
Progress In Electromagnetics Research, Vol. 142, 615–624, 2013

CASIMIR FORCE FOR ARBITRARY OBJECTS USING
THE ARGUMENT PRINCIPLE AND BOUNDARY ELE-
MENT METHODS

Phillip R. Atkins1, Qi I. Dai2, Wei E. I. Sha2,
and Weng C. Chew1, *

1Center for Computational Electromagnetics and Electromagnetics
Laboratory, Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
2The University of Hong Kong, Pok Fu Lam Road, Hong Kong, China

Abstract—Recent progress in the simulation of Casimir forces
between various objects has allowed traditional computational
electromagnetic solvers to be used to find Casimir forces in arbitrary
three-dimensional objects. The underlying theory to these approaches
requires knowledge and manipulation of quantum field theory and
statistical physics. We present a calculation of the Casimir force using
the method of moments via the argument principle. This simplified
derivation allows greater freedom in the moment matrix where the
argument principle can be used to calculate Casimir forces for arbitrary
geometries and materials with the use of various computational
electromagnetic techniques.

1. INTRODUCTION

The ability to model the bulk effect of molecular forces has
become increasingly important with the development of micro- and
nanoelectromechanical systems (MEMS and NEMS). The static and
dynamic behaviors of such devices involve the evaluation of molecular
and electrodynamic forces. The Casimir force can simulate them more
accurately than a simpler form of the van der Waals force. As such, a
simple and robust method of calculating the Casimir force is desirable.
Recent methods have been derived based around boundary element
methods [1, 2] (also known as surface integral equation method [17]).
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The Reid, Rodriguez, White, and Johnson (RRWJ) method allows
the use of computational electromagnetic (CEM) solvers using the
method of moments to find the Casimir force for arbitrary three-
dimensional objects of arbitrary medium. This presents an attractive
method for calculating the Casimir force. However, this method
uses a traditional method of moments matrix which suffers from low
frequency breakdown and mesh density breakdown. Instead of deriving
through the path integral, we show a new method that uses the
argument principle with boundary element methods (surface integral
equation methods) to arrive at an improved formulation.

Calculating the Casimir force using the argument principle was
originally applied by Van Kampen et al. [3] for a much simpler problem.
With the new derivation, we can choose from a wide range of modern
CEM formulations that overcome shortcomings with the minimum of
work. In doing so, we expand beyond the class of problems that can
currently be solved using the RRWJ method. A simple demonstration
of this is done using a formulation that avoids the low frequency
breakdown for perfect electrical conductors (PEC), the Augmented-
Electric Field Integral Equation (A-EFIE) [4] approach.

2. DERIVATION

The RRWJ method starts out using a path-integral expression for the
Casimir energy of arbitrary PEC objects at T = 0 [1, 5].

E = − ~c
2π

∫ ∞

0
dκ ln

Z(κ)
Z∞(κ)

(1)

where
Z(κ) =

∫
DJ(r)e−1/2

∫
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∫
dr′J(r)·Gκ(r,r′)·J(r′) (2)
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Here, the functional integration Z is performed over all possible
configurations of the current J(r) on the surfaces of the objects,
and Gκ(r, r′) is the dyadic Green’s function with the Wick rotated
imaginary frequency. Z∞ is computed similarly as Z except with all
objects removed to infinite separation. By expanding the continuous
current distribution J(r) over a finite discrete set of basis functions fm,
defined over the surfaces of the objects, the RRWJ method reduces to

E =
~c
2π

∫ ∞

0
dκ ln
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(4)
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The elements of the matrix M, being

[M]ij =
∫∫

fi(r) ·Gκ

(
r, r′

) · fj(r′)dr′dr (5)

are of the same form as the matrix elements of the traditional CEM
impedance matrix for the method of moments. Equation (4) is
derived from Equation (1) assuming a specific action for the path
integral and properties of the matrix M. Attempts to modify the
resulting impedance matrix used in Equation (4) requires a new path
integral formulation as well as the assumption that the matrix M be a
positive or negative definite matrix. In addition to PEC objects, this
formulation can handle homogeneous dielectric objects [2].

However, greater freedom is needed to have a matrix M that
handles a wider class of problems, like inhomogeneous dielectric
objects, or addresses numerical instabilities like low frequency
integration points. To ensure low frequency stability, the loop-tree
decomposition [6] can be used, whereby the impedance matrix is
the result of a similarity transform of the traditional method of
moments impedance matrix. This transform, achieved using left and
right matrix multiplications, is canceled out when the determinant is
normalized with M∞, thus resulting in the mathematical equivalence
of Equation (4). Other low frequency stable methods like A-EFIE,
unfortunately, are not symmetric positive definite nor represent a
similarity transform of the predefined matrix M. Instead of evaluating
a new path integral, we approach the problem using the argument
principle.

Note that the Casimir force results from the relative perturbation
of the quantum vacuum fields by the pertinent objects. The objects
force the fluctuating vacuum fields to conform to the appropriate
boundary conditions and, in doing so, change the energy density
of the vacuum. If one determines the eigenfrequencies of the field
configurations that satisfy the geometry’s boundary conditions, then
the unnormalized energy of the geometry can be found via [7, 8]

E =
∑
ω

1
2
~ω (6)

Previous derivations of the Casimir force have made use of the
argument principle to find the eigenmodes of the vacuum fields to define
the energy density [3, 7, 9–11]. To calculate the Casimir energy from
these dispersion equations, we first note that the argument principle
states that

1
2πi

∮
φ(ω)

d

dω
ln f(ω)dω =

∑

i

φ(ω0,i)−
∑

j

φ(ω∞,j) (7)
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where ω0,i are the zeros, and ω∞,j are the poles of the function f(ω)
inside the contour of integration. Noting that the Casimir energy of a
geometry is given by Equation (6), we can relate the Casimir energy
with the contour integral from above. Using integration by parts, the
Wick rotation where ω = icκ, and folding the integral, we find

E =
~c
2π

∫ ∞

0
dκ ln f(icκ) (8)

where the zeros of f(ω) correspond to the eigenmodes of the structure.
It is necessary, in calculating the Casimir energy, to renormalize the
vacuum energy by subtracting off an appropriate normalization energy
represented by modes ωnorm. That is,

E =
∑

ω,ωnorm

1
2
~ [ω − ωnorm] (9)

Following the same process, the Casimir energy is represented as

E =
~c
2π

∫ ∞

0
dκ ln

f(icκ)
fnorm(icκ)

(10)

The theoretical problem is then to find some function f(ω) and its
associated normalization fnorm(ω), taken as the geometry when the
objects are infinitely separated, that are zero at the eigenfrequencies
of the Casimir problem. This has been previously done by finding
the dispersion relationship of the geometry using primarily closed-form
analysis. This could only be applied to a small number of geometries
where exact dispersion relations could be derived like periodic gratings
or dielectric slabs and was not extended to arbitrary geometries.

The preceding derivation relies on the physical interpretation of
the natural modes of the problem and the summation over their
energies to arrive at the Casimir energy in Equation (6). As such,
the above is valid for a lossless system where the eigenfrequencies
are real, but the physical meaning of these eigenfrequencies becomes
indeterminate in a lossy system with complex eigenfrequencies as
Equation (6) is written for a non-dissipative quantum system. Despite
this, the use of the argument principle using lossy materials still
seemingly resulted in the correct Casimir force [8, 12, 13]. Only recently
have papers have been published that rigorously explain why [14–16].

The traditional CEM formulation for PEC objects is derived
assuming that the fields arising from currents induced on the surface
of a PEC must cancel any excitation fields that are present. This
boundary condition leads to the Electric Field Integral Equation
(EFIE),

−n̂×Es(r) = n̂×Ei(r) = n̂× iωµ

∫
dr′G

(
r, r′

) · J(r′) (11)
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where G(r, r′) is the non-Wick rotated dyadic Green’s function, Es

is the scattered electric field and Ei is the incident exciting electric
field. The method of moments is used to derive an impedance matrix
to relate surface currents to the excitation fields. That is,

Z · J = V (12)

where Z is the matrix representation of the real frequency Green’s
operator and J and V are the vector representations of the current J(r)
and exciting fields respectively. As previously stated, the eigenmodes
of the quantum vacuum are those where the fluctuating fields satisfy
the boundary conditions of the geometry. In other words, eigenmodes
exist where we have currents on the surface of the objects without
any excitation fields. These natural modes automatically satisfy the
geometry’s boundary conditions, and they also satisfy the relation,

Z · J = 0 (13)

We conclude that f = detZ = 0 for the natural eigenfrequencies where
the vacuum fields satisfy the boundary conditions without an external
source. Artificially enclosing the objects in a PEC cavity ensures that
the eigenmodes of the system will be lossless and discrete. By using
an appropriate cavity dyadic Green’s function in Z, detZ can be used
as the dispersion relation in Equation (8) to find the energy of the
bounded cavity. Expanding the volume of the cavity to infinity and
applying the normalization where the objects are infinitely separated,
we reach Equation (10).

However, by using the cavity Green’s function, the result is still
incorrect and thus an infinitesimal loss, to enforce the Sommerfeld
radiation condition [17], is added to remove the reflections off the cavity
walls at infinity. In doing so, the resulting Green’s function becomes
the free-space Green’s function, as it was in the original EFIE, and
the RRWJ formulation is rederived. Due to the infinitesimal loss, the
eigenfrequencies of the EFIE are complex frequencies requiring one to
justify its derivation for lossy systems. The strength of this derivation
is its large degree of flexibility. As long as one finds a relationship that
similarly relates the geometry’s boundary conditions with the fields
excited by induced and external sources, then the same procedure can
be applied. This allows us to rederive the RRWJ formulations for
PEC and dielectric homogeneous objects in addition to more advanced
CEM formulations that would otherwise require novel evaluations of
the original path integral.

One difficulty that arises with the numeric integration of the
Casimir energy and force over the wavenumbers κ is the low frequency
breakdown. Looking at the force spectrum for two PEC rounded
cylinders, as shown in Figure 1, the spectrum is concentrated in the
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lower frequencies as is expected due to the normalization. Evaluating
the eigenvalues for the impedance matrices at lower frequencies
becomes inaccurate due to the low frequency breakdown of the EFIE
impedance matrix. While increasing the precision of the calculations
helps address this issue, it is still a problem depending upon the CEM
formulation and class of problems being solved. A better remedy is
to use a more appropriate formulation for the impedance matrix, like
A-EFIE, that will not suffer from the same breakdown. A-EFIE starts
from the normal EFIE formulation whose matrix representation in
Equation (12) can be equivalently expressed as [4]

(
ik0η0V +

η0

ik0
S
)
· J = V (14)

Assuming that the subspace is spanned by the Rao-Wilton-Glisson
(RWG) basis [18], the problem has e RWG edges and p patches. The
vector and scalar potential matrices above, V and S respectively, and
an additional matrix representation of the scalar Green’s function using
patch basis are defined to be

Vm,n = µr

∫

Sm

Λm(r) ·
∫

Sn

g
(
r, r′

)
Λn(r′)dS′dS (15)

Sm,n = ε−1
r

∫

Sm

∇ ·Λm(r) ·
∫

Sn

g
(
r, r′

) ∇′ ·Λn(r′)dS′dS (16)

Pm,n = ε−1
r

∫

Sm

hm(r)
∫

Sn

g
(
r, r′

)
hn(r′)dS′dS (17)

where g(r, r′) is the homogeneous scalar Green’s function, Λ(r) an
RWG basis that is not normalized against the edge length, and h(r)
a pulse basis. We can relate the patch matrix, P, with the scalar
potential matrix, S, using the incidence matrix D by

S = DT ·P ·D (18)

By accounting for current continuity,

D · J = ik0c0ρ (19)

we can derive the A-EFIE matrix system as
[
V DT ·P
D k2

0I

]
·
[
ik0J
c0ρ

]
=

[
η−1
0 V
0

]
(20)

The given formulations for A-EFIE can be further improved upon
and it is seen that the A-EFIE impedance matrix, ZA, will have the
function f(ω) = detZA = 0 at the eigenfrequencies of the geometry.
The A-EFIE impedance matrix can be used as a direct replacement
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for the EFIE impedance matrix in the Casimir calculations by use of
the argument principle. Thus, the Casimir energy and force become,

E =
~c
2π

∫ ∞

0
dκ ln

detZA(κ)
detZA,∞(κ)

(21)

F = − ~c
2π

∫ ∞

0
dκ∇i ln

detZA(κ)
detZA,∞(κ)

(22)

where ∇i represents the derivatives with respect to a physical
displacement of the i-th object (the one we wish to find the forces
acting upon). The integrand of the Casimir energy is found by solving
for the eigenvalues of ZA and ZA,∞.

ln
(

detZA(κ)
detZA,∞(κ)

)
=

N∑

n=1

ln
(

λn

λ∞n

)
(23)

where λn and λ∞n are the eigenvalues of ZA and ZA,∞ respectively. For
the Casimir force, note that the integrand can be expressed as

∇i ln detZA(κ) =
N∑

n=1

αn (24)

where αn are the eigenvalues of the generalized eigenvalue problem

∇iZA · x = αZA · x (25)

It should be noted that the gradient acting upon ZA acts on all
elements of the matrix, making the bottom block matrices zeros. That
is,

∇iZA =
[
∇iV DT ·∇iP

0 0

]
(26)

Using A-EFIE, we can more accurately calculate the low frequency
energy spectrum than using EFIE while at the same time being able
to solve the same set of problems as the original RRWJ formulation.
While in general, double precision can give satisfactory results, Figure 1
shows that the A-EFIE and EFIE results start to differ as the frequency
drops when using single precision for the force between two parallel
PEC rounded cylinders of length to radius ratio of 6, and separation
to radius ratio of 4. The nominal dimensions are immaterial as the
force and energy results are normalized with respect to the radius
of the objects. The result from the numerical integral is calculated
using points indicated in the figure and the points with the largest
contribution lie in the region of poor performance. The deviation in
the calculated integration is a result of the location of the Gaussian
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Figure 1. Comparison of the
integrand for the Casimir force
integral between capsules for the
EFIE and A-EFIE formulations
using single precision.
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Casimir force between two PEC
spheres for the EFIE and A-
EFIE formulations using single
precision.

points but the error in the EFIE result can be greater than 100% while
A-EFIE remains in agreement. Figure 2 demonstrates how the total
force between two PEC spheres can diverge over a range of values for
the ratio between the separation and radius of the spheres.

3. CONCLUSIONS

This paper, using the argument principle, presents an alternative and
novel derivation for the Casimir energy and force using boundary
element methods (surface integral equation methods). As a result,
a simple procedure can easily be adapted to different CEM methods
to derive previous formulations or new ones. For example, the
characteristics of the Casimir force can present difficulties when
using traditional EFIE. The importance of the low frequency content
of the integrand gives rise to erroneous results when relaxing the
computational precision due to low frequency breakdown. As a
demonstration of the utility in using boundary element methods with
the argument principle, for the first time, the low frequency A-
EFIE was used to overcome the limitations of the EFIE formulation
in Casimir force calculations. This opens up possibilities for other
improvements like using the mixed-form fast multipole algorithm with
A-EFIE [4, 19] or the use of other formulations like the PMCHWT
method for homogeneous dielectrics [20–23] (which can be used to
rederive another result by RRWJ [2]), the volume integral method for
inhomogeneous dielectric objects [24], and the layered medium Green’s
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function [25] to help model systems with infinite slabs like a substrate.
Many of these formulations open a new class of geometries or scale of
problems that would otherwise not be accessible using the boundary
element methods found in current methods.
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