal direction due to the rotationally
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Fig. 6. Bistatic RCS results of a PEC sphere. (a) f = 50 MHz.
(b) f = 150 MHz. (c) f = 250 MHz.

symmetric property of the ES. Therefore, both the memory
requirement and the CPU time can be reduced significantly.
It should be noted that the outer iteration among the far-filed
subdomains is finished when the induced scattered electric
current on the scattering target becomes stable.

III. NUMERICAL EXAMPLES

In this section, several numerical results are presented
to demonstrate the effectiveness of the proposed solver.

Fig. 7. Backward scattered field for a PEC sphere.

Fig. 8. (a) Memory requirement of PEC sphere versus spatial unknowns.
(b) Average CPU time per degree of PEC sphere versus spatial unknowns.

All numerical results are tested on a Dell workstation with
40 CPUs and 512-GB memory. The mesh sizes of both
the RWG and BoR basis functions for the ES are 0.1λmin,
where λmin is the wavelength at the maximum frequency.
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Fig. 9. (a) Meshes of the ring. (b) Grouping of the ring (one color stands
for one group).

The incident wave is a modulated Gaussian pulse and is
defined as

Ei(r, t) = x̂ cos[2π f0(t − R/c)]
· exp

[
− (t − R/c − tp)

2

2σ 2

]
(18)

where f0 is the center frequency, σ = 6/(2π fbw),
fbw represents the bandwidth of the Gaussian impulse, and
tp is the time delay.

A. Accuracy and Computational Complexity

First, the transient EM scattering from a PEC sphere with
a radius of 0.7 m is investigated with a center frequency
of 150 MHz and a pulsewidth of 300 MHz. The incident
plane wave is fixed at θ inc = 0°, ϕinc = 0°, and the time
delay of the modulated Gaussian pulse is 4.5 lm. The mesh
size for this sphere is 0.1 m. The unknown scattered electric
current on the PEC sphere is expanded with 1836 spatial
basis functions and 50 temporal basis functions. The whole
computational domain is divided into 64 subdomains with a
size of 0.4 m × 0.4 m × 0.4 m. It should be noted that there
are 48 nonempty subdomains. Each of them is enclosed with
an ES with a radius of 0.4 m. Each ES is discretized into
606 RWG and 16 BoR spatial basis functions. Four Fourier
modes are needed in this computation. As shown in Fig. 6,
the bistatic RCS results are compared between the proposed
method and the Mie series at several frequencies. It can be seen
that there is a good agreement between them. Moreover, the
backward scattered field for the proposed method is compared
with the one of the traditional MOD method in Fig. 7.

In addition, the computational complexity of the proposed
method is investigated. Only the zeroth degree of the temporal
basis function is simulated for the sake of available memory.
Both the memory requirement and average CPU time per
degree with 825, 1311, 1836, and 2919 spatial unknowns are
shown in Fig. 8. It can be seen that the complexity of the
proposed method scales as O(N).

B. Convergence Performance and Optimal Grouping Scheme

Second, we consider the transient EM scattering from a ring
with an inner radius of 1.2 m and an outer radius of 1.5 m.
The time delay of the modulated Gaussian pulse is set to
be 4.0 lm with a center frequency of 150 MHz and a
pulsewidth of 300 MHz, where lm represents light meter and

Fig. 10. Bistatic RCS results of the ring. (a) f = 50 MHz. (b) f = 150 MHz.
(c) f = 250 MHz.

1(lm) = 1/3.0e8. In this numerical example, 12 132 spatial
basis functions and 80 temporal basis functions are adopted
with four modal equations to be solved. The whole compu-
tational domain is divided into 64 subdomains with a size
of 0.8 m × 0.8 m × 0.8 m, and there are 12 nonempty
subdomains. The radius of the ES is 0.75 m, and the ES is
discretized into 639 RWG and 24 BoR spatial basis functions.
The meshes and the grouping of the ring are shown in Fig. 9.
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Fig. 11. Convergence history of the first order for the ring.

Fig. 12. Number of iterations versus temporal order.

Fig. 13. Iteration number versus the ratio of the maximum mesh size over
the minimum mesh size.

The mesh size of 0.05λmin is adopted to both the top and
the down faces and 0.08λmin for the sides. As shown in
Fig. 10, bistatic RCS results of the proposed method at several
frequencies are given and compared with the traditional MOD
method.

Moreover, the convergences for the first order are compared
between them in Fig. 11, and the numbers of convergence for

TABLE I

COMPARISONS OF DIFFERENT GROUPING SCHEMES

Fig. 14. (a) Geometry of the missile model. (b) Grouping of the missile
model (one color stands for one group). (c) Mesh of the missile model.

each order are given in Fig. 12. In addition, the convergence
performance is tested for the multiscale problem. The part
of the ring is meshed densely. As shown in Fig. 13, the
iteration number of the proposed method is compared with
the traditional MOD method versus the ratio of the maximum
mesh size over the minimum mesh size. It can be found that
the proposed method is much more stable for the multiscale
problems.

Finally, the computational resources for different grouping
schemes are given in Table I. The memory requirement can
be reduced with the size of subdomains decreasing. However,
more CPU time is needed when the grouping size is too small
or too big. Some additional propagation operators are needed
to be calculated when the grouping size is big, which will
result in bad efficiency. On the other hand, a lot of CPU time
is needed for the calculation of translation operators when the
grouping size is small. It can be concluded from the numerical
results that higher efficiency can be obtained when there is
a good balance between the numbers of near-field and far-
field interactions. Generally speaking, the optimal grouping
scheme can be achieved when the number of BoR unknowns
on the ES is much smaller than the one of RWG unknowns
on the scattering target in this subcube and the total number
of nonempty subdomains is less than 30 at the same time.
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Fig. 15. Bistatic RCS results of the missile model. (a) f = 50 MHz.
(b) f = 150 MHz. (c) f = 250 MHz.

C. Computational Efficiency

Third, a missile model is analyzed by the proposed method
with the incident plane wave fixed at θ inc = 0° and ϕinc = 0°.
The geometry, the grouping scheme, and the mesh of the
missile model are given in Fig. 14. It can be seen that the
meshes are nonuniform on the surface. The mesh size of
0.1 m is adopted to the cylinder and 0.04 m for the wings.

TABLE II

COMPARISON OF THE AVERAGE NUMBER OF ITERATIONS,
MEMORY REQUIREMENT, AND THE TOTAL CPU TIME

FOR THE MISSILE MODEL

In this numerical example, the center frequency of modulated
Gaussian pulse is 150 MHz, the pulsewidth is 300 MHz,
and the time delay is 5.0 lm. This problem is discretized
into 18 213 spatial basis functions and 80 temporal basis
functions, and two Fourier modes are needed. The whole
computational domain is divided into 512 subdomains with
a size of 1.4 m × 1.4 m × 1.4 m, and there are five nonempty
subdomains. The radius of the ES is 1.3 m, and the ES is
discretized into 1329 RWG and 36 BoR spatial basis functions.
As shown in Fig. 15, bistatic RCS results at several frequencies
are compared between the proposed method and the traditional
MOD method. Moreover, the computational resources are
listed in Table II.

IV. CONCLUSION

A novel MOD solver is proposed to analyze the transient
multiscale EM scattering problems. The whole computational
region is divided into several subdomains, and each subdomain
is enclosed with an ES. Then the interactions of the far-field
subdomains are converted into the interactions of their corre-
sponding ESs with BoR basis functions. Therefore, compared
with the traditional MOD method, the memory requirement
is reduced significantly and good convergence is obtained
by the proposed method. Numerical examples are presented
to demonstrate the validity and efficiency of the proposed
method.
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