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Abstract — To complete the scattering analysis of an
arbitrary shaped perfectly electric conductor over a wide
frequency band, the Chebyshev polynomial of first kind is
applied. The Chebyshev nodes within a given frequency
range are found, and then the surface electric currents at
these nodes are computed by the method of moments. The
surface current is expanded in a polynomial function via
the Chebyshev approximation. Using this function, the
electric current distribution can be obtained at any fre-
quency within the given frequency range. The numeri-
cal results are compared with the results obtained by the
method of moments, and the complexity of computation is
reduced obviously.
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I. Introduction

For many problems in electromagnetics, knowledge of
broadband response of scattering objects is required. For
years, the Method of moments (MOM) is one of the most pop-
ular techniques for scattering analysis in frequency domain.
By the conventional approach, to obtain the wide-band re-
sponse with MOM, a set of algebraic equations must be solved
repeatedly at a number of frequency samples. If the Radar
cross section (RCS) is highly frequency dependent, one needs
to do the calculations at finer increments of frequency to get
an accurate representation of the frequency response. Conse-
quently, the CPU time needed becomes unacceptably long. To
overcome this difficulty, the approximate techniques that can
efficiently simulate frequency response over a wide band with
acceptable computational time are desired.

Over past few years, the Asymptotic waveform evaluation
(AWE) technique is one of the leading methods based on MOM
to obtain the wide-band RCS[*%]. The AWE method is found
to be superior in terms of the CPU time to obtain frequency re-
sponse. However, the expected effect frequency band is limited
by the inherent property of the Taylor series, and the memory
needed is greatly increased on account of the high derivatives
of the dense impedance matrix.

It is well-known that the Chebyshev series can be used
to approximate a function at least as accurately as a poly-
nomial of the same degree similarly obtained from a se-
ries in any other orthogonal polynomials, in other words,
the Chebyshev expansion is as good as the best polynomial
approximations(®?, Recently, the Chebyshev approximation
theory is widely applied to the design of antennas and other
fields in electromagnetism!®l,

In this paper, the application of Chebyshev approxima-
tion theory for predicting the RCS over a band of frequencies
using MOM is described. The Chebyshev nodes for a given
frequency band are obtained firstly by coordinate transform,
and the surface electric currents at these nodes are computed
by the method of moments to get the Chebyshev series coef-
ficients. Using the polynomial function, the surface current is
obtained at any frequency within the given frequency range,
which is used to calculate the RCS. Numerical results for a
finite cylinder, a cube, and a sphere are presented in Section
III. The numerical data is compared with the results obtained
by the method of moments, the Chebyshev method is found
to be superior in terms of the CPU time to obtain a frequency
response without sacrificing much memory.

II. Theory

1. Method of moments
Consider an arbitrary shaped Three-dimensional (3D) Per-
fectly electric conductor (PEC) body illuminated by a plane
wave. The total field is a combination of the incident field
(labeled by superscript ¢) and the scattered field (labeled by
superscript s), i.e.
E=FE+E (1)

The scattered electric field E° is due to surface currents
and free charges on the metal surface S

E° = —jwAs(r) — V&s(r),ron S (2)

where Ag(r) is the magnetic vector potential, and $s(r) de-
notes the scalar potential.
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On the surface of a PEC body, the tangential component
of the electric field Eian = 0, thus giving Electric field integral
equation (EFIE),

Ezan - (jWAS + VQS)tan,"' on S (3)

Utilizing the Rao-Wilton-Glisson (RWG)  basis
functionsm, the surface current density Js is expanded into
basis function in the form

N
n=1

where £2 is the vector basis function defined in Ref.[7].
Then the EFIE is reduced to a matrix equation:

Z(k)I(k) =V (k) (5)

where k is the wave number, Z(k) is an N x N impedance ma-
trix, and V(k) is a N dimensional voltage vector, with their
elements defined as

20K)mn = (222) /S /S £5.() 0 £5(r')gdSdS’

- () /S /S (VsefS)e(Vse ff,)gdeS;ﬁ)

V(k)m = / £S5 e Eds (7)
S

where g = e“jk|r_r,|/|r — 7’|, is the free-space Green’s func-
tion.

2. The Chebyshev approximation theory

Since the electric current in Eq.(5) is calculated at a single
frequency, to obtain the RCS over a wide band, one may need
to solve Eq.(5) repeatedly. Here the Chebyshev approximation
theory is applied to the scattering analysis of objects within a
given frequency range.

Theorem 1 For H, = span{l,z,2%,---,2"}, Pn(z) €
H,, f(z) € Cla,b], if there exists n + 2 points a < z; < @2 <
< Zpto < bsatisfy

P(z1) = f(z1) = (-1)'0]|P(2) = f(2)] o0 (8)

where o = %1, then P(z) will be the best polynomial approx-
imations in H, for f(z)®.

Definition 1 The Chebyshev polynomial of degree n is
denoted as T, (z), which is given by the recursive relations:

To(z) = 1, Toi1(z) = 22T (z) — Tna (),
n>1 (9)

Ti(z) =z,

And the Chebyshev approximation formula for f(z) €
C[-1,1] is given by

flz)=-— %CO + ZCsz(w)
=0

[es]

=P, (z) + Z aTi(z), ze[-1,1]

I=n+1

(10)

Hence f(z) — P.(z) = cnt1Tnt1(z), since for Try1(z), there
are n + 2 points

Im
n+1

:cl=cos< ), l=0,1,---,n+1

satisfy Eq.(8), so the Chebyshev series can be as good as the
best polynomial approximations.

Then the scattering analysis over a wideband frequency
is considered. For a given frequency range f € [fa, /],
k € [ka, kb], the coordinate transform is used as

k = [2k — (ka + k3))/ (ks — ka)
The electric current I(k) will be calculated by

1) = I(k(kb SLARICE +ka))

and the Chebyshev approximation for I(k) is given by

(11)

(12)

n—1

I(k) =I<k(kb — ka);_ (ky + ka)) z gcle(k) - 229 12)

a =23 1Tk (14)

where ki(i = 1,2,---,n) are the Chebyshev nodes for T, (k),
and k; € [ka, ks] can be obtained by

ki = ki (ks — ka)2+ (ka + kb) (15)

and the surface electric current I(k;) can be obtained by
method of moments.

ITI. Numerical Results

To validate the analysis presented in the previous section,
a few numerical examples are considered.

The first example is for a finite PEC cylinder that illu-
minated by a plane wave E* = e e 7*+* the diameter of the
cylinder is lcm with its height 2cm. The cylinder is discretized
into 468 triangular elements resulting in 702 unknown current
coefficients. The RCS frequency response is shown in Fig.1.
There are 5 Chebyshev nodes chosen for the frequency band
5GHz to 30GHz.

As a second example, the RCS response of a PEC
cube (lcmxlcmXxlcm) is calculated over a frequency band
(2GHz~22GHz). The cube is illuminated by a plane wave
E' = eze”? k2Z The cube is discretized with 320 triangular
subdomains resulting in 480 current unknown coefficients. The
RCS frequency response of it is shown in Fig.2, and there are
6 Chebyshev nodes chosen for the given frequency range.

Finally, a PEC sphere of radius 0.4cm is considered. The
sphere is illuminated by a plane wave E* = ece "% The
object is discretized into 408 triangular elements that result in
612 unknown current coefficients. As shown in Fig.3, the RCS
of the sphere is compared with the results computed by MOM
and Mie series, and there are 7 Chebybshev nodes chosen for
the given frequency band.

Table 1. CPU time comparison (seconds)

Method MOM Chebyshev
CPU Frequency | CPU | Frequency
Example time points time points
Fig.1 2414.71 26 484.23 251
Fig.2 1647.83 41 264.53 401
Fig.3 2103.54 41 371.69 401
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Fig. 1. The RCS frequency response of the

cylinder cube

The CPU time for RCS calculation and frequency points
computed are given in Table 1; all the computations reported
are done on a PIV 2.66G/1GMB computer.

IV. Conclusion

An implementation of Chebyshev approximation method
for MOM is presented. The RCS for different PEC objects
are computed and compared with the traditional method over
a wide frequency band, the Chebyshev method is found to
be superior in terms of the CPU time to obtain a frequency
response without sacrificing much memory. The accuracy of
Chebyshev method over a desired frequency band and its re-
lation to the order of Chebyshev series to be chosen is topics
of interest for future research. With these topics addressed,
Chebyshev approximation theory will be of good application
in obtaining the frequency response using a frequency-domain
technique such as MOM.
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