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Abstract—Electromagnetic-circuital-thermal multiphysics simulation is a very important topic in the
field of integrated circuits (ICs), microwave circuits, antennas, etc. This paper presents a comprehensive
review of the state of the art of electromagnetic-circuital-thermal multiphysics simulation method.
Most efforts were focused on electromagnetic-circuital co-simulation and electromagnetic-thermal co-
simulation. A brief introduction of related theories like governing equations, numerical methods, and
coupling mechanisms is also included.

1. INTRODUCTION

With the continuous improvement of the technological level of integrated circuits (ICs), the operating
frequency and integration density are becoming higher and higher, which brings huge challenges to
the simulation of integrated circuits. On one hand, the wave effect becomes noticeable as the working
frequency increases. For instance, the electromagnetic coupling between the interconnects and package
will lead to the signal integrity problem. In this situation, the simulation accuracy cannot be guaranteed
if only the classical circuit theory is adopted. Therefore, full-wave electromagnetic simulation method
must be included to implement electromagnetic-circuital co-simulation. On the other hand, high
integration level will not only raise the density of the devices and interconnects, but also increase
the power density, resulting in difficulties in thermal management. Moreover, if the temperature of ICs
increases greatly, it will cause the change of material properties like permittivity, conductivity, etc.,
which will have an influence on the functions of ICs. As a result, the mutual effects between EM and
thermal must also be taken into account. To sum up, the electromagnetic-circuital-thermal multiphysics
simulation becomes necessary and significant in the design of ICs. Actually, such kinds of modeling and
simulation requirements are also very common in the field of microwave circuits and antennas.

Currently, there are plenty of literatures related to electromagnetic-circuital co-simulation method
(or called hybrid field and circuit simulation method) and the electromagnetic-thermal co-simulation
method. So in Sections 2.1 and 2.2 of this paper, we will take a general review of the state-of-the-art.
Then we will give a brief introduction of the simulation method for the electromagnetic-circuital-thermal
multiphysics design in Section 3. Conclusions are drawn in Section 4.
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2. OVERVIEW OF THE STATE-OF-THE-ART

2.1. Electromagnetic-Circuital Co-Simulation Method
In most electromagnetic-circuital co-simulation method, the whole system is mainly divided into two
parts: electromagnetic structures and lumped circuits. Full-wave method including finite-difference
time-domain (FDTD) method [1], finite element method (FEM) [2], and method of moments (MoM) [3]
are adopted to simulate the electromagnetic structures like interconnects and package. The lumped
circuits are analyzed by circuit theory. Finally, the interface between the electromagnetic part and
circuit part is built to couple them together. There are two kinds of electromagnetic-circuital co-
simulation methods. One is the frequency domain method, namely harmonic balance method [4, 5],
and the other is the time domain method [8–37]. Since the time domain method is more suitable for
the nonlinear, wideband, and multiphysics problem, it captures lots of attention in recent years. In the
following, we will introduce the selection of time-domain full-wave method and the analysis method of
lumped circuits, respectively.

1) The selection of time-domain full-wave method

The finite-difference time-domain method, finite-element time-domain (FETD) method [6, 7], and
time-domain integral equation (TDIE) [8–11] method are three mainstream time-domain full-wave
methods in computational electromagnetics. Due to its simplicity, the FDTD method was applied to
electromagnetic-circuital co-simulation initially [12–17]. The global time-domain analysis of microwave
circuits involving highly nonlinear phenomena such as injection locking and intermodulation, along
with parasitic effects, and electromagnetic compatibility (EMC) issues are studied in [16]. For circuits
providing complex functionality, two-port or possibly multiport devices, whether passive or active, are
sure to appear in the circuits. Therefore, an efficient scheme for processing arbitrary multiport devices
is investigated in [17]. However, the classical FDTD method requires orthogonal grids, resulting in
the staircasing effects. A high mesh density is required to model structures with curved surfaces.
Tetrahedron elements and high-order discretization schemes can be used in the FETD method. Thus,
it usually has a higher modeling accuracy. The FETD method was widely adopted in electromagnetic-
circuital co-simulation [18–20]. An extension of the unconditionally stable FETD method for the global
electromagnetic analysis of active microwave circuits is proposed in [18]. Co-simulation of the linear
network and nonlinear circuits in an integrated circuit system is realized in [19]. The proposed algorithm
extends the capability of the existing field-circuit solver to model more complex and mixed-scale hybrid
circuits. Incorporating multiport lumped networks in terms of admittance matrices into a hybrid
field-circuit solver is investigated in [20]. Besides the time-domain differential equation method, the
TDIE method was also applied to electromagnetic-circuital co-simulation [21–27]. In [24], the nonlinear
equivalent circuit equation is coupled into the time-domain surface and volume electric field integral
equations to form a field-circuit system equation. Then, this nonlinear system matrix equation is directly
solved by the Newton-Raphson method. However, for a large and complicated microwave nonlinear
circuit, the time consumption of the Newton iteration process is often unacceptable in this conventional
method. Consequently, in [25], the improved solution scheme is proposed to improve the calculation
efficiency of the process of the Newton iteration. In [26], a field-circuit coupling method is presented for
the analysis of microwave circuit included with nonlinear physical model-based semiconductor devices.
However, the TDIE method is not good at analyzing highly inhomogeneous object. For real-world
problems, the electromagnetic structure usually includes complex dielectric substrates, vias, solder
balls, microstrip lines, etc., which is difficult to be handled by the TDIE method. Consequently, it is
not widely used in electromagnetic-circuital co-simulation.

In summary, the FETD method is preferred for electromagnetic-circuital co-simulation. However,
a large global matrix equation has to be solved for each time step in the FETD method, resulting in a
great amount of computational cost. The discontinuous Galerkin time domain (DGTD) method [28–32],
as a differential equation method, has attracted great attention in recent years. It supports an element-
level domain decomposition, avoiding the solution to a large sparse matrix equation. Moreover, the
DGTD method is easy to be parallelized, thus suitable for modeling large-scale problem with parallel
computing technique. Additionally, the coupled EM-circuit equation is only related to the elements
connected with the circuit network. So only a small nonlinear equation needs to be solved at each time
step when nonlinear component is included in the lumped circuits.
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2) The analysis method of lumped circuits

Firstly, we can divide the lumped circuits into four types, including linear circuits with known
internal details (Type A), nonlinear circuits with known internal details (Type B), linear circuits with
unknown internal details (Type C), and nonlinear circuits with unknown internal details (Type D). Fig. 1
illustrates the circuits with known and unknown internal details connected with the electromagnetic
structure. Here, the internal details refer to the network topology and component information of the
original circuit or equivalent circuit. Linear circuits usually consist of resistors, capacitors, and inductors,
while nonlinear circuits are usually composed of diodes, transistors, etc.

Figure 1. Different circuit types of electromagnetic and circuital co-simulation.

The modified nodal analysis method [33] can be used to construct circuit equations for the lumped
circuits with known internal details (both Type A and Type B). It is worth mentioning that the nonlinear
equations will be formed for the nonlinear circuits. The solution methods for nonlinear equations like
Newton-Raphson algorithm are needed in this case [34]. Many scholars have studied the electromagnetic-
circuital co-simulation problem when the internal details of the circuits are known. The major difference
among their works lies in the time-domain full-wave simulation adopted. All the aforementioned CEM
methods including FDTD [16], FETD [18, 19], TDIE [21, 22], and DGTD [35, 36] have been used for
the electromagnetic-circuital co-simulation. As an example, Fig. 2 shows the electromagnetic-circuital
co-simulation of a MESFET microwave power amplifier. Port 1 and port 4 of the matching network are
connected with linear circuits, while port 2 and port 3 are connected with nonlinear circuits.

In real applications, the circuit details are not always available due to the intellectual property
(IP) protection. Thus, the circuit equations cannot be obtained by classical circuit theory. For linear
circuits with unknown internal details (Type C), they can be considered as black boxes characterized by
scattering or admittance matrices. The scattering matrices can be converted into admittance matrices
using the microwave network theory. The admittance matrices in the Laplace domain can be transformed
into the time domain. Thus, the time-domain I-V relation of the lumped network is obtained, which can
be coupled with the field equations to complete the electromagnetic-circuital co-simulation. FDTD [17],
FETD [20], and DGTD [37] methods have been used to solve this kind of problems. Fig. 3 illustrates
an example of this case.

We can only find a handful of works on the electromagnetic-circuital co-simulation problem with
Type D circuits, whose features are described by behavioral macromodels in existing works. For instance,
the IBIS model is integrated with the transmission-line modeling method in [38]. However, the accuracy
of the IBIS model is not enough for recent technologies with higher data communication speed and more
sophisticated devices. In [39], the Gaussian radial basis function (RBF) behavioral model is coupled
with the FDTD method. Actually, the sigmoidal basis function (SBF) behavioral model can give more
accurate results with fewer basis functions than RBF model [40]. So recently the TDIE and DGTD
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(a) (b)

(c) (d)

Figure 2. Electromagnetic-circuital co-simulation of MESFET microwave power amplifier: (a)
matching networks, (b) equivalent circuit model, (c) basic current and voltage characteristics of this
MESFET amplifier, (d) voltages at the gate and drain terminals obtained from the transient analysis.
Reprinted with permission from [36].

methods have been coupled with SBF macromodel for this kind of problem [23, 41–45]. An example of
this case is presented in Fig. 4. The nonlinear load is an inverter in ADS using the MOSFET model.
The ADS transient simulation is carried out firstly. Then, the currents and voltages at the digital I/O
port are recorded as the training data for the SBF macromodel. After that, the SBF macromodel is
coupled with DGTD method to implement electromagnetic-circuital co-simulation.

2.2. Electromagnetic-Thermal Co-Simulation Method

The electromagnetic-thermal co-simulation is mainly constituted by electromagnetic simulation and
thermal simulation. Maxwell equation is solved to obtain the distribution of electromagnetic field in the
electromagnetic simulation. Then, the electromagnetic losses can be computed with the consideration of
material loss. After that, heat conduction equation is solved to acquire the thermal field in the thermal
simulation. In some cases, the thermal field will influence the electromagnetic properties (constitutive
parameters), resulting in the change of electromagnetic fields. Thus a new round of electromagnetic
simulation will be needed until a self-consistent solution is reached.

The numerical solution methods and applications of electromagnetic-thermal co-simulation have
been studied. At first, microwave heating process is intensively studied by using the FDTD method [46–
48]. The influence of the thermal field on the material attributes is considered in [46], and that of
frequency-dependent and temperature-dependent media is considered in [47]. Most models consider
only heat transfer by conduction, while radiation is usually neglected. This simplification becomes
questionable at higher temperatures. Consequently, heat radiation effect is specifically studied in [48].
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Figure 3. Electromagnetic-circuital co-simulation of a chip capacitor: (a) layout of the circuit
configuration, (b) equivalent circuit of the chip capacitor, (c) magnitude of S21 calculated by the
proposed algorithm and reference from ADS simulation. Reprinted with permission from [37].

Later, owing to the advantage of FEM method in modeling complex geometries and materials, the
electromagnetic-thermal co-simulation of integrated circuits and microwave components is carried out
based on the FEM method [49–54]. The co-simulation is employed for high-frequency characterizations
of the through-silicon-via (TSV) structures in [49] with equivalent circuit models. In [50], electrical-
thermal co-simulation is developed to analyze the static voltage drops with the FEM. The effects
of the thermal influence and the electrical behaviors of the TSV structures are considered in [51].
The capability of the co-simulation is extended to solve large-scale problems by incorporating a
domain decomposition scheme called the finite element tearing and interconnecting (FETI) in [52].
In addition, electrothermal characteristics of some novel 3-D carbon-based heterogeneous interconnects
are investigated in [53]. The electrical-thermal co-simulation for high-power microwave components is
carried out in [54]. The influence of electromagnetic radiation on human body and the thermal cooling
mechanisms of human are investigated in [55–58]. As depicted in Fig. 5, FEM method is adopted
for the electromagnetic-thermal co-simulation of human head model exposed to the electromagnetic
radiation of cell phones. Due to the advantages of DGTD method over FEM method, recently
the DGTD method is also utilized as an efficient numerical method for electromagnetic-thermal co-
simulation [59–61]. Transient thermal analysis of 3-D integrated circuits packages is studied in [59].
Transient electromagnetic-thermal co-simulation of a waveguide with filling dielectric is implemented
in [60]. Both the frequency-dependent and temperature-dependent properties of dispersive media are
considered in [61].
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Figure 4. Electromagnetic-circuital co-simulation of digital circuits: (a) the ADS schematic diagram
for a microtrip structure loaded with digital circuits, (b) port voltage, (c) port current. Reprinted with
permission from [41].

3. THEORY

In this section, we will introduce some basic theories of electromagnetic-circuital-thermal multiphysics
simulation including governing equations, numerical methods, coupling mechanisms, etc. Our aim is
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Figure 5. Example of electromagnetic-thermal co-simulation: (a) human head model, (b) cell phone
model, (c) the 3D temperature distributions and the temporal temperatures at a randomly chosen
observation point. Reprinted with permission from [55].

not to expatiate the related techniques, but to demonstrate the procedures of electromagnetic-circuital-
thermal multiphysics simulation.

3.1. Electromagnetic Equations

Let’s start from the Maxwell curl equations

∇× E = −μ
∂H
∂t

(1)

∇× H = ε
∂E
∂t

+ σE (2)

where μ is the permeability, ε the permittivity, and σ the conductivity. We will describe how to use
DGTD method to solve the above two equations.

Suppose that the whole computational domain V can be meshed into a set of tetrahedron elements
Vi (i = 1, ..., N), whose boundary is ∂Vi. The electric field E and magnetic field H in Vi are expanded
by a set of vector basis functions Nl. Then, by using the Galerkin testing procedure to the Maxwell curl
equations (Galerkin testing means that the testing basis functions Nk are the same as the expanded
basis functions [2].), we can obtain∫

V

μNk · ∂H
∂t

dV = −
∫
V

∇× Nk · EdV −
∫

∂Vi

Nk · n̂ × EdS (3)

∫
V

εNk · ∂E
∂t

dV +
∫
V

Nk · σEdV =
∫
V

∇× Nk · HdV +
∫

∂Vi

Nk · n̂ × HdS (4)

The last terms of Eqs. (3) and (4) are evaluated by enforcing the continuity of the numerical flux
across element interfaces. There are three most commonly used numerical fluxes, namely the centered
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flux, upwind flux, and partially penalized flux. Here we only exhibit the upwind flux:

n̂ × E = n̂ × Y iEi + Y jEj − n̂ × Hi + n̂ × Hj

Y i + Y j
(5)

n̂ × H = n̂ × ZiHi + ZjHj + n̂ × Ei − n̂ × Ej

Zi + Zj
(6)

where the superscripts i and j refer to the local and neighboring elements, respectively. After plugging
Eqs. (5), (6) into Eqs. (3), (4), and expand the electric field Ei and magnetic field Hi with Nl, we can
write the semi-discretized matrix equation:

[M ii
hh] · ∂hi

∂t
= −[Sii

he] · ei − [F ii
he] · ei + [F ii

hh] · hi − [F ij
he] · ej − [F ij

hh] · hj (7)

[M ii
ee] ·

∂ei

∂t
= [Sii

eh] · hi + [F ii
eh] · hi + [F ii

ee] · ei + [F ij
eh] · hj − [F ij

ee] · ej +
[
Cii

ee

] · ei (8)

where

[M ii
hh] =

∫
Vi

μiNi
k · Ni

ldV (9)

[M ii
ee] =

∫
Vi

εiNi
k · Ni

ldV (10)

[Sii
eh] =

∫
Vi

∇× Ni
k · Ni

ldV (11)

[Sii
he] =

∫
Vi

∇× Ni
k · Ni

ldV (12)

[F ii
he] =

∫
∂Vi

Y i

Y i + Y j
Ni

k · n̂ × Ni
ldS (13)

[F ii
eh] =

∫
∂Vi

Zi

Zi + Zj
Ni

k · n̂ × Ni
ldS (14)

[F ii
hh] =

∫
∂Vi

1
Y i + Y j

Ni
k · n̂ × (n̂ × Ni

l)dS (15)

[F ii
ee] =

∫
∂Vi

1
Zi + Zj

Ni
k · n̂ × (n̂ × Ni

l)dS (16)

[F ij
he] =

∫
∂Vi

Y j

Y i + Y j
Ni

k · n̂ × Nj
l dS (17)

[F ij
eh] =

∫
∂Vi

Zj

Zi + Zj
Ni

k · n̂ × Nj
l dS (18)

[F ij
hh] =

∫
∂Vi

1
Y i + Y j

Ni
k · n̂ × (n̂ × Nj

l )dS (19)

[F ij
ee ] =

∫
∂Vi

1
Zi + Zj

Ni
k · n̂ × (n̂ × Nj

l )dS (20)



Progress In Electromagnetics Research, Vol. 169, 2020 95

[Cii
ee] = −

∫
Vi

σiNi
k · Ni

ldV (21)

By using the leapfrog time integration scheme, the final marching-on-in-time matrix equation of
DGTD can be obtained:

[M ii
hh] · hi

n+ 1
2

= [M ii
hh] · hi

n− 1
2
− Δt([Sii

he] + [F ii
he]) · ei

n

+Δt[F ii
hh] · hi

n− 1
2

− Δt[F ij
he] · ej

n − Δt[F ij
hh] · hj

n− 1
2

(22)

[M ii
ee] · ei

n+1 = [M ii
ee] · ei

n + Δt([Sii
eh] + [F ii

eh]) · hi
n+ 1

2

+Δt[F ii
ee] · ei

n + Δt[F ij
eh] · hj

n+ 1
2

− Δt[F ij
ee] · ej

n + Δt[Cii
ee] · ei

n (23)

3.2. Circuit Equations

The circuit equations constructed for the four types of lumped circuits introduced in Section 2.1 can be
summarized into a unified form:

In = f (Vn) (24)

where In and Vn refer to the vectors of node currents and node voltages. This equation can be either
linear or nonlinear according to the linear or nonlinear property of the lumped circuits.

3.3. Thermal Equations

The governing equation for transient thermal analysis is heat transfer equation

ρCρ
∂T

∂t
= ∇ · (κ∇T ) + Q (25)

where ρ denotes the density of the material, κ the thermal conductivity, Cρ the specific heat coefficient,
and Q the heat source.

There are four kinds of commonly-used boundary conditions in thermal analysis [62–64]. For the
convenience of description, the surface of an arbitrarily shaped object is denoted by S = S0∪S1∪S2∪S3.
If S0 is maintained at a fixed temperature Ts, the Dirichlet boundary condition will be applied

T = Ts r ∈ S0 (26)

The second category of boundary condition is termed as the Neumann condition, corresponding to
a fixed heat flux qs at the surface S1

−n̂ · κ∇T = qs r ∈ S1 (27)

where n̂ denotes the unit outward normal vector of the boundary surface.
The third category of boundary condition is the convection boundary condition

−n̂ · κ∇T = h(T − Tsur) r ∈ S2 (28)

Tsur refers to the surrounding temperature. h denotes the convective heat transfer coefficient.
The fourth category of boundary condition, namely radiation boundary condition, will be applied

if thermal radiation occurs between the surface S3 of the medium and its surrounding environment

−n̂ · κ∇T = ε0σ
(
T 4 − T 4

sur

)
r ∈ S3 (29)

where σ is the Stefan-Boltzmann constant. ε0 is the emissivity of the medium surface.
If we employ FETD method to solve Eq. (25), nodal basis functions Nj are employed to expand T

T =
N∑

j=1

TjNj (30)
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Then considering four kinds of boundary conditions, we can obtain the spatially discrete form of
Equation (25) by using the Galerkin’s scheme with testing basis function Ni (i = 1, 2, ..., N)

[C]
{

∂T

∂t

}
+ [K] {T} = {f(T )} (31)

where
[C]ij = ρCρ

∫
V

NiNjdV (32)

[K]ij = κ

∫
V
∇Ni · ∇NjdV + h

∫
S2

NiNjdS (33)

{f (T )}i =
∫

V
NiQdV −

∫
S1

NiqsdS + h

∫
S2

NiTsurdS − ε0σ

∫
S3

Ni

(
T 4 − T 4

sur

)
dS (34)

{T} refers to the time-dependent expansion coefficients. The Crank-Nicolson scheme can be utilized for
the temporal discretization of Eq. (31) to obtain an unconditionally stable system:(

[C] + [K]
Δt

2

)
{Tn} =

(
[C]− [K]

Δt

2

)
{Tn−1} + {f (Tn)}Δt (35)

3.4. Coupling Mechanism

1) Electromagnetic-Circuit Coupling

The electromagnetic field in EM structure, the voltages and currents in the lumped circuits vary
simultaneously in very short-time scale. So the EM simulation and circuit simulation are tightly coupled.
At the interface of the EM structure and circuit, the port voltage can be obtained by a line integral of
the electric field in one of the interface elements, which represents the effect of the EM structure on the
circuit.

vk = −
∫

Ei · L̂kdL (36)

where L̂k is the unit vector from the reference ground to the desired potential points at the k-th port.
In return, the current will flow from the lumped circuit to the EM structure, which stands for the

influence of the lumped circuit on the EM structure. It is worth mentioning that the numerical flux
needs to be revised in DGTD method when considering the current from the lumped circuit. In this
case, Eqs. (5) and (6) will be changed to

n̂ × E =
n̂ × (

Y iEi + Y jEj
)

Y i + Y j
− n̂ × [

n̂ × (
Hi − Hj

)
+ JCKT

]
Y i + Y j

(37)

n̂ × H =
n̂ × (

ZiHi + ZjHj
) − ZjJCKT

Zi + Zj
+

n̂ × [
n̂ × (

Ei − Ej
)]

Zi + Zj
(38)

where JCKT denotes the surface current density injected by the lumped circuit at the interface of EM
structure and circuit. Fig. 6(a) shows the pseudocodes of electromagnetic-circuit co-simulation. A
detailed implementation of the electromagnetic-circuit coupling can be found [37, 41].

2) Electromagnetic-Thermal Coupling

As shown in Fig. 7, there are two coupling schemes of electromagnetic and thermal co-simulation,
namely one-way coupling scheme and two-way coupling scheme. For the one-way coupling scheme, the
dissipated power calculated through EM simulation becomes the heat source in the thermal simulation.
For example, the dissipated power due to conductor loss can be calculated as

Pd = σ|E|2 (39)

The distribution of electromagnetic field will influence the temperature of objects, but the temperature
of objects has no influence on the EM simulation.
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Initialization:

else

endif

Initialization:

(a) (b)

port voltage V   = 0, port current I   = 0,
0 0

electric field e   = 0, magnetic field h   = 00 0

For n=1 to number of time steps
For i=1 to number of elements

If current element is connected with lumped circuit
Solve the coupled EM-circuit equation

Solve the EM matrix equations

End Loop i
End Loop n
Output: electric field e  , magnetic field h  , port current
I  , port voltage V . 

n n

n n

temperature T   = T,
electric field e   = 0,
magnetic field h   = 0,
conductivity σ = σ  . 

0

0

0

0
For n=1 to number of time steps

Compute electromagnetic field e   and h n n

Calculate dissipated power Pd
Compute temperature T  with Q = Pn d
Update conductivity σ

End Loop n
Output: electric field e  , magnetic field h  ,n n
temperature T .n

Figure 6. Pseudocodes of (a) electromagnetic-circuit co-simulation, (b) electromagnetic-thermal
cosimulation.

(a) (b)

Figure 7. Coupling schemes of electromagnetic and thermal co-simulation: (a) one-way coupling
scheme, (b) two-way coupling scheme.

In the two-way coupling scheme, the EM and thermal simulations are coupled in an iterative
manner. After considering the influence of EM to thermal, the variation of temperature of objects
will cause the change of permittivity, conductivity, etc., which will in turn affect the electromagnetic
simulation. For instance, the electrical conductivity can be the function of temperature

σ = g(T ) (40)

Figure 6(b) shows the pseudocodes of electromagnetic-thermal co-simulation.
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4. CONCLUSION

In this paper, we have reviewed the state of the art of the electromagnetic-circuital-thermal multiphysics
simulation method. Apparently, a great number of works have been done on electromagnetic-circuital
co-simulation and electromagnetic-thermal co-simulation. However, the simultaneous simulation of
all three, namely electromagnetic, circuit, and thermal, has not been found yet. Actually, we have
completed this work quite recently. The technical details will be shown in another paper. Also, we
think the application of the electromagnetic-circuital-thermal multiphysics simulation to real engineering
problems is another challenging and urgent task in future.
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