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Abstract— Holographic multiple-input and multiple-output
(MIMO) communications introduce innovative antenna array
configurations, such as dense and volumetric arrays, which
offer notable advantages over conventional planar arrays with
half-wavelength element spacing. However, accurately assessing
the performance of these new holographic MIMO systems neces-
sitates careful consideration of channel matrix normalization,
as it is influenced by array gain, which, in turn, depends on
the array topology. Traditional normalization methods may be
insufficient for assessing these advanced array topologies, poten-
tially resulting in misleading or inaccurate evaluations. In this
study, we propose electromagnetic normalization approaches for
the channel matrix that accommodate arbitrary array topologies,
drawing on the array gains from analytical, physical, and
full-wave methods. Additionally, we introduce a normalization
method for near-field MIMO channels based on a rigorous dyadic
Green’s function approach, which accounts for potential losses
of gain at near field. Finally, we perform capacity analyses under
quasi-static, ergodic, and near-field conditions, through adopting
the proposed normalization techniques. Our findings indicate
that channel matrix normalization should reflect the realized
gains of the antenna array along target directions. Failing to
accurately normalize the channel matrix can result in errors
when evaluating the performance limits and benefits of uncon-
ventional holographic array topologies, potentially compromising
the optimal design of holographic MIMO systems.

Index Terms— Holographic MIMO communications, channel
matrix, normalization, antenna array gain, beamforming.

I. INTRODUCTION

BASED on Shannon’s information theory, multiple-input
and multiple-output (MIMO) technology utilizing spatial
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multiplexing has been developed to enhance the channel
capacity in modern wireless communications [1]. To fur-
ther improve MIMO performance, massive antennas are
employed [2], leading to either holographic MIMO array with
small element spacing and fixed total area [3], [4], [5] or
extremely large antenna array (ELAA) with large element
spacing and expanded total area [6], [7]. Given that the array
size at base stations is often constrained due to factors such as
wind drag, assembly complexity, weight, and urban planning
regulations, the development of holographic MIMO array with
fixed area is particularly important for current base-station
applications. Approaching a near-continuous aperture, holo-
graphic MIMO array enables unprecedented electromagnetic
wave manipulation, such as exploiting evanescent waves [8],
[9] and achieving super-directivity [10], showing potential in
enhancing spectral efficiency, power transfer, sensing, and so
on [11], [12], [13], [14], [15].

Although holographic MIMO system demonstrates advan-
tages in many scenarios, certain limitations persist. The
benefits of MIMO communications generally fall into two
categories: degrees of freedom (DOF) gain and beamforming
gain, both of which are inherently limited by the array size.
When the element spacing is reduced to half a wavelength, per-
formance gains tend to plateau. However, holographic arrays
need not be confined to planar configurations. Volumetric
arrays, or three-dimensional (3-D) arrays, have been proposed
to overcome these limitations [16]. Physically, volumetric
arrays can achieve larger effective or shadow area along
different radiation directions [17], leading to improved array
gains and DOF. Given these observed benefits, the exploration
of diverse regular and irregular volumetric array topologies is
expected to become an increasingly attractive area of research.

When designing and evaluating novel holographic array
topologies, careful attention must be given to the normalization
of the channel matrix. While DOF gain is determined by the
singular values of the channel matrix, beamforming gain is
associated with its Frobenius norm. The evaluation of DOF
is unaffected by the normalization of the channel matrix [18],
but capacity is influenced by the channel normalization, as it
directly impacts the scaling of the signal-to-noise ratio (SNR).
A common approach is to use unit sub-channel gain for
normalization by making ||H||2F = NtNr, where ||H||F is
the Frobenius norm of channel matrix H, Nt and Nr are
the transmitting and receiving antenna numbers. However, this
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method depends only on the number of antennas and not on
the array topology, making it only approximately valid for
linear or planar arrays with nearly half-wavelength spacing, but
not applicable for dense or volumetric arrays. The Frobenius
norm of the channel matrix can be physically connected to the
product of array gains at the transmitter and receiver sides.
In holographic arrays, where antenna elements are densely
packed, the correlations between antennas cannot be ignored.
Consequently, electromagnetic factors and constraints associ-
ated with holographic array gain, i.e., array topology, must be
considered. Failing to do so may result in an inaccurate scaling
of SNR, leading to misleading capacity outcomes. These
inaccuracies could manifest as incorrect trends in performance
evaluation or misestimated benefits of new array topologies,
which is critical when advancing novel holographic MIMO
systems.

A. Prior Works

Much research has been conducted on the normalization of
the channel matrix. The most widely used method in massive
MIMO involves channel normalization by setting unit sub-
channel gain. This approach works effectively in both channel
simulations and experiments, particularly when the element
spacing is not too small and regular array topologies, such
as uniform linear or planar arrays, are employed [19], [20],
[21]. In addition to normalizing the entire channel matrix,
normalization can also be applied to each user separately,
i.e., each column of the channel matrix. This method helps
eliminate power imbalances caused by different path losses
experienced by different users [22]. These two approaches can
be referred to as matrix and vector normalizations, respec-
tively. The impact of these normalization methods on massive
MIMO precoding has also been investigated [23], [24]. In
addition to conventional normalization methods, a physical-
based normalization approach has been proposed [25]. This
study reveals that channel normalization is influenced by the
antenna array gains and is dependent on the spatial multi-
plexing strategy. Similarly, channel power gain constraints are
considered in the analysis of holographic MIMO [26], MIMO
capacity bounds with finite scatterers [27], and electromagnetic
information theory [28]. Without such physical constraints
on power gain—i.e., channel normalization—the capacity of
MIMO systems would otherwise increase infinitely with the
number of antennas. Furthermore, normalization methods that
account for cross-polarization have been proposed [29], which
can address polarization discrimination in complex or potential
near-field scenarios. Additionally, using normalization based
on array gain formula allows for the inclusion of antenna
effects in the capacity analysis for line-of-sight (LOS) sce-
narios [30].

Previous studies on normalization have primarily concen-
trated on regular linear or planar arrays, often relying on
some analytical formulas for considering gain limits. However,
these methods sometimes fall short in accurately capturing
gain behaviors. For instance, the analytical formulas for linear
arrays are limited by their ability to account for the decrease
in gain at large polar angles because they cannot incorporate

the concept of ‘area’—an aspect that can only be accurately
represented through physical or full-wave simulation methods.
Furthermore, as an emerging technique, the normalization of
volumetric arrays has not yet been extensively investigated.
In addition, the decrease in antenna efficiency, which is
unavoidable in dense holographic arrays, is often not con-
sidered in these analyses. Potential losses in near-field gain
due to factors such as cross-polarization and non-uniform
illumination are also frequently overlooked. These neglected
factors may significantly impact the design and evaluation of
novel holographic arrays, potentially leading to inaccuracies
in performance assessments and suboptimal array designs.

B. Our Contributions

In this paper, we aim to incorporate the above-mentioned
electromagnetic factors into existing normalization methods,
facilitating electromagnetic-based normalization for arbitrary
antenna arrays in holographic MIMO communications. The
contributions of this paper can be summarized as follows:
• We present electromagnetic normalization approaches for

the far-field MIMO channel matrix tailored to linear,
planar, and volumetric arrays, grounded in the average
far-field gains calculated through analytical, physical, and
full-wave methods. Particularly, we reveal some proper-
ties of linear and planar arrays that traditional analytical
methods fail to capture, and we provide a comprehensive
discussion of the normalization for volumetric arrays—a
research direction that has not been previously explored.

• We present a novel approach to the normalization of
the near-field MIMO channel matrix, utilizing rigorous
dyadic Green’s function and Poynting vector methods.
In doing so, we uncover that additional loss factors—
such as cross-polarization, non-uniform illumination, and
non-ideal beamforming—may be introduced beyond the
far-field gain limits. To facilitate the practical application
of this method, we also introduce a physical loss factor
formula that aligns closely with our rigorous analyses.

• Capacity analyses in quasi-static, ergodic, and near-field
scenarios are conducted using the proposed normalization
methods. Numerical results demonstrate that inappropri-
ate normalization can lead to inaccurate performance
evaluations of unconventional array topologies. Addition-
ally, the benefits of volumetric arrays are highlighted,
showing advantages in both array gain and capacity.

The remainder of this paper is organized as follows.
Section II establishes the problem statement for the normal-
ization of holographic MIMO channel matrices. Section III
explores the far-field gains of arbitrary array topologies using
analytical, physical, and full-wave methods. In Section IV, the
near-field gain of antenna array is examined through the dyadic
Green’s function and Poynting vector approaches. Section V
presents capacity analyses in quasi-static, ergodic, and near-
field scenarios, utilizing proposed normalization methods.
Finally, Section VI concludes the paper with a summary of
findings and implications.

Notation: Fonts a, a, and A represent scalars, vectors, and
matrices, respectively. AT , A†, and ||A||F denote transpose,
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Hermitian (conjugate transpose), and Frobenius norm of A,
respectively. ∗ is the conjugate operator. ai denotes the ith
column of A, and ||ai|| is the norm of ai. Re(·) is the real
part of the argument. In (with n ≤ 2) is the n × n identity
matrix. Notation E[·] denotes the expectation of the argument.
a! is the factorial of a, and (a)k is the falling factorial of a
with order k.

II. PROBLEM STATEMENT

A. Quasi-Static Model

Considering the standard baseband model of a quasi-static
MIMO channel [31]

y = Hx + w, (1)

where x and y are the transmitter (Tx) and receiver (Rx)
signal vectors, w is the noise vector, H ∈ CNt×Nr

is the
MIMO channel matrix. Adopting the Bell Laboratories Layer
Space-Time (BLAST) type spatial multiplexing strategy [31],
i.e., Tx antennas are uncorrelated and equally-power allocated,
we have the well-known capacity formula

C = log
[
det
(
INt×Nt

+
γ

Nt
HH†

)]
, (2)

where γ is the total SNR. All the physical characteristics
of the MIMO system are encapsulated in the matrix H: (a)
The rank of H represents the communication DOF, indicating
the number of parallel channels available for information
transmission; (b) The Frobenius norm of H reflects the total
channel gain, which arises from the beamforming gains of
the Tx and Rx antenna arrays. The communication DOF has
been extensively studied [32], [33] and is independent of
channel matrix normalization. However, the norm of H has not
been well investigated, particularly for novel array topologies
with beamforming gains that differ from conventional arrays.
Traditionally, the channel matrix is normalized by making

∥H∥2F = NtNr, (3)

where unit sub-channel gain is assumed, and the antenna
number Nt and Nr here in fact represent the power gains
at Tx and Rx sides. Strictly speaking, this normalization is
only approximately valid for linear or planar arrays with
half-wavelength element spacing, according to the discussion
of array gain in [25]. However, in current holographic MIMO
applications that utilize dense or even volumetric arrays, the
physical insights into the gain introduced by these novel
array topologies cannot be adequately captured with tradi-
tional normalization method, including variations in effective
area and antenna coupling effects. Generally, the appropriate
normalization method for the channel matrix depends on the
coherence at the transmitter and receiver sides, which can be
categorized into the following three cases:

1) Tx Non-Coherent, Rx Coherent: This configuration cor-
responds to a BLAST-type MIMO communication system,
widely utilized in 5G applications to achieve high spectral
efficiency. For example, in a typical uplink urban scenario
under the 3rd Generation Partnership Project (3GPP) standard,
users are distributed across an area with low spatial correla-
tions between their channels. Since they generally lack access

to instantaneous channel state information (CSI), their trans-
missions are effectively non-coherent. On the base station side,
a holographic antenna array is used, where the close spacing
of antenna elements introduces significant spatial correlations.
The base station, equipped with advanced signal processing
capabilities, performs coherent detection by estimating the
uplink channel using pilot signals transmitted by the users.
In this case, we have

Pr =
Nt∑
i=1

∥hi∥2
Pt

Nt
= ∥H∥2F

Pt

Nt
, (4)

where Pt and Pr are the total Tx and Rx power, and they
fulfill the Friis transmission equation

Pr = Pt
GrGt

Lp
, (5)

Gr and Gt are the array gains at Rx and Tx sides. In order
to focus on the effect of fast fading due to multi-path effect,
the distance factor Lp is eliminated by setting it as 1. As the
transmitters here are uncorrelated and no constructive interfer-
ence can be generated, Gt is equal to 1 in this case. Therefore,
the channel matrix should be normalized as

∥H∥2F = NtGr, (6)

Gr is the gain of holographic MIMO array, which is dependent
on antenna array topology, beamforming angles, and mutual
coupling.

2) Tx Coherent, Rx Coherent: In this scenario, such as the
downlink in a 3GPP urban environment, correlations at both
Tx and Rx are considered, and the CSI is assumed to be known
on both sides. For example, in joint Tx-Rx maximum ratio
combining (MRC), the receiving power is [34]

Pr =
Nt∑
i=1

∥hi∥2 Pt = ∥H∥2F Pt, (7)

then, according to (5), we have

∥H∥2F = GtGr, (8)

where the channel matrix should be normalized according to
the antenna array gains at both sides.

3) Tx Non-Coherent, Rx Non-Coherent: The correlations at
the Tx and Rx sides are zero, and the CSI is unknown to both
sides. The total Rx power can be written as [35]

Pr =
Nt∑
i=1

∥hi∥2
Pt

NtNr
= ∥H∥2 Pt

NtNr
. (9)

Also combining it with (5), since Gt = Gr = 1 due to
no correlations between antennas at both sides, the channel
matrix should be normalized as (3), which is the traditional
normalization method. This way of normalization is only
dependent on antenna number but not other factors like array
topology, coupling, etc.
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B. Ergodic Model Considering Antenna Effects

Rather than the quasi-static model, the ergodic capacity
of MIMO system in rich multi-path environment is paid
more attention when considering practical applications [36].
Resorting to the Kronecker model, the antenna effects are
incorporated into the correlation matrices at both sides, such
as deformed radiation patterns and reduced antenna effi-
ciencies [37], [38], which has been well verified through
experiments. Assuming the power is equally allocated, the
ergodic capacity can be written as

C = E
{

log2

[
det
(
I +

γ

Nt
HH†

)]}
, (10)

where E is the mathematical expectation. The channel matrix
is constructed by

H =
(
R

1
2
t HwR

1
2
r

)
, (11)

where Rt ∈ CNt×Nt
and Rr ∈ CNr×Nr

represent the
correlation matrices at the Tx and Rx sides, R

1
2 represents

the Hermitian square root of R, Hw ∈ CNt×Nr denotes the
spatially white MIMO channel with i.i.d. complex Gaussian
entries. The correlation matrix at the Rx/Tx side can be
calculated with

R =


1 c12 · · · c1Nr

c∗21 1 · · · c2Nr

...
...

. . .
...

c∗Nt1
c∗nNt2

· · · 1

 , (12)

where cmn represents the correlation between Tx/Rx antennas
m and n, and

cmn =
∮
Qmn(θ, ϕ) sin θdθdϕ√∮

Qmm(θ, ϕ) sin θdθdϕ
√∮

Qnn(θ, ϕ) sin θdθdϕ
,

(13)

with

Qmn(θ, ϕ) = κEθ
m(θ, ϕ)Eθ∗

n (θ, ϕ)Pθ(θ, ϕ)

+ Eϕ
m(θ, ϕ)Eϕ∗

n (θ, ϕ)Pϕ(θ, ϕ), (14)

where κ is the cross-polar discrimination (XPD), Eθ(Ω) and
Eϕ(Ω) are the θ and ϕ polarized components of antenna
radiation pattern, Pθ and Pϕ denote the angular power spec-
trum. Therefore, the H here includes all antenna effects on
correlations, and should be normalized in the same way as
quasi-static case in each realization, according to the coherence
at Tx/Rx side. The Rt or Rr is set to I if the Tx or
Rx antennas are uncorrelated. When considering the effect
of antenna efficiency, H should be normalized according to
realized gains incorporating efficiency loss due to mismatching
and coupling. Alternatively, we can also multiply a loss matrix
as R ◦Ξ, ◦ is the element-wise product, and

Ξ =
√

e
√

e
T
, (15)

with entries from embedded radiation efficiencies [39]

e =
[
eemb
1 , eemb

2 , · · · , eemb
n

]T
, (16)

since the definition of embedded radiation efficiency includes
the average of active radiation efficiencies along all radiation
directions [39].

The proposed normalization techniques are also applicable
for multi-user MIMO (MU-MIMO) communications using the
signal-to-interference-and-noise ratio (SINR) in typical urban
scenarios under the 3GPP standard [40]. The capacity formula
of an MU-MIMO system is given by

CMU−MIMO =
K∑

k=1

log2 (1 + SINRk) . (17)

The SINR of the kth user is

SINRk =

∥∥∥h†kwk

∥∥∥2

∑
j ̸=k

∥∥∥h†kwj

∥∥∥2

+ σ2

, (18)

where hk is the channel vector for the kth user, wk is the
beamforming vector for the kth user, and σ2 denotes the noise
power. In this context, the proposed matrix normalization can
be applied to the entire channel matrix, H, which is con-
structed using hk and depends on the average realized gains
of the beams across all users. Alternatively, normalization can
be performed individually for each user by adjusting the |hk|
to match the realized gain of the antenna array in the specific
direction corresponding to that user.

C. Near-Field Model

In far-field communications, the normalization of the chan-
nel matrix is determined by the far-field gain. For near-field
communications, the gain can be similarly defined; however,
it is calculated using the dyadic Green’s function rather than
the far-field scalar Green’s function. Generally, the dyadic
Green’s function can be written as [41]

Ḡ (r, r′) =
(
Ī +

∇∇
k2

)
g (r, r′) , (19)

where Ī is the unit tensor, k is the free-space wavenumber,
g (r, r′) is the scalar Green’s function. The tensor Ḡ relating
the source and field at r′ and r can be rewritten in a matrix
form, i.e., Ex

Ey

Ez

 =

Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz

 Jx

Jy

Jz

 , (20)

where three polarizations of source and three polarizations of
field are related, thus a 3×3 matrix. Hence, the channel matrix
considering full polarizations becomes

H =

Hxx Hxy Hxz

Hyx Hyy Hyz

Hzx Hzy Hzz

 , (21)

where each sub-matrix Hpq is an Nt×Nr channel matrix, the
subscripts p and q are x, y, or z, denoting the polarizations of
field and source. In far-field communications, only Hxx and
Hyy are remained, while, strictly, the matrices of all the polar-
izations should be considered and normalized appropriately in
near-field cases.
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Fig. 1. The array topologies considered in this paper. (a) Linear array, the
length along x axis is fixed as Lx, with a total antenna number Nx. (b) Planar
array, the length along x and y axes are fixed as Lx and Ly , the antenna
number along x axis is also Nx, and the element spacing along y axis is fixed
as 0.5λ, λ is free-space wavelength. (c) Volumetric array, the array topology
is the same as planar case, but an extra height difference is introduced along
vertical z axis between nearby antennas (denoted by green and blue colors).
The Lx and Ly are fixed as 5λ, and the height difference in volumetric array
is fixed as 1λ in this paper.

For DOF analysis, (21) is enough without normaliza-
tion [18]. For capacity analysis largely related to channel gain,
in order to fully capture near-field effects, each sub-matrix
should be normalized as

∥Hpq∥2 = Gpq
t Gpq

r , (22)

where the near-field gain Gpq can be calculated following
the definition of far-field gain but using the dyadic Green’s
function. Furthermore, the power density at near field should
be calculated with rigorous Poyting vector, since the electric
and magnetic fields are no more simply related by a wave
impedance. Specific deductions and discussions can be found
in Section IV.

D. Summary

As a short summary for this section, the normaliza-
tion method of channel matrix should be carefully chosen
according to specific scenarios. For holographic MIMO com-
munications, the normalization will definitely dependent on
the gain of holographic array, thus introducing extra electro-
magnetic constraints and insights brought by array topology.
Furthermore, the above array gains can be scaled to achieve the
desired total power gain while preserving the electromagnetic
factors related to the array topology, as discussed in the second
paragraph of Section V. In the following sections, we will
discuss the gain expressions and limits, utilizing antenna and
wave theories. So that we can explore how normalization
impacts capacity evaluation when dealing with new array
topologies.

III. FAR-FIELD GAIN OF ARBITRARY ANTENNA ARRAY

A. Fundamental Analytical Formula of Gain

The antenna topologies considered in this paper are depicted
in Fig. 1. Generally, the θ and ϕ components of the far-field
electric field of the nth antenna in an array can be written as

Fig. 2. Radiation patterns of array elements with different values of u and
v. (a) Isotropic pattern of a point source. (b) cos shape pattern of a dipole
antenna with reflection board. (c) Butterfly shape pattern, which is close to
the pattern of an orbital-angular-momentum (OAM) antenna.

Eθ
n(θ, ϕ) and Eϕ

n(θ, ϕ), then the total radiation patterns of N
antennas are [42]

Eθ
tot(θ, ϕ) =

N∑
n=1

anej[kΩn(θ,ϕ)+αn]Eθ
n(θ, ϕ), (23)

Eϕ
tot(θ, ϕ) =

N∑
n=1

anej[kΩn(θ,ϕ)+αn]Eϕ
n(θ, ϕ), (24)

Etot =
√
|Eθ

tot|2 + |Eϕ
tot|2, (25)

where kΩn(θ, ϕ) = k(xn sin θ cos ϕ+yn sin θ sin ϕ+zn cos θ)
is the phase factor of antenna element n at the position
(xn, yn, zn) along the direction (θ, ϕ), an and αn are
the amplitude and phase of the excitation at antenna n,
respectively. The far-field radiation intensity is defined as the
power radiated per solid angle

U(θ, ϕ) =
r2|Etot|2

2η
, (26)

where r is the reference distance, η is wave impedance, and
E = ηH is valid at far field. Then the gain (without ohmic
loss) of antenna array can be defined as

G(θ, ϕ) =
U(θ, ϕ)

1
4π

∫ 2π

0

∫ π

0
U(θ, ϕ) sin θdθdϕ

. (27)

Although the numerator (radiation intensity) in this formula
can increase infinitely proportion to antenna number, the
denominator introduces electromagnetic constraints from array
size, thus the gain limit. When considering the power loss
due to antenna mismatching and coupling, the gain becomes
realized gain. By performing the integrals over θ and ϕ,
we can obtain the gain along different directions with designed
excitations. However, this process may be complex and time-
consuming, especially when a high sampling rate of θ and ϕ
is needed, so the closed-form solutions are introduced in next
subsection.

B. Closed-Form Solution of Analytical Formula

General expressions of directivity or gain are useful for
antenna synthesis in many scenarios [43], [44], [45]. Con-
sidering an arbitrary polarization, the radiation pattern of an
element can be expressed as

E(θ, ϕ) =
e−jkr

r
sinu θ cosv θ, (28)

with u > −1, v > −(1/2), showing rotational symmetry
along ϕ angle. Three typical patterns are depicted in Fig. 2,
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i.e., (u = 0, v = 0), (u = 0, v = 1), (u = 1, v = 1). The
radiation patterns of the elements in an array are assumed to
be the same, which is valid in most uniform arrays. Take (28)
into (23)-(26), the radiation density becomes

U =
1
2η

sin2u θ cos2v θ
N∑

m=1

N∑
n=1

amanej(αm−αn)

× ejk{Ωm(θ,ϕ)−Ωn(θ,ϕ)}

=
1
2η

sin2u θ cos2v θ
N∑

m=1

N∑
n=1

amanej(αm−αn)

× ejk{ρmn sin θ cos(ϕ−ϕmn)+(zm−zn) cos θ}, (29)

where ρmn =
√

(xm − xn)2 + (ym − yn)2 and ϕmn =

tan−1
(

ym−yn

xm−xn

)
. Apparently, the maximum value along one

direction can be achieved when all the phases of the excita-
tions are matched, i.e., constructively add along one direction
(θm, ϕm) is realized, which becomes

Umax = sin2u θm cos2v θm

(
N∑

n=1

an

)2

/2η. (30)

Considering the denominator in (27), the first integral of U
over ϕ can be deduced as

Prad

=
π

η

N∑
m=1

N∑
n=1

amanej(αm−αn)

×
∫ π

0

ejk(zm−zn) cos θJ0 (kρmn sin θ) sin2u+1 θ cos2v θdθ,

(31)

which utilizes the property of Bessel function in (64) of
Appendix A. The exponential term in the integral part of (31)
can be further expanded as power series

ejk(zm−zn) cos θ =
∞∑

p=0

(j)p (k (zm − zn))p

p!
, (32)

the rest part including the integral of Bessel function can be
obtained using the property of Hypergeometric series in (65)
of Appendix A as∫ π

0

J0 (kρmn sin θ) sin2u+1 θ cos2v θdθ

=
∞∑

p=0

(
1 + (−1)2v+p

)
2

B

(
u + 1, v +

p + 1
2

)

× 1F2

(
u + 1

1, u + v + p+3
2

∣∣∣∣ − (kρmn

2

)2
)

, (33)

where B represents the Beta function of arguments m and n

B(m, n) =
(m− 1)!(n− 1)!

(m + n− 1)!
, (34)

and the hyper-geometric function with order (1, 2) is

1F2

(
a1

b1, b2

∣∣∣∣ z

)
=

∞∑
k=0

(a1)k zk

(b1)k (b2)k k!
, (35)

where (a)k = a(a − 1)(a − 2) · · · (a − k + 1) is the falling
factorial of a, (33) will be valid for any u > −1, v > −1/2.
Combining (31)-(35) we can get the closed-form formula for
gain with a suitable cut of series, and the results of two typical
patterns in Fig. 2 are given below.

1) Isotropic Pattern (u = 0, v = 0): With (66) in
Appendix A, the radiated power for isotropic antennas can
be simplified as

P iso
rad =

2π

η

N∑
m=1

N∑
n=1

amanej(αm−αn) sin (kRmn)
kRmn

, (36)

where Rmn =
√

(xm − xn)2 + (ym − yn)2 + (zm − zn)2.
2) cos θ Shape Pattern (u = 0, v = 1): Similarly, for

cos shape pattern, the expression of radiated power can be
simplified as

P cos
rad =

2π

η

N∑
n=1

a2
n

3
− 4π

η

N∑
n,m=1
m̸=n
n>m

anamej(αm−αn)

×

[(
ρ2

mn − 2z2
mn

)
cos (kRmn)

k2R4
mn

−
((

k2ρ2
mn − 2

)
z2
mn+ρ2

mn+k2z4
mn

)
sin (kRmn)

k3R5
mn

]
.

(37)

C. Physical Formula of Gain

The physical limit of antenna array gain is dependent on the
effective aperture of array [17], [46], [47], and the formula is

G = 4πAe/λ2, (38)

where effective area Ae is related to array topology and
beamforming direction. Particularly, for MIMO applications,
rather than the gain along a single direction, we need to
consider the average gain along several directions or inside
an angular spread θ = 0 ∼ θ0, ϕ = 0 ∼ ϕ0. Therefore, we can
use the average effective area

Âe =

∫ ϕ0

0

∫ θ0

0
A(θ, ϕ)dθdϕ

θ0ϕ0
, (39)

where Âe here denotes the average effective area. θ0 = 60◦

and ϕ0 = 0◦ or 180◦ are used in this paper, which indicates the
most representative ±60◦ horizontal scanning in urban base-
station applications. Average gains within different scanning
ranges can also be easily obtained with this method. The
effective apertures of linear, planar, and volumetric arrays are
discussed below.

1) Linear Array: Traditionally, the gain limit of linear array
is 2L/λ, and the concept of ‘area’ is not introduced in this
formula or any analytical method. However, in practical sce-
narios, a linear array does have a certain effective area, which
can lead to discrepancies between this theoretical formula and
full-wave simulations. Specifically, both two dimensions of
practical antenna array will contribute to gain, and the decrease
of gain along θ cannot be captured without the concept of
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‘area’. In our approach, we address this issue by treating the
linear array as a planar array with an effective length of 0.68λ
along the y axis. This adjustment helps better align theoretical
predictions with full-wave simulation results by incorporating
the effective area of the array. Hence, the effective area of a
linear array becomes

Ae = 0.68λ× L cos θ, (40)

which makes the gain results match with full-wave simula-
tions. The average gain in a certain θ range is

Âe =
0.68λ× L sin θ0

θ0
. (41)

2) Planar Array: For planar array, we have the effecitve
area formula

Ae = LxLy cos θ, (42)

and the average gain is

Âe =
LxLy sin θ0

θ0
. (43)

3) Volumetric Array: For volumetric array, the effective
area is the add of the projection or shadow areas along three
dimensions, which is

Ae = LxLy cos θ + LxLz sin θ sin ϕ

+ LyLz sin θ cos ϕ, (44)

where Lz is the vertical length of the volumetric array, and
the average gain is

Âe =
LxLy sin θ0

θ0
+

LxLz(1− cos θ0)(1− cos ϕ0)
θ0ϕ0

+
LyLz(1− cos θ0) sinϕ0

θ0ϕ0
. (45)

D. Physical Formula of Realized Gain

In practical antenna array analysis, the realized gain,
accounting for antenna efficiency losses due to mismatching
and coupling, cannot be neglected [39], [48]. For dense array,
the embedded radiation efficiency of an array element can be
approximately estimated with [39]

e =
Ge

De
=

4πSe

Deλ2
, (46)

where Ge, De, and Se are the gain, directivity, and area of
a single element, respectively. For an array element, the gain
decreases with a reduction in its area, while its directivity
remains unchanged for small elements, such as a short dipole.
Consequently, any decrease in gain must be attributed to
efficiency loss, which leads to the formula. This formula is
quite accurate for planar arrays, as demonstrated by previous
studies [49], [50], but it needs modifications for linear and
volumetric arrays. In this work, the directivity of the array
element is set to De = 3.28, which doubles that of a standard
dipole. The efficiency expressions used in this study are
provided below as

e =


al

√
4πSe/(Deλ2) Linear,

4πSe/(Deλ
2) Planar,

4π(Se + Sv)/(Deλ
2) Volumetric,

[e ≤ 1]. (47)

For the planar array considered here, the y dimension of
each element is fixed at 0.5λ, making the area of a single
element Se = 0.5λ × Lx/Nx, Nx is the antenna number
along x axis. In the case of a volumetric array, each element
can be regarded to have an equivalent larger area due to
the additional vertical dimension, denoted as Sv . Since the
antenna spacing along the vertical dimension is not affected
by Nx, Sv is treated as a fixed value, and retrieved as
0.065λ2, nearly half of the element area at 0.25λ spacing,
to align well with full-wave simulations. For linear arrays,
the coupling effect is less pronounced because only antennas
along one dimension contribute to mutual coupling, resulting
in a more moderate decrease in efficiency. Here, efficiency is
represented as the square root of that for a planar array, with a
retrieved coefficient al = 0.77 to account for specific antenna
designs. The element area for the element in linear array is
Se = 0.68λ× Lx/Nx, as discussed in (40).

It is important to note that the efficiency models presented
here are influenced by antenna design, excitation strategy,
and array topology, which may result in different values
of al, Se, Sv , and De. The retrieval of these parameters
through a single full-wave simulation is needed to ensure
the model functions accurately for the desired antenna array.
The provided formulas here, along with their corresponding
parameters, yield results with good agreement to full-wave
simulations using standard half-wavelength dipoles. For more
complex antennas, dipole-type antennas generally exhibit com-
parable performance due to their similar radiation patterns and
coupling characteristics. While the derived physical gain limit
applies universally to all antenna types, achieving this limit
depends on the specific antenna design and the beamforming
strategy implemented.

E. Numerical Verifications

1) Configuration: The linear, planar, and volumetric array
topologies are depicted in Fig. 1. To investigate the gain
properties of different array topologies, we compare the results
from analytical methods, physical methods, and full-wave
simulations as follows:
• Analytical Method: Closed-form formulas (36)-(37) can

be used for obtaining the analytical results, and +− 60◦

horizontal scanning is considered here with standard
dipole antenna array.

• Physical Method: Formulas (40)-(45) are used to compute
the physical gain limits, while formula (47) is utilized to
determine the antenna efficiencies. The realized gains are
then obtained by combining these results.

• Full-Wave Method: Full-wave simulations are conducted
using CST Microwave Studio (CST MWS), employing a
basic micro-strip dipole antenna as the array element [49].

Since the analytical and full-wave cases consider anten-
nas without reflective boards, the gain results from these
two methods are multiplied by 2 to align with the physical
results [42], which assume the presence of an ideal reflective
board. To ensure fair comparisons, the beamforming patterns
generated are made strictly symmetric across the xoy plane for
all antenna arrays in the analytical and full-wave cases. Prac-
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Fig. 3. Gains of antenna arrays calculated with the analytical, physical, and
full-wave methods at beamforming angles θ = 0◦, 30◦, 60◦. The analytical,
physical, and full-wave results are represented by three different line types,
while three distinct markers are used to denote the three beamforming angles.
(a) Linear array. (b) Planar array. (c) Volumetric array.

tical directional dipole-type antennas can also be utilized [16],
but careful antenna design is required to address blocking and
coupling effects in volumetric arrays, an important area of
ongoing research.

2) Gain Results: The gain results are illustrated in Fig. 3.
In the linear case, the analytical method fails to capture the
decrease in gain at larger radiation angles because it does
not account for the concept of ‘area’ in its formula—an
often overlooked limitation in many analyses. In contrast,
the proposed physical method aligns well with full-wave
simulations, underscoring the importance of considering the
antenna’s effective area, even in linear cases. In the planar

case, all three methods closely agree, accurately characterizing
the gain limits across different beamforming directions. For the
volumetric array, the analytical and full-wave methods show
good consistency, especially when the number of antennas is
sufficient to properly sample the array volume. Gains calcu-
lated using the physical method are slightly lower compared
to the other two methods. Although the effective aperture of
the volumetric array is considered the same as that of the
planar array along the vertical direction, small benefit relating
to vertical length can still be observed with the analytical or
full-wave method due to fringe effect. Notably, the gain of the
volumetric array significantly surpasses that of the planar array
with the same aperture size at larger angles, which aligns with
physical analysis and highlights the advantages of exploring
volumetric array topologies. Additionally, the optimal number
of antennas varies with the beamforming direction, with more
antennas required for larger beamforming angles.

3) Realized Gain Results: The results for realized gains,
incorporating antenna efficiency effects, are depicted in Fig. 4.
Across all cases, the gain decreases with smaller element
spacing due to reduced efficiency. This decrease is smoother
for linear and volumetric arrays compared to planar arrays,
as the effective area of a single element diminishes more
rapidly in planar arrays. For linear and planar cases, the
three models generally agree well, although the analytical
results for the linear case show discrepancies similar to those
observed in the gain discussions. Estimating the realized gain
of volumetric arrays at each beamforming angle is challenging
using physical or analytical methods due to the complexity
of active impedance. This complexity arises because the
embedded radiation efficiency represents an average active
radiation efficiency across all radiation angles. However, when
considering the average realized gain within a target angular
spread, the gains calculated using physical and analytical
methods align well with full-wave simulations, particularly
with the closed-form method, as shown in Fig. 5. Thus, the
proposed efficiency formulas are effective for linear and planar
cases and also yield satisfactory results for volumetric arrays
when considering average gain.

IV. NEAR-FIELD GAIN OF ARBITRARY ANTENNA ARRAY

The gains discussed previously are applicable to the nor-
malization of the channel matrix in far-field communications.
However, near-field communications are becoming increas-
ingly important in current 6G frameworks [6], [7], [51],
[52]. Building on the far-field gain definition, we derive the
formula for near-field gain and reveal that additional gain
losses may arise in near-field communications. The term ‘loss’
here refers to the reduction in the maximum available gain in
the near field compared to the far-field gain. This should be
distinguished from antenna losses caused by mutual coupling
and mismatching.

A. Rigorous Electromagnetic Analysis

From the perspective of electromagnetic theory, the dif-
ferences between near-field and far-field communications
primarily involve the following three aspects: (a) Distance

Authorized licensed use limited to: Zhejiang University. Downloaded on September 27,2025 at 04:09:32 UTC from IEEE Xplore.  Restrictions apply. 



4714 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 24, NO. 6, JUNE 2025

Fig. 4. Realized gains of antenna arrays calculated with analytical, physical,
and full-wave methods at beamforming angles θ = 0◦, 30◦, 60◦. The antenna
number at 0.5λ element spacing along x axis is denoted by the black dotted
line. (a) Linear array. (b) Planar array. (c) Volumetric array.

effects must be considered, as field strength does not simply
decrease with the inverse of distance at near field; (b) Cross-
polarizations can be generated from a single polarization
excitation at close distances; and (c) When calculating power
intensity, the strict Poynting vector should be used, as the
relationship E = ηH does not hold in the near field.

The formula for scalar Green’s function is

g (r, r′) =
1
4π

exp (−jk |r− r′|)
|r− r′|

, (48)

where R = |r− r′|. At far-field, R ≈ r − r′ · aR, aR is the
unit direction vector along r − r′. Hence, the scalar Geen’s

Fig. 5. Average realized gains of volumetric array within angular spread
θ = 0 ∼ 60◦, i.e., ±60◦ horizontal scanning, calculated with analytical,
physical, and full-wave methods.

function under far-field approximation becomes

gfar (kR, r′) =
e−jkr

4πr
exp (jkr′ · kR) , (49)

which is dependent on the direction vector kR but not position
r. For near-field analysis, we have electric and magnetic dyadic
Green’s function

E = −jωµ0

∫
V

Ḡ (r, r′) ·J (r′) dr′, (50)

H = ∇×
∫

V

Ḡ (r, r′) ·J (r′) dr′, (51)

where ω and µ are the angular frequency and free-space
permeability, J denotes equivalent current. We have electric
Green’s function

Ḡ (r, r′) =


k2 +

∂2

∂x2

∂2

∂x∂y

∂2

∂x∂z

∂2

∂y∂x
k2 +

∂2

∂y2

∂2

∂y∂z

∂2

∂z∂x

∂2

∂z∂y
k2 +

∂2

∂z2


e−jkR

4πk2R
,

(52)

and magnetic Green’s function

∇× Ḡ (r, r′) =


0 − ∂

∂z

∂

∂y
∂

∂z
0 − ∂

∂x

− ∂

∂y

∂

∂x
0


e−jkR

4πR
. (53)

More explicit forms of the Green’s functions can be found in
Appendix B for easily calculating the results.

For p polarization of source (p, q = x, y, z), it will generate
vector electric and magnetic fields Ep and Hp, then the
Poyting vector can be written as

Sp =
1
2

Re
[
Ep(r)×H∗

p(r)
]
, (54)

representing the power flows as

Ep ×H∗
p =

(
EyH∗

z − EzH∗y
)
x̂ + (EzH

∗
x − ExH∗z) ŷ

+
(
ExH∗y − EyH∗x

)
ẑ
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=
(
EyH∗z − EzH∗y

)
y + (EzH∗x − ExH∗z) z

+
(
ExH∗y − EyH∗x

)
x, (55)

where x̂, ŷ, ẑ are the direction of power flow, and we re-write
it in consistent of the field polarization x,y, z, i.e., the
x component is dominated by generated x-polarized field.
We can further denote the q component of Sp as Spq . The total
radiated power is then obtained with the integral of Poyting
vector over surface area Sa

Ptotal =
∫

Sa

1
2

Re [E(r)×H∗(r)] · dSa. (56)

According to power conservation, total radiated power should
be the same at near and far-field, so we can also use the
far-field radiated power as Ptotal.

Now, we can define near-field gain following similar route
of far-field gain. Assuming there are N antennas focusing at
position rf , for the excitation of polarization p with amplitude
ap

n and phase αp
n, the generated q-polarized electric field can

be calculated with

Eq(rf ) =
N∑

n=1

ap
ne−jαp

nGqp(rf , r′n), (57)

and the magnetic field can be calculated in the same way by
using the magnetic Green’s function. Then, the Poyting vector
from an antenna array can be calculated following (54)-(55).
We can still define the radiation intensity as the power per solid
angle at near field, although it is usually a far-field concept,
which gives

Upq(θ, ϕ,R) = r2Spq(θ, ϕ, R), (58)

where r is the reference distance, Spq denotes the q component
of Poyting vector generated from source of p polarization.
Similar to far-field gain, the near-field gain corresponding to
different polarizations can be defined as

Gpq =
4πUpq(θ, ϕ, R)

Ptotal
, (59)

the denominator is the total radiated power. Then the channel
matrix Hpq can be normalized according to the gain Gpq

considering near-field effects, as discussed in Section II.

B. Losses in Near-Field Gain

Near-field gain can experience additional losses beyond the
fundamental far-field gain limits imposed by effective area and
antenna efficiency. To explore these characteristics, we cal-
culate near-field gains using both dyadic and scalar Green’s
functions, applying either near-field or far-field beamforming.
Specifically, (59) deduced from dyadic Green’s function is
used as the dyadic approach. For the scalar approach, the Gqp

in (57) is replaced by the scalar Green’s function (48) for
calculating the near-field radiation intensity and gain. For near-
field beamforming, the fields generated by the Tx antennas
are set in phase at the target position through appropriate
excitations. In contrast, far-field beamforming aligns the fields
in phase along the direction of Rx, rather than focusing on the
specific Rx position. Both Tx and Rx polarizations are set to
x in the numerical examples considered here.

Fig. 6. Near-field gains of antenna arrays calculated using dyadic and scalar
Green’s functions with near-field or far-field beamforming. The differences
between gains at each distance can be attributed to the different loss factors
considered in these calculation methods, where all the gains will tend to
far-field gain limit at large distance.

As shown in Fig. 6, the differences in gains obtained from
these methods are due to additional losses specific to the
near-field environment, including illumination loss, beamform-
ing loss, and polarization loss. Illumination loss arises from
non-uniform field distribution when the array is illuminated
by a source in the near field, and vice versa. This type of loss
can be mitigated through amplitude control or even excluded
from the near-field gain definition. Beamforming loss occurs
when element excitations are optimized for directional far-field
beamforming rather than specific near-field positions, a com-
mon issue in aperture antenna analysis [53]. Polarization loss
occurs when power is converted into undesired polarizations,
which would also appear in far-field scenarios and can be
defined similarly. Polarization loss in the near field is almost
unavoidable and currently can only be effectively suppressed
by elimination techniques, such as oblique projection filter and
zero-forcing method, which requires additional computational
cost and the manipulation of z polarization [8]. Both illumi-
nation and beamforming losses can be well managed through
appropriate excitations. To account for these additional losses
easily, a physical loss factor can be incorporated into the far-
field gain.

C. Physical Loss Factor

The previous deductions are quite length. In practice, sim-
pler physical methods can be used, particularly those based
on the near-field gain of aperture antennas. In the heuristic
derivation of the near-field range equation, an efficiency factor
is introduced to account for gain loss in aperture anten-
nas at near-field distances [53]. Inspired by this approach,
we propose a physical loss factor to address the various
losses discussed. For aperture antennas with aperture field
distribution

f(r) = e−jkr/2
[(

1− (r1/r0)
2
)m

+ cm

]
, (60)

where r1 is the distance between field point and central point
on the aperture, r0 is the radius of the aperture, r is the
reference distance between source and receiver, m, cm are
the factors determining the field distribution of the aperture
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Fig. 7. Three loss factors of near-field gains at different distances calculated
with rigorous and physical methods.

antenna. From the definition of power gain at arbitrary distance
in aperture antenna theory, the loss factor of near-field gain can
be approximately calculated with [53], [54]

η =
σ2
∣∣I(m, m) + cmI(m, 0) + cmI(0, m) + c2

mI(0, 0)
∣∣2

16
(

cm
2

2 + cm

m+1 + 1
4m+2

)2 ,

(61)

where σ is a factor related to aperture size and reference
distance, I(m, n) = n!m!

∑∞
j=0

[
(−1)j(σ/2)2j

]
/[(j + m +

1)!(j + n + 1)!]. With uniform excitations (cm = 0, m = 0),
the loss factor is simplified to

η =

∣∣∣∣∣∣
∞∑

j=0

(−1)j(σ)2j

(j + 1)!(j + 1)!

∣∣∣∣∣∣ . (62)

For square arrays, the expression for σ can be approximated
as aLkL/R, where L is the side length of array, and aL is the
coefficient accounting for the loss considered. The aL can be
retrieved from rigorous analysis as follows

aL =


0.12 Polarization loss,
0.18 Illumination loss,
0.5 Beamforming loss.

(63)

The verifications of these physical loss factors are provided in
Fig. 7, where great matches can be observed. This approach
facilitates the straightforward adaptation of the far-field gain
to estimate the near-field gain by incorporating the appropriate
loss factors.

V. EFFECTS OF NORMALIZATION ON CAPACITY
ESTIMATION

The choice of normalization method significantly impacts
the performance evaluation of novel antenna array topolo-
gies, such as dense and volumetric arrays. In this section,
we compare the capacities of linear, planar, and volumetric
arrays using the proposed normalization methods across quasi-
static, ergodic, and near-field scenarios. For the quasi-static
and ergodic scenarios, we employ the BLAST strategy: the
antennas at the base station (holographic array) are correlated,
while the antennas on the user side remain uncorrelated. The

holographic array configurations illustrated in Fig. 1 are used,
with the number of users set to 10 for the linear array and
100 for the planar or volumetric array. The total SNR is fixed
as γ = 10 dB for all the cases. To highlight the influence
of antenna configurations, antenna efficiencies are excluded
from the quasi-static cases but are included in the ergodic
cases. Correlations between antennas are derived using (12)-
(14) in a rich multi-path environment, with an angular spread
of ±60◦ aligning with the desired beamforming directions,
where uniform power spectrum is assumed and the XPD is 1.
For the near-field scenario, a holographic planar or volumetric
array of size 5λ × 5λ on xoy plane is used as the Rx, with
the number of antennas reaching its capacity limit, while a
standard planar Tx array of the same size and 0.5λ element
spacing is positioned directly opposite at a distance of 5λ.

Additionally, the antenna array gains for all cases are
scaled down by dividing π, which makes the electromagnetic
normalization (6) of a planar array close to ||H||F = Nt

4Ae

λ2 =
NtNr at 0.5λ spacing. With this scaling, the electromagnetic
normalization of a planar array approximates a unit sub-
channel gain, making comparisons with traditional methods
more straightforward. At the same time, the trends influenced
by electromagnetic factors are preserved, including the gain
limits of the arrays, efficiency reductions due to coupling, and
the advantages offered by volumetric arrays. The scaling of
the SNR can be adjusted according to the desired total power
gain level, while the proposed methods ensure that the relevant
electromagnetic factors are accurately captured.

A. Quasi-Static Capacity

The capacities in the quasi-static scenario are illustrated in
Fig. 8. In all cases using traditional normalization, capacity
increases with the number of antennas, which is a non-physical
phenomenon resulting from the neglect of the gain limit.
For the linear array, the analytical method predicts higher
capacities than the physical and full-wave methods, as it fails
to account for the gain reduction at increasing θ angles. In the
planar and volumetric arrays, the three proposed normaliza-
tion methods show good agreement, demonstrating that each
method is suitable for normalization. The advantages of volu-
metric arrays are also evident, as introducing height variations
improves gain at large beamforming angles. The planar array
approaches its capacity limit at a 0.5λ spacing, whereas the
capacity of the volumetric array with the same aperture size
continues to increase until reaching a 0.25λ spacing, ultimately
achieving a 15% capacity increase compared to planar array.
Notably, without electromagnetic normalization, the correct
trend of capacity cannot be accurately captured, and only a
9% benefit will be observed for the volumetric array.

B. Ergodic Capacity Considering Antenna Effects

For the ergodic results shown in Fig. 9, we further account
for the impact of antenna efficiency due to mutual coupling.
When using traditional normalization methods, the results
suggest unlimited capacity gains as the number of antennas
increases, even when antenna efficiency is reduced. However,
with the proposed normalization method, the capacities of
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Fig. 8. Far-field holographic MIMO capacities using different channel
normalization methods in quasi-static cases. (a) Linear array. (b) Planar array.
(c) Volumetric array.

linear and planar arrays reach their limit at 0.5λ spacing and
then start to decline. This decline is attributed to reduced
antenna efficiency, which results in a decrease in realized gain.
In contrast, the volumetric array, benefiting from additional
DOF, reaches its capacity limit at approximately 0.3λ spacing
and achieves a 20% capacity gain compared to the planar array.
Nevertheless, under traditional normalization, a capacity gain
of only 13% is observed.

C. Near-Field Capacity

In the near-field scenario, Fig. 10 illustrates the holographic
MIMO capacities for both planar and volumetric arrays. The
results show that capacity varies with distance depending on
the types of losses considered. Polarization and illumination

Fig. 9. Far-field holographic MIMO capacities using different channel nor-
malization methods in ergodic cases considering antenna efficiency. (a) Linear
array. (b) Planar array. (c) Volumetric array.

losses are generally minimal, especially at greater distances.
However, beamforming losses can be significant; without
near-field beamforming, substantial gain reduction occurs at
close range, similar to the behavior observed with traditional
aperture antennas [53]. Different from far-field cases, the
volumetric array exhibits only a slight advantage over the
planar array at very close distances, where the additional DOF
provide benefits. At larger distances, this advantage diminishes
due to the small angular spread, as the effective areas of
planar and volumetric arrays are comparable along the vertical
direction. While polarization loss is difficult to compensate,
illumination and beamforming losses can be effectively man-
aged. Therefore, appropriate normalization methods should be
selected based on the specific losses under consideration.
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Fig. 10. Near-field holographic MIMO capacities with different channel
normalization methods. (a) Planar array. (b) Volumetric array.

D. Discussion

Without electromagnetic-based normalization, errors may
arise in estimating capacity trends and the benefits of dense or
volumetric arrays, which could undermine the optimal design
of holographic MIMO systems. The proposed normalization
methods generally align well with each other, indicating that
the choice of method can be adapted to specific needs as
follows:

• The full-wave method is the most rigorous method and
closely matches practical results but requires substantial
computational resources and time.

• The physical method is easier to implement and works
well for uniform and regular arrays, although it may
be less effective for irregular ones. Additionally, due
to complex hardware factors such as specific antenna
designs and active antenna impedance, some coefficients
in the physical method may need calibration through full-
wave simulations. Once these coefficients are determined,
the physical method can be applied effectively to specific
problems, such as certain volumetric array topologies.

• The analytical method provides a balance between accu-
racy and computational efficiency, making it a practical
compromise between the more demanding full-wave and
the simpler physical methods.

Ultimately, the choice of normalization method should be
guided by the specific scenario, the loss factors considered,
and the available computational resources.

VI. CONCLUSION

This paper addresses the electromagnetic-based normaliza-
tion of channel matrices for arbitrary array topologies in
holographic MIMO communications. It demonstrates that the
normalization of channel matrix should reflect the realized
gains of the antenna array in target directions, which is partic-
ularly crucial for holographic arrays due to the coupling and
correlation effects inherent in dense or volumetric topologies.
The proposed methods for array gains and normalization are
validated through analytical, physical, and full-wave methods.
Future work will focus on exploring novel holographic array
topologies and developing corresponding precoding technolo-
gies, including irregular volumetric structures.

APPENDIX A
PROPERTIES OF BESSEL FUNCTIONS

Some mathematical properties of Bessel functions are used
in this paper. From (V-35) of [42, Appendix V], we have

Jn(x) =
j−n

2π

∫ 2π

0

ejx cos ϕejnϕdϕ. (64)

From (10), [55, Ch. 13], we have∫ π/2

0

Jv(z sin t) sin2α−1 t cos2β−1 tdt

=
1
2 (z/2)vΓ(β)Γ(α + v/2)
Γ(v + 1)Γ(α + β + v/2)

× 1F2

(
a + v/2
v + 1, a + β + v/2

∣∣∣∣ − z2/4
)

, (65)

where Γ is the Gamma function, 1F2 is the hypergeometric
function with order (1, 2).

From (6.677.6), [56, Ch. 6], we have∫ a

0

J0

(
b
√

a2 − x2
)

cos(cx)dx=
sin
(
a
√

b2 + c2
)

√
b2 + c2

[b > 0].

(66)

APPENDIX B
EXPLICIT FORMS OF DYADIC GREEN’S FUNCTION

A. Electric Green’s Function

The electric dyadic Green’s function in (52) can be written
as

Ḡ(R) = G1(R)I + G2(R)aRaR, (67)

G1(R) =
(
−1− jkR + k2R2

) e−jkR

4πk2R3
, (68)

G2(R) =
(
3 + 3jkR− k2R2

) e−jkR

4πk2R3
, (69)

aRaR =

 cos x cos x cos y cos x cos z cos x
cos x cos y cos y cos y cos z cos y
cos x cos z cos y cos z cos z cos z

 , (70)

where

cos x = (x− x′) /R, cos y=(y − y′) /R, cos z = (z − z′) /R.
(71)
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B. Magnetic Green’s Function

The entries of the magnetic dyadic Green’s function in (53)
only include one-order derivative, which are

∂

∂x

(
e−jkR

4πR

)
= −jkRe−jkR cos x

4πR2
− Re−jkR cos x

4πR3
, (72)

∂

∂y

(
e−jkR

4πR

)
= −jkRe−jkR cos y

4πR2
− Re−jkR cos y

4πR3
, (73)

∂

∂z

(
e−jkR

4πR

)
= −jkRe−jkR cos z

4πR2
− Re−jkR cos z

4πR3
, (74)

the definitions of cos x, cos y, cos z are the same as that in
electric dyadic Green’s function.
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