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Abstract: The method of moments (MOM) in conjugation with the best uniform rational approxi-
mation is applied to predict the broad-band radar cross-section of arbitrarily shaped three-dimensional
(3D) bodies. The surface integral equations are solved using MOM to obtain the equivalent surface
currents at the frequency points corresponding to the Chebyshev nodes, and then the surface
current within the given frequency band is represented by the Chebyshev series. To improve the
accuracy, the Chebyshev series is matched via the Maehly approximation to a rational function,
which can be as good as the best uniform rational approximation. Using the rational function, the
surface current is obtained at any frequency point within the frequency band. Numerical results for
3D arbitrarily shaped perfectly electric conducting objects and homogenous dielectric bodies are
considered. Compared with the asymptotic waveform evaluation technique and the model-based
parameter estimation, the proposed technique is accurate in much broader frequency band with
lower memory required.
1 Introduction

The solution of surface integral equation (SIE) using the
method of moments (MOM) has been a very useful tool
for accurately predicting the radar cross-section (RCS) of
arbitrarily shaped three-dimensional (3D) objects in the fre-
quency domain [1]. For a 3D object, its surface is divided
into sub-domains, and the integral equation is then
reduced to be a matrix equation which is solved for the
equivalent surface currents. The MOM is advantageous
because it limits the unknown current on the surface of an
object and it satisfies the radiation condition via Green’s
function. However, the method results in a dense matrix
that is computationally expensive to generate, and the sol-
ution of the algebraic equations becomes the major time-
consuming operation in MOM [2].
To obtain the RCS over a broad-band using MOM, one

has to repeat the calculation at each frequency point over
the band of interest. If the RCS is highly frequency-
dependent, one needs to do the calculations at finer incre-
ment of frequency to obtain an accurate representation of
the frequency response, which must be computationally
intensive.
Over the past few years, there is a strong desire to find

approximate solution techniques that can efficiently simu-
late the frequency response over a broad frequency band.
Among the earlier attempts to achieve a fast frequency
sweep analysis by MOM and other frequency-domain tech-
niques, the asymptotic waveform evaluation (AWE) tech-
nique and the model-based parameter estimation (MBPE)
are two of the most prevalent methods, which have been
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successfully used in various electromagnetic problems
[3–9]. In AWE technique, Taylor series expansion is gener-
ated for a specific value of the system parameter (frequency,
angle, distance etc.), and the rational function approach
obtained from padé approximation is used to improve the
accuracy of the numerical solution. It was shown that the
application of AWE requires less CPU time to obtain a fre-
quency response and it can speed up the analysis by an order
of magnitude. However, the accuracy of the Taylor series is
limited by the radius of convergence, and the high deriva-
tives of the dense impedance matrix must be stored to
compute the coefficients, which will greatly increase the
memory consumed. The MBPE method is similar to the
AWE but more flexible, in which the surface current is
expanded directly as a rational function. The coefficients
of the rational function in MBPE are obtained using the fre-
quency data and the frequency-derivative data, and the
memory consumed is reduced when compared with AWE
when the data are sampled from more than one frequency
point.
In this paper, a new fast frequency-sweep technique was

proposed, which applies the Maehly approximation tech-
nique to the MOM solution of the SIE for different perfectly
electric conducting (PEC) objects or homogenous dielectric
objects. For a given frequency band, the frequency points
corresponding to the Chebyshev nodes are found by trans-
formation of coordinates, and the MOM is used to
compute the currents at these points, then the surface
current is represented by the Chebyshev series which can
be used as good as the best polynomial approximation
[10]. Akin to the padé approximation, the coefficients of
the Chebyshev series are then matched via the Maehly
approximation to a rational function to improve the accu-
racy and obtain acceptable solution in a much broader fre-
quency band, and the rational function obtained can be
used as the best uniform rational approximation [11, 12].
The rest of the paper is organised as follows. In Section 2,

the theory of the best uniform approximation is presented.
IET Microw. Antennas Propag., 2008, 2, (2), pp. 200–204

 03:21 from IEEE Xplore.  Restrictions apply.



Numerical results for PEC sphere, 3D multiple objects and
homogenous dielectric bodies are considered in Section 3,
followed by the discussion on the choice of the number of
Chebyshev nodes presented in Section 4. Finally, con-
clusion is outlined in Section 5.

2 Theory and formulations

Using MOM with the Rao–Wilton–Glisson (RWG) basis
functions [13], the surface equations mentioned above can
be reduced to a matrix equation

Z(k)I(k) ¼ V (k) (1)

where Z is a known N � N impedance matrix, V a known
vector of size N containing information about the incident
field and I a vector of size N containing the unknown
basis coefficients.
The current vector I is calculated at a single frequency

point. If one needs the RCS over a broad frequency band,
this calculation must be repeated for different frequency
points within the interest band, which must be time-
consuming. Thus, the best uniform rational approximation
theory is introduced to complete the scattering analysis
over a broad frequency band.
For a given frequency range f [ [ fa, fb] and the wave-

number k [ [ka, kb], the transformation of coordinates is
used as

~k ¼
2 k � (ka þ kb)

kb � ka
(2)

such that ~k [ [�1, 1].
Then the electric current I(k) will be calculated by

I(k) ¼ I
~k(kb � ka)þ (kb þ ka)

2

 !
(3)

and the Chebyshev approximation for I(k) is given by

I(k) ¼ I
~k(kb � ka)þ (kb þ ka)

2

 !
’
Xn
l¼0

clTl(
~k)�

c0
2

(4)

cl ¼
2

nþ 1

Xnþ1

j¼0

I(kj)Tl(
~kj) (5)

T0(x) ¼ 1, T1(x) ¼ x, . . . ,Tlþ1(x) ¼ 2xTl(x)� Tl�1(x)

(6)

where ~kj ( j ¼ 0, 1, 2, . . . , n) are the Chebyshev nodes for
Tnþ1(

~k)

~kj ¼ cos
jþ (1=2)

nþ 1
p

� �
( j ¼ 0, 1, . . . , n) (7)

and kj [ [ka, kb] can be obtained by

kj ¼
~kj(kb � ka)þ (ka þ kb)

2
(8)

To improve the accuracy of the numerical solution, the
Chebyshev series is replaced by a rational function named
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Maehly approximation

I(k) ’ RLM (
~k) ¼

PL(
~k)

QM (
~k)

¼
a0T0(

~k)þ a1T1(
~k)þ � � � aLTL(

~k)

b0T0(
~k)þ b1T1(

~k)þ � � � bMTM (
~k)

(9)

where b0 is set to be 1 as the rational function can be divided
by an arbitrary constant.
Substituting (9) into (4) and using the identity

Tp(x)Tq(x) ¼
1

2
Tpþq(x)þ T p�qj j(x)
� �

(10)

the unknown coefficients ai (i ¼ 0, 1, . . . , L) and
bj (j ¼ 1, 2, . . . , M) can be solved by

a0¼
1

2
b0c0þ

1

2

XM
j¼1

bjcj

ai¼ ciþ
1
4
bic0þ

1
2
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>>:

(11)
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..

. ..
.
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The error function is given by

En ¼ RLM (
~k)� I(k) ¼

1

QM (
~k)

X1
p¼LþMþ1

hpTp(
~k) (13)

where the coefficient hp is defined by

PM (
~k)� QL(

~k)I(k) ¼
X1

p¼LþMþ1

hpTp(
~k) (14)

Since b0 ¼ 1, and hp attenuates quickly, the error func-
tion can be approximated by

En ’ hLþMþ1TLþMþ1(
~k) (15)

hLþMþ1 ¼ cLþMþ1 þ
1

2

XM
i¼1

bi(cLþMþiþ1 þ cLþM�iþ1) (16)

Hence RLM (~k) can be used as the best uniform rational
approximation for I(k).

3 Numerical results

3.1 Numerical examples for PEC objects

As the first example, a PEC sphere with a radius of 0.3 cm is
considered, and the surface of the sphere is discretised into
720 triangular elements. As shown in Fig. 1, the results
obtained by the best uniform polynomial approximation
performed by Chebyshev series with order of 7 agrees
well with that of the direct solution for electric field integral
201
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equation (EFIE). When the AWE scheme is applied with its
expansion point at 30 GHz, the Taylor series with the same
order produces an accurate result only in a narrow fre-
quency band ranging from 22 to 38 GHz, and the padé
approximation obtains the accurate solution from 15 to
48 GHz. The CPU time required for direct solution, AWE
and Chebyshev are 980, 89 and 92 s, respectively. It is
shown that, even before transformed to be rational approxi-
mation, the Chebyshev series produces more accurate
results than the AWE- padé scheme.
A target that is made up by two cubes illuminated by a

pane wave propagating in the z-direction and E-polarised
in the x-direction is considered. The two cubes are uni-
formly placed on y-axis, the length of the cube is chosen
to be 1 cm, and the centre distance of them is 5 cm. As
shown in Fig. 2, the accuracy of AWE (with expanded
point at 18.5 GHz) will be severely limited by the radius
of convergence in Taylor series, and the MBPE method
which is applied with two sampled frequency points at 13
and 24 GHz gives a better result, whereas the Maehly
method produces more accurate results over the entire fre-
quency band. The surface of the two cubes is discretised
into 1536 triangular elements. With a frequency step of
1 GHz, it takes the direct solution of EFIE 2494 s to
obtain the solution from 2 to 35 GHz. With 0.1 GHz incre-
ments over the entire band, the AWE scheme, MBPE
method and Maehly method consumed 589, 592 and
596 s, respectively.
To consider the application of the proposed method to the

solution of combined field integral equation [14], a PEC
sphere with radius of 0.5 cm is considered. As we can see
from Fig. 3, the Maehly method produces accurate result
from 5 to 45 GHz, whereas the AWE scheme and MBPE

Fig. 2 RCS frequency response of two cubes

Fig. 1 RCS frequency response of a PEC sphere with a radius
of 0.3 cm
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method obtain a more narrow solution. The surface of the
object is discretised into 980 triangular elements.

3.2 Numerical examples for homogenous
dielectric objects

When considering the scattering problem of an arbitrarily
shaped homogeneous dielectric body characterised by per-
mittivity 12 and permeability m2 and immersed in an infinite
and homogeneous medium having permittivity 11 and per-
meability m1, the so-called PMCHW equation [15],
named after Poggio, Miller, Chang, Harrington, and Wu,
who originally developed the formulation, is usually
applied.
For a dispersive dielectric object, 12 and m2 can be a func-

tion of frequency. For simplicity, the situation that only 12
varies with frequency is considered. The complex permittiv-
ity of a homogenous dielectric can be described by the
Debye model.

12(v) ¼ 1
0
21 þ

102s � 1021
1þ jvte

(17)

where 1
0
2s denotes the static dielectric constant, 1021 the

optical dielectric constant, and te a relaxation time constant
related to the original relaxation time constant t by

te ¼ t
1
0
2s þ 210

1021 þ 210
(18)

in which 10 denotes the permittivity of free space.
To compare the accuracy of the Chebyshev approxi-

mation with the Maehly approximation, a homogenous

Fig. 3 RCS frequency response of a PEC sphere with a radius
of 0.5 cm

Fig. 4 RCS frequency response of a homogenous dielectric
sphere
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sphere with radius of 0.5 cm immersed in free space is
considered. The PMCHW equation is built to obtain the
solution. The surface of the sphere is modelled by 720
triangular patches, resulting in 1080 edges and thus 2160
unknowns. The relative permittivity of the sphere is
1r ¼ 2.0 and relative permeability is set to be mr ¼ 1.0.
As can be seen from Fig. 4, the accuracy of the
Chebyshev series is improved greatly after transformed to
be a rational function via Maehly approximation. In
Fig. 5, a dispersive dielectric sphere of the same size is con-
sidered, the permittivity of the object is characterised by
10rs ¼ 2:0, 10r1 ¼ 1:0 and t ¼ 7.59 ps/rad. As a result, as
frequency varies from 5 to 35 GHz, the real part of the rela-
tive permittivity varies from 1.91 to 1.17 and the imaginary
part varies from 0.29 to 0.37. As shown in Fig. 5, the
Maehly method produces accurate result for the dispersive
dielectric sphere in the given frequency band, and it takes
4800 s for the direct solution method to obtain the backscat-
ter RCS, whereas Maehly method consumed only 633 s.
As the final example, a dielectric cube having a side

length of 1 cm is considered. The surface of the object is
modeled by 644 triangular elements. The permittivity of
the object is characterised by 10rs ¼ 2:0, 10r1 ¼ 1:0 and
t ¼ 3.2 ps/rad. With a frequency step of 0.5 GHz, it takes
the direct method 2347 s to complete the calculation from
5 to 25 GHz. In contrast, the Maehly method produces the
solution with 0.1 GHz increments in 461 s. Meanwhile, a
non-dispersive cube of the same size and having a relative
permittivity 2.0 is also shown in Fig. 6.
All the computations reported above have been carried

out on a Personal Computer with Pentium IV-2.66 GHz

Fig. 5 RCS frequency response of a dispersive dielectric sphere

Fig. 6 RCS frequency response of a dielectric cube with a side
length of 1 cm
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processor and 1 GB RAM. The code has been written in
Microsoft Visual Cþþ 6.0.

4 Discussion

As we know, for the application of the presented method to
a specific problem (the object and the frequency band are
given), how to choose the number of Chebyshev nodes
to cover the entire band must be an important issue.
Apparently, one cannot start from a small number and
gradually increase since the previously computed data
cannot be reused. Therefore the n in (4) should be estimated
in advance. After numerical simulation, an experienced
formula is obtained here to estimate n under the condition
that the relative RCS error is acceptable

n ¼
a

2p
Dk ~d (19)

where Dk is the increment of the wavenumber in the interior
region and d̃ stands for the equivalent source-to-field dis-
tance, and it is set to be the maximum of distance from
source to field in this paper for the sake of safety. The par-
ameter a is a constant range from 7 to 9, and the value of it
increases as the shape of the object becomes complex.
The relative root mean square (RMS) RCS error of a

specific object is calculated by

ErrRMS ¼
1

N

XN
j¼1

10 log 10
ŝ(fj)

s(fj)

 !�����
�����
2

8<
:

9=
;

1=2

(20)

where fj ( j ¼ 1, 2, . . . , N ) represent N selected frequency
points, while ŝ(fj) and s(fj) are the RCS obtained by the
proposed method and the direct solution method,
respectively.
To validate the above analysis, a PEC sphere is con-

sidered in Fig. 7, and the relative RMS RCS error varying
with the value of n is calculated for different Dk ~d. When
one set a to be 7, the relative RMS RCS error is always
lower than 0.4 dB, whereas the relative RMS RCS errors
described by (20) for Figs. 2 and 3 are 0.5423 and
0.4712 dB, respectively. As shown in Fig. 8, the relative
RMS error of a PEC cube is analysed. The error will be
acceptable if n is computed by (19), and the accuracy is
improved as n increased.
In Fig. 9, a homogenous dielectric sphere is considered,

the relative permittivity of the sphere is 1r ¼ 2:0 and

Fig. 7 Relative RMS RCS error of PEC sphere varies with the
value of n
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relative permeability is set to be mr ¼ 1:0. As we can see
from Fig. 9, the experienced formula can also be applied
to the analysis of homogenous dielectric object.
When multiple objects are considered and if the centre

distance is so far that the interaction between them can be
ignored, they should be treated as isolated objects when
the experienced formula is applied, and the maximum of
n should be adopted.

5 Conclusion

An implementation of the best uniform rational approxi-
mation for MOM solution over a broad frequency band is
proposed. The RCS of different PEC or dielectric objects
are computed and compared with the direct solution
method, MBPE method and AWE technique. Compared
with the direct solution by MOM, the presented method is
found to be superior in terms of the CPU time to obtain

Fig. 9 Relative RMS RCS error of dielectric sphere varies with
the value of n

Fig. 8 Relative RMS RCS error of PEC cube varies with the
value of n
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RCS frequency response. Compared with the MBPE
method and AWE scheme, the presented technique can
obtain accurate results over much broader frequency band
without increasing any memory, and it is shown that the
use of Maehly method can speed up the calculations as
much as AWE or MBPE.
The accuracy of the proposed approximation approach

and its relation to the order of the best polynomial series
is preliminary discussed, and further research on it,
especially for multiple objects, can be the topic of interest
for future work.
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