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Abstract: The fast multipole method (FMM) in conjunction with the lifting wavelet-like transform scheme is
proposed for the scattering analysis of differently shaped three-dimensional perfectly electrical conducting
objects. As a flexible and efficient matrix compression technique, the proposed method can sparsify the
aggregation matrix and disaggregation matrix in real time with compression ratio about 30%. The
computational complexity and choice of proper wavelet are also discussed. Numerical simulation and
complexity analysis have shown that the proposed method can speed up the aggregation and disaggregation
steps of the FMM with lower memory requirements.
1 Introduction
Electromagnetic scattering problems of arbitrarily shaped
three-dimensional (3-D) objects can be dealt with by the
method of moments (MOM), which has been widely used
and extensively studied over the past decades [1]. For the
MOM, an N × N dense impedance matrix equation is to
be generated when the surface or volume equivalent
currents of the object is approximated by N basis functions.
In particular, the solution of this matrix equation by
iterative methods requires the computational complexity
of O(N 2).

A variety of algorithms have been proposed to reduce the
complexity of matrix-vector multiplication (MVM) in
iterative methods. These algorithms include the fast
multipole method (FMM) [2, 3], the adaptive integral
method (AIM) [4] and the conjugate gradient (CG) fast
Fourier transform algorithm [5]. The FMM and its
multilevel version [6, 7] reduce the complexity of MVM to
O(N 1.5) and O(N log N ), respectively.
Microw. Antennas Propag., 2010, Vol. 4, Iss. 12, pp. 2219–222
i: 10.1049/iet-map.2009.0417
Except for the above algorithms, the wavelet transform
method [8–10] is also applied to the solution of integral
equations as an efficient tool. Generally, wavelets have been
applied to MOM in two ways. One is to be used directly
as basis functions and test functions [11, 12] and the other
is the discrete wavelet transform, which is applied to the
impedance matrix to obtain a sparse matrix equation in the
wavelet-domain [13, 14]. The applications of wavelet
matrix transform have been used widely during the past
decades. Unfortunately, they are mainly confined to
the analysis of two-dimensional (2-D) problems or to
special structures such as wires in which the current
direction is 1-D.

Although aware of the wide application of FMM in
computational electromagnetics, recently many researchers
have proposed new techniques to further reduce its
computational complexity. Based on singular value
decomposition, a new matrix compression technique [15]
sparsifies the aggregation matrix of the FMM. By the
matrix compression technique proposed in [16],
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Martinsson and Rokhlin [17] successfully accelerated the
kernel-independent FMM in one dimension.

In this paper, we apply the lifting wavelet-like transform
(LWLT) [18] to FMM for sparsifing the aggregation and
disaggregation matrices in real time. Numerical results for
differently shaped three-dimensional objects are considered
and the relevant computational complexity analysis is also
presented. Compared with traditional FMM, the
introduction of the LWLT can further accelerate the
MVM for far-field computation by factor of two and saves
considerable memory when proper wavelets are selected.

2 Theory
2.1 Fast multipole method

For 3-D arbitrarily shaped PEC objects illuminated by an
incident field Ei(r), the electric field integral equation is
given by

t̂ ·
∫

S

�G(r, r′) × J (r′) dS′ = 1

jkh
t̂ · Ei(r) (1)

where J is the unknown current, t̂ is the unit tangential vector
on surface S and �G(r, r′) is the free-space dyadic Green’s
function.

Using MOM, it yields a matrix equation of the form

[Zmn][xn] = [Fm] (2)

where xn is the unknown current coefficients and

Zmn =
∫

S

dStm(r) ×
∫

S

dS′ �G(r, r′)jn(r′) (3)

Fm = 1

jkh

∫
S

dStm(r)Ei(r) (4)

To speed up the solution of (2), FMM is employed [19],
which decomposes the dense matrix [Zmn] of (2) as

Z = Znear + V HTV (5)

where Znear represents nearby interactions and V HTV
represents the far-field interactions with the mathematical
expressions as

V =

V11 V12 · · · V1Nj

V21 V22 · · · V2Nj

..

. ..
. ..

. ..
.

VK 1 VK 2 · · · VKNj

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠ (6)
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T =

T1

T2

. .
.

TK

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠ (7)

V pn =
∫

S′
(�I − k̂pk̂p)jn(r′)e jkp(r′−r′o)dS′ (8)

Tp =
k2h

16p2
vp

∑L

l=0

(−j)l (2l + 1)h(2)
l (kX )Pl (k̂p · X̂ ),

p = 1, 2, . . . , 2L2 (9)

Since �I − k̂pk̂p = ûû+ f̂f̂, then Vmp has only u and w

components. If the number of groups is chosen to be




N

√
,

both the computation complexity and consumed memory
are reduced to O(N 3/2).

2.2 Accelerate FMM by LWLT

In this section, we will introduce the LWLT to sparsify the
aggregation and disaggregation matrices V H and V.

Considering the orthogonal properties of wavelet
transform matrices

W W̃ = W̃ W = I (10)

the far-field interactions can be rewritten as

V HTVx = V HW W̃ TW W̃ Vx (11)

Letting Ṽ
∗ = V HW and Ṽ = W̃ V , one gets

V HTVx = Ṽ
∗

W̃ TW Ṽ x (12)

Hence the MVM can be implemented by the following steps:

† First, the wavelet matrix transform is applied to V H and V
by Ṽ

∗ = V HW and Ṽ = W̃ V , then Ṽ
∗

and Ṽ is sparsified by
the threshold sm.

† Second, the aggregation step is implemented by x1 = Ṽ x
followed by the inverse wavelet transform x2 = Wx1.

† Third, the translation step is x3 = Tx2.

† Finally, the forward wavelet transform is implemented by
x4 = W̃ x3 followed by the disaggregation step x5 = Ṽ

∗
x4.

To reduce the CPU time and memory for the above
wavelet transform, the lifting scheme is introduced. In
LWLT, the wavelet transform is implemented according to
Microw. Antennas Propag., 2010, Vol. 4, Iss. 12, pp. 2219–2227
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factorisation of the polyphase matrices

P̃(z−1)t =
∏m

i=1

1 0

−si(z
−1) 1

( )
1 −ti(z

−1)

0 1

( )
F 0

0 1/F

( )

(13)

P(z) =
∏m

i=1

1 si(z)
0 1

( )
1 0

ti(z) 1

( )
F 0
0 1/F

( )
(14)

where si(z) and ti(z) are the Laurent polynomials and F is a
non-zero constant.

Without the transform matrices W̃ and W, the wavelet
transform can be operated by the split, predict and update
steps in the lifting scheme.

Split: the original data (x[n]) is split into the odd subsets
(xo[n]) and the even subsets (xe[n])

xo[n] = x[2n − 1]
xe[n] = x[2n]

{
(15)

Predict: high-frequency (fluctuation) component d[n] is
obtained by predicting odd subsets from even subsets with
prediction operator Q

d [n] = xo[n] − Q(xe[n]) (16)

Update: low-frequency (smooth) component c[n] is obtained
by applying an update operator U to the high-frequency
component and being added to even subsets

c[n] = xe[n] + U (d [n]) (17)

The operators Q and U above can be deduced from the
polyphase matrices described in (13) and (14). The forward
and inverse wavelet transforms are operated by P̃(z−1)t and
P (z), respectively. Specific examples can be found in [18].

We take the Haar wavelet as an example to give a brief
interpretation of the numerical implementations of lifting
scheme. For the Haar wavelet, the polyphase matrix
P̃(z−1)t is given by

P̃(z−1)t =




2

√
0

0




2

√

2

⎛
⎝

⎞
⎠ 1

1

2



2

√

0 1

⎛
⎝

⎞
⎠ 1 0

−1 1

( )
1 0

0 1

( )

(18)

As described above, when the lifting scheme is applied, the
signal (the row or column in the matrix) will undergo three
Microw. Antennas Propag., 2010, Vol. 4, Iss. 12, pp. 2219–222
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basic operations as given below

xo(l ) = x(2l + 1) (19)

xe(l ) = x(2l ) (20)

x(1)
o (l ) = xo(l ) − xe(l ) (21)

x(1)
e (l ) = xe(l ) +

1

2



2

√ x(1)
o (l ) (22)

x̃e(l ) =



2

√
x(1)

e ; x̃o(l ) =



2

√

2
x(1)

o (23)

where (23) is used for guaranteeing the orthonormal property
of the LWLT. After one level implementation above, the
fluctuation term x̃o, which can be predicted by the
difference of the odd and even components, will contain
the minor information of the aggregation matrix Ṽ (or
disaggregation matrix Ṽ

∗
), while the smooth term x̃e,

which can be updated by the fluctuation term and the even
component, will contain the major information of Ṽ (or
Ṽ

∗
). The fluctuation information of the matrices will lead

to fluctuation of the currents. In particular, the noise-like
fluctuation of currents is expected to be very small and
random, which will make little contribution for far-field
scattering analysis and therefore can be neglected.
Mathematically, most small elements in x̃o can be set to be
zero. For the following levels, the same operations will be
applied to x̃e and a sparser matrix will be obtained.

As can be seen from the above description, two auxiliary
LWLTs for sparsifying the aggregation matrix Ṽ and the
disaggregation matrix Ṽ

∗
are added to the MVM. The

computational complexity of the LWLT will be analysed in
the following sections.

2.3 Choice of proper wavelets

Before the discussion about the choice of proper wavelet, we
give a brief introduction to the lifting operations for the
Daubechies wavelets with different vanishing moments.
Similar to the description of the Haar wavelet in the
previous section, the forward transform x̃ = W̃ x for the
Daubechies wavelets with second-order vanishing moments
(db2) is implemented according to the factorisation of the
polyphase matrix P̃(z−1)t

P̃(z−1)t =




3

√
+ 1


2

√ 0

0




3

√
− 1


2

√

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ 1 0

z 1

[ ]

× 1




3

√

4
+




3

√
− 2

4
z−1

0 1

⎡
⎣

⎤
⎦ 1 0

−



3

√
1

[ ]
1 0

0 1

[ ]

(24)
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The above can be operated by the following steps

xe(l ) = x(2l ); xo(l ) = x(2l + 1) (25)

x(1)
e (l ) = xe(l ); x(1)

o (l ) = xo(l ) −



3

√
xe(l ) (26)

x(2)
e (l ) = x(1)

e (l ) +



3

√

4
x(1)

o (l ) +



3

√
− 2

4
x(1)

o (l + 1);

x(2)
o (l ) = x(1)

o (l )

(27)

x(3)
e (l ) = x(2)

e (l ); x(3)
o (l ) = x(2)

o (l ) + x(2)
e (l − 1) (28)

x(4)
e (l ) =




3

√
+ 1


2

√ x(3)
e (l ); x(4)

o (l ) =



3

√
− 1


2

√ x(3)
o (l ) (29)

x̃e = x(4)
e (l ); x̃o = x(4)

o (l ) (30)

The inverse LWLT corresponding to P (z) is omitted here
for the sake of brevity. Similarly, the implementation of the
forward LWLT for the Daubechies wavelet with fourth-
order vanishing moments (db4) is given by

xe(l ) = x(2l ); xo(l ) = x(2l + 1) (31)

x(1)
e (l ) = xe(l ); x(1)

o (l ) = xo(l ) + a(1)(1)xe(l + 1) (32)

x(2)
e (l ) = x(1)

e (l ) + b(1)(1)x(1)
o (l ) + b(1)(2)x(1)

o (l − 1);

x(2)
o (l ) = x(1)

o (l )
(33)

x(3)
e (l ) = x(2)

e (l );

x(3)
o (l ) = x(2)

o (l ) + a(2)(2)x(2)
e (l + 1) + a(2)(1)x(2)

e (l + 2)

(34)

x(4)
e (l ) = x(3)

e (l ) + b(2)(1)x(3)
o (l ) + b(2)(2)x(3)

o (l − 1);

x(4)
o (l ) = x(3)

o (l )
(35)

x(5)
e (l ) = x(4)

e (l );

x(5)
o (l ) = x(4)

o (l ) + a(3)(3)x(4)
e (l − 2)

+ a(3)(2)x(4)
e (l − 1) + a(3)(1)x(4)

e (l )

(36)

x̃e = b(3)(1)x(5)
e (l ); x̃o = a(4)(1)x(5)

o (l ) (37)

The coefficients above can be obtained from Matlab 7.0 by
the command function ‘liftwave()’, and are listed in Table 1.
22 IET
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Finally, one can implement the forward LWLT for the
Daubechies wavelets with eighth-order vanishing moments
(db8) by the following steps

xe(l ) = x(2l ); xo(l ) = x(2l + 1) (38)

x(1)
e (l ) = xe(l ); x(1)

o (l ) = xo(l ) + a(1)(1)xe(l ) (39)

x(2)
e (l ) = x(1)

e (l ) + b(1)(1)x(1)
o (l + 1) + b(1)(2)x(1)

o (l );

x(2)
o (l ) = x(1)

o (l )
(40)

x(3)
e (l ) = x(2)

e (l );

x(3)
o (l ) = x(2)

o (l ) + a(2)(2)x(2)
e (l − 2) + a(2)(1)x(2)

e (l − 1)

(41)

x(4)
e (l ) = x(3)

e (l ) + b(2)(1)x(3)
o (l + 3) + b(2)(2)x(3)

o (l + 2);

x(4)
o (l ) = x(3)

o (l ) (42)

x(5)
e (l ) = x(4)

e (l );

x(5)
o (l ) = x(4)

o (l ) + a(3)(2)x(4)
e (l − 4) + a(3)(1)x(4)

e (l − 3)

(43)

x(6)
e (l ) = x(5)

e (l ) + b(3)(1)x(5)
o (l + 5) + b(3)(2)x(5)

o (l + 4);

x(6)
o (l ) = x(5)

o (l ) (44)

x(7)
e (l ) = x(6)

e (l );

x(7)
o (l ) = x(6)

o (l ) + a(4)(2)x(6)
e (l − 4) + a(4)(1)x(6)

e (l − 3)

(45)

x(8)
e (l ) = x(7)

e (l ) + b(4)(1)x(7)
o (l + 5) + b(4)(2)x(7)

o (l + 4);

x(8)
o (l ) = x(7)

o (l ) (46)

x(9)
e (l ) = x(8)

e (l ); (47)

x(9)
o (l ) = x(8)

o (l ) + a(5)(3)x(8)
e (l − 7)

+ a(5)(2)x(8)
e (l − 6) + a(5)(1)x(8)

e (l − 5)

x̃e(l ) = b(5)(1)x(9)
e (l ); x̃o(l ) = a(6)(1)x(9)

o (l ) (48)

The lifting coefficients for db8 are listed in Table 2.

The number of multiplication operations for the lifting
scheme is set to be q, which can be counted from the
Table 1 Coefficients in lifting scheme for db4 wavelet

Predict coefficients Update coefficients

a(1) 20.3223 b(1) 21.1171 20.3001

a(2) 20.0188 0.1176 b(2) 2.1318 0.6364

a(3) 20.4691 0.1400 20.0248 b(3) 0.7341

a(4) 21.3622
Microw. Antennas Propag., 2010, Vol. 4, Iss. 12, pp. 2219–2227
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Table 2 Coefficients in lifting scheme for db8 wavelet

Predict coefficients Update coefficients

a(1) 25.7496 b(1) 20.0523 0.1688

a(2) 14.5428 27.4021 b(2) 20.0324 0.0609

a(3) 5.8187 22.7557 b(3) 0.9453 0.2420

a(4) 0.0002 20.0018 b(4) 20.9526 20.2241

a(5) 1.0497 20.2470 0.0272 b(5) 3.5494

a(6) 0.2817
polyphase matrices or from Tables 1 and 2. If the length of
the signal is K, the total computational complexity for
implementing the lifting scheme is

q × K

2
× 1 + 1

2
+ 1

4
+ · · ·

( )
= qK (49)

For the Haar, db2, db4 and db8 wavelets, the values of q are
3, 5, 12 and 20, respectively.

To select proper wavelets tailored to FMM, take a PEC
sphere with the diameter of 5l (L ¼ 12) as an example.
The Haar and Daubechies wavelets with different
vanishing moments are employed and compared. After the
LWLT of the Haar, db2, db4 and db8, a column of Ṽ is
presented in Fig. 1.

As seen in Fig. 1, and considering the transform
complexity and sparsity, db4 is a better choice.

For a field group with Mi Rao–Wilton–Glisson (RWG)
functions and a source group with Nj RWG functions,
there are 2L2 elements in each column of V and the
LWLT is applied to V column-by-column. Take the
matrix V for example, the LWLT is implemented for a
column of V, then the clipping operation is used with the
threshold and only the large elements in the column are
stored. So, the proposed method is an in-space and real-
time compression technique. The threshold for the mth
column is defined by

sm = t
1

K

∑K

p=1

(|Ṽ u(p, m)|2 + |Ṽ w(p, m)|2)1/2 (50)

with t [ [0.8, 1.2] by the numerical simulation.

As can be seen from Fig. 1c, most of the elements are far
smaller than the others. The result after the clipping
operation (t ¼ 0.9) is shown in Fig. 2 and only about 30%
of the total elements are non-zeros. Next, the inverse
LWLT is implemented and the recovered column is given
in Fig. 3 which agrees well with the original column in V.
Propag., 2010, Vol. 4, Iss. 12, pp. 2219–222
009.0417
2.4 Computational complexity of MVM
for far-field interactions

As mentioned above, after obtaining two sparse matrices Ṽ
and Ṽ

∗
, two additional LWLTs are executed. To analyse

the total complexity, we take the CG method for example,
which needs two MVMs [Zmn][an] and [Zmn]H[an] for
each iteration. For a problem with N unknowns and





N

√

total groups, taking into the operations for the translation
step, the effectiveness can be evaluated by

j = 4qNK + 8nq




N

√
K + 8rnNK + 4nNK

12nNK

= q

3n
+ 2q

3




N

√ + 2r+ 1

3
(51)

where r is the sparsity of Ṽ and Ṽ
∗
, n is the iteration number

and K = 2L2. For the traditional FMM, 12nNK operation
is required. For the proposed scheme, 4qNK operation
is required for V u, V w, V H

u and V H
w , 8nq





N

√
K is for

x2 = Wx1 and x4 = W̃ x3, 8rnNK is for x1 = Ṽ x and
x5 = Ṽ

∗
x4 and 4nNK is for x3 = Tx2.

For the large-scale problems, (51) can be approximated by

j ≃ 2r+ 1

3
(52)

Similarly, the ratio of memory saved can be evaluated by

z = (4r+ 1)NK

5nNK
= 4r+ 1

5
(53)

The sparse translation matrix T can be further sparsified
through the utilisation of a windowed translation operator
[20]. As a result, the weight for T will be reduced, and the
values of j and z will approach r.

3 Numerical results
To validate the analysis presented in the previous sections,
numerical simulation for different shaped objects is
considered. Using the CG solver with the same residual
error (1 × 1025), we test the threshold defined in (50) and
7 2223

& The Institution of Engineering and Technology 2010



22

&

www.ietdl.org
Figure 1 Elements distributions in the disaggregation
matrix after the forward LWLT

a Elements distribution after two-level Haar LWLT
b Elements distribution after two-level db2 LWLT
c Elements distribution after two-level db4 LWLT
d Elements distribution after two-level db8 LWLT
24 IET
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Figure 2 Elements distribution in the aggregation matrix
after clipping implementation

Figure 3 Recovered elements distribution from the column
presented in Fig. 2 by the inverse LWLT, which is
compared with the original column in V

Figure 4 E-plane bistatic RCS of a PEC sphere with diameter
of 9l
Microw. Antennas Propag., 2010, Vol. 4, Iss. 12, pp. 2219–2227
doi: 10.1049/iet-map.2009.0417
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the sparsity (defined as the percentage content of non-zero
elements) for differently shaped objects. Meanwhile, the
accuracy of the proposed method will be verified by
comparing to the analytical solution or the results of
traditional FMM. Finally, to show the efficiency of the
proposed method, the CPU time and memory consumed
for far-field computation will be listed in a table.

As a first example, a PEC sphere with a diameter of 9l is
considered, which is illuminated by a plane wave propagating

Figure 5 E-plane bistatic RCS of a PEC cube with side length
of 6l
T Microw. Antennas Propag., 2010, Vol. 4, Iss. 12, pp. 2219–222
oi: 10.1049/iet-map.2009.0417
in the z-direction and E-polarised in the x-direction. The
total number of unknowns is 34 680 and the unknowns
are divided into 194 groups. When the sparsity of
disaggregation matrix and aggregation matrix are 33.17%
(t ¼ 0.9, K ¼ 288), the bistatic radar cross-section (RCS)
of the sphere calculated by the FMM in conjugation with
lifting scheme is compared to that of the analytical solution
by Mie series. As shown in Fig. 4, we can see that the
proposed method can obtain an accurate solution with the
sparse disaggregation and aggregation matrices.

A PEC cube with side length of 6l is considered as the
second example. The object is illuminated by a plane wave
propagating in the z-direction and E-polarised in the x-
direction, and its surface is discretised into 24 300
triangular elements and therefore 36 450 unknowns are
generated. The sparsity of the disaggregation matrix and
aggregation matrix obtained is 30.97% (t ¼ 1.1, K ¼ 288).
As shown in Fig. 5 and Table 3, the accelerated FMM
method can achieve accurate results with less CPU time
compared to the traditional FMM.

As shown in Fig. 6, the PEC cuboid with a slot is
illuminated by a plane wave propagating in the z-direction
and E-polarised in the x-direction. The number of total
unknowns is 19 800. By applying the LWLT to FMM, the
sparsity of the disaggregation and aggregation matrices is
33.8% (t ¼ 0.9, K ¼ 200). As shown in Fig. 7, under such
sparsity condition, the RCS of the object computed by the
Figure 6 Geometrical description of a cuboid with a slot

a Triangular elements discretisation of the object
b Cross section of the object

Table 3 CPU time and memory consumed by the MVM for the far-field
calculation

Example CPU time for far-field
computation

Memory required for far-field
computation

FMM, s Accelerated FMM, s FMM, MB Accelerated FMM, MB

Fig. 4 507 283 536 249

Fig. 5 528 278 601 271

Fig. 7 334 179 158 70
7 2225
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accelerated FMM scheme agrees well with that of the
traditional FMM.

The total CPU time and memory consumed by the MVM
for the far-field calculation is listed in Table 3, from which we
can conclude that the proposed method speeds up the far-field
calculation by a factor of two with half of memory consumed.

4 Conclusion
The LWLT is applied to speed up the FMM for calculating the
RCS of different shaped 3-D PEC objects. The theory,
physical interpretation and numerical implementations of the
LWLT are specified in this paper. According to the
complexity–sparsity trade-off, the Daubechies wavelet with
fourth-order vanishing moments is the proper choice to
accelerate the FMM. By numerical simulation and complexity
analysis, we can conclude that with the help of the lifting
scheme, both the CPU time and memory of the MVM in
the far-field calculation can be reduced by a factor of two.
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