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Finite-Difference Time-Domain Simulation
of the Maxwell–Schrödinger System
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Abstract—A thorough studyon the finite-difference time-domain
(FDTD) simulation of the Maxwell–Schrödinger system in the
semiclassical regime is given. For the Maxwell part which is
treated classically, this novel approach directly using the vector
and scalar potentials (A and Φ) is taken. This approach is stable
in the long-wavelength regime and removes the need to extract the
potentials at every time step. The perfectly matched layer impor-
tant for FDTD simulations is developed for this new approach. For
the Schrodinger and quantum mechanical part, minimal coupling
is applied to couple the charges to the electromagnetic potentials.
FDTD stability is analyzed for the whole system and simulation
results agree with the properties of quantum coherent states.

Index Terms—Maxwell–Schrödinger, nanophotonics, quantum-
dots.

I. INTRODUCTION

R ECENT advances in nanotechnology have shrunk the
length scales of electronic devices down to nanometers

which are much smaller compared to optical wavelengths. Due
to this miniaturization, the quantum nature of charges becomes
more pronounced in the electronic devices. The system of charge
plus field needs to be modeled quantum mechanically. While
a fully quantum mechanical picture would also have the field
quantized, there is still a large application area for models where
the field is treated classically. This is termed as the semiclassical
regime, in which the classical Maxwell’s equations for the field
is coupled to the quantum mechanical Schrödinger equation for
the charged particle [1].

In this paper, we work with the Maxwell–Schrödinger system
in time domain, where the dynamics of the coupled system can
be time stepped using the finite-difference time-domain (FDTD)
method. FDTD has been used to study this system for nearly two
decades. Two schools of formulations are popular. When the in-
teractions are nearly resonant, the physics can be approximated
as restricted to several bound states of the electron. This allows
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for the projection of the Schrödinger part into a subspace, in
which one solves the Maxwell–Bloch equations or the quantum
Liouville equations for the density matrix [1]. This method has
been applied to the study of ultrafast optical pulse simulations
[2], excitonics in quantum dots [3], nanoplasmonics [4], and
nanopolaritonics [5], [6]. Furthermore, loss mechanisms can be
incorporated into the system by a combined Maxwell–Bloch
Langevin approach [4].

The other school of formulations, however, retains the
wavefunction in its entirety. This work belongs to the latter
school. One of the first works involved a straightforward three-
dimensional FDTD scheme to simulate a single electron tun-
neling problem [7]. More recent study discusses the control
of particle quantum states using optimal laser pulses designed
through the Maxwell–Schrödinger simulations [8]. Since the
Schrödinger equation couples directly to the magnetic vector
potential (A) and the electric scalar potential (Φ), rather than
the electric and magnetic fields (E and H), these simulations
require the extraction of A and Φ at every time step [7], [9].
This can be avoided through the use of gauge transformations,
after which the Schrödinger equation couples directly to the
fields. The length gauge was applied for this purpose in[10].
However, a long wavelength approximation is inherent in the
length gauge, thus limiting its applicability.

It should be noted that for some of the aforementioned sys-
tems, simulations in which the quantum dots are further sim-
plified into polarization densities [11] or effective permittivity
models [12], [13] suffice to describe the essential features. How-
ever, we choose to couple the Maxwell–Schrödinger equations
directly in the spirit that the simulation should come from the
first principle as much as possible.

It is well known that in the long wavelength, conventional
Maxwell’s equations suffer from low frequency breakdown due
to the imbalance of frequency scaling. This was previously over-
looked in the Maxwell–Schrödinger system. In view of these,
we developed a new FDTD scheme. For the Maxwell part, the
A-Φ formulation [14] is used and the potentials are directly time
stepped. With this, the extraction of potentials, the approxima-
tion of the length gauge as well as low-frequency instability are
avoided.

In Section II, FDTD simulation under the A-Φ formulation
is discussed. Perfectly matched layer (PML) is formulated for
the simulation of open problems. In Section III, FDTD of the
coupled A-Φ equations and Schrödinger equation is discussed.
In Section IV, the simulation is applied to study an electron
trapped in a quadratic potential under plane wave excitation.
This is a simple model for a quantum dot interacting with light,
a problem that had been studied extensively using the FDTD
technique but with a semiclassical dipole model for the quantum
dot [11]. Physics of coherent states are reproduced in accordance
with the expected behavior of a quantum harmonic oscillator.
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Finally, we conclude this work and discuss directions for future
work in Section V.

II. FDTD FORMULATION OF MAXWELL’S EQUATIONS

The A-Φ formulation is an effective alternative to conven-
tional Maxwell’s equations due to its stability in the long wave-
length regime [14] and the fact that the potentials directly enter
into the Schrödinger equation instead of the fields. The equations
for the A-Φ formulation are discretized, and the application of
the coordinate stretching PML is shown.

The potentials are related to the electric and magnetic field
through

B = ∇× A (1)

E = − ∂

∂t
A −∇Φ. (2)

From these relations and Maxwell’s equations in inhomoge-
neous isotropic media, the equations for the A-Φ formulation
can be derived as in [14]. They are written as

∇ · ε∇Φ − ε2μ
∂2

∂t2
Φ = − ρ (3)

−∇× μ−1∇× A − ε
∂2

∂t2
A + ε∇ε−2μ−1∇ · εA = −J.

(4)

They are under the generalized Lorenz gauge

ε−1∇ · εA = −με
∂

∂t
Φ. (5)

This gauge has the physical significance that the formulation
remains relativistic in vacuum. We take it to be the natural gauge
condition in inhomogeneous media. The two sources in the A-Φ
equations are related by the current continuity equation

∇ · J +
∂ρ

∂t
= 0. (6)

A. Discretization

In order to discretize (3) and (4), the discrete electromagnetic
(EM) theory on a lattice [15] will be applied, and this theory is
consistent with the widely known Yee’s grid [16]. A brief review
of the discrete vector calculus from the discrete EM theory can
be found in Appendix A

∇̂ × μ−1
m+1/2∇̃ × Ãn−1/2

m + εm ∂̃t ∂̂tÃn−1/2
m

− εm ∇̃μ−1
m ε−2

m ∇̂ · εmÃn−1/2
m = J̃n−1/2

m (7)

−∇̂ · εm ∇̃Φn
m + μm ε2

m ∂̃t ∂̂tΦn
m = ρn

m (8)

∇̂ · J̃n−1/2
m + ∂̂tρ

n
m = 0. (9)

The discretized A-Φ equations are shown as (7)–(9). Here,
the primary and dual grids are indexed by m = (i, j, k)
and m + 1/2 = (i + 1/2, j + 1/2, k + 1/2), respectively. The
chosen discretization scheme arranges forward and backward
differencing so that all derivatives are central. Hence, the FDTD
simulation of the field part is second-order accurate. The time
stepping equations are given in (25) through (27) in Appendix A.

The stability condition for these equations is the same as the
FDTD stability condition for Maxwell’s equations [17]

Δt ≤ 1

c
√

1
Δx2 + 1

Δy 2 + 1
Δz 2

. (10)

B. Perfectly Matched Layers

As often employed in the FDTD simulation of Maxwell’s
equations, the Dirichlet boundary conditions are applied at the
boundaries of the simulation domain. In order to efficiently
simulate an infinite space, PML must be developed for the A-Φ
equations. A very simple way of implementing PML using the
idea of coordinate stretching was first introduced in [18]. This
same technique can be applied to implement PML for the A-
Φ equations. We relegate the details of the implementation to
Appendix B.

III. MAXWELL–SCHRÖDINGER SYSTEM

The A-Φ potentials enter the Schrödinger equation through
the minimal coupling Hamiltonian [1]. In the semiclassical pic-
ture, we model the back action of the particle on the field by
interpreting the probability current as a radiation source.

A. Governing Equations

From the minimal coupling Hamiltonian, the time-dependent
Schrödinger equation is written as

i�
∂

∂t
ψ(r, t) =

1
2m∗

(
�

i
∇− qA

)2

ψ(r, t) + Φ(r, t)ψ(r, t)

+V (r, t)ψ(r, t) (11)

where � = h
2π , h is the Planck constant, ψ is the wavefunction of

the particle where |ψ|2 represents the probability density func-
tion of the particle, m∗ is the effective mass of the particle, and
V is the confinement potential. To establish the back action of
the particle on the field, we replace the charge and current in (3)
and (4) with their quantum mechanical analogs ρq and Jq , de-
noted with a subscript q to indicate their quantum nature. These
sources obey the continuity equation for probability amplitude

∇ · Jq +
∂ρq

∂t
= 0. (12)

They are calculated instantaneously from the wavefunction
as [19]

Jq =
q

2

{[
p̂ − qA

m∗ ψ

]∗
ψ + ψ∗

[
p̂ − qA

m∗

]
ψ

}
(13)

ρq = q |ψ(r, t)|2 . (14)

Here, p̂ = �

i ∇ is the momentum operator.
Two points should be noted in connection with the fully quan-

tized theory. First, the Jq in (13) comes from tracing the sym-
metric particle current operator over the field states. Second,
the A2 term captures the physics of plasma oscillations of the
electron in the field. Although its effects are not pronounced in
the simulation scheme of Section IV due to the small charge
and low field intensity, it is expected to be of importance when
field intensities are high, such as in nanoplasmonic applica-
tions. The link between the semiclassical and fully quantized
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Fig. 1. Illustration of the simulation setting for an artificial atom.

theory is the restriction that the field states be coherent, and not
entangled with the electron state. The discretization of the mod-
ified Schrödinger equation and the particle current are shown in
Appendix C.

B. Stability Condition

The time-step, Δt, is taken to be the minimum of the two
from the A-Φ equations or the Schrödinger equation. The time-
step for the A-Φ equations has been shown, and the one for the
Schrödinger equation has been presented in other papers [20].
We modify it here and show the result in (15) are shown at
the bottom of the page. Note that when the field is turned OFF,
we recover the stability condition for the simple Schrödinger
equation, see (15) shown at the bottom of the page.

IV. SIMULATION RESULTS

The Maxwell–Schrödinger system is used, for example, to
simulate a single electron trapped in an artificial atom (quantum
dot). The effective mass Schrödinger equation can be used to
simulate many electrons problem with a single electron. The
electron can be trapped by a potential or quantum well generated
by a heterogeneous (heterojunction) materials, or by a defect in
a crystal lattice. For simplicity, the confinement potential of the
atom is characterized by a harmonic oscillator. The simulation
setting is illustrated in Fig. 1. This setting mimics the quantum
dot introduced in [21]. The effective mass of the electron is m∗ =
0.023m0 , where m0 is the electron rest mass, and the angular
frequency of the harmonic oscillator is ω = 2πc

λ
, where λ =

Fig. 2. Plot of eigenenergy levels of a simulated coherent state.

950 nm. The electron is initialized in the ground state. The plane
wave is given by Ainc = ẑ1.4871 × 10−7 sin(ky − ωt) V · s/m
or Einc = −ẑ2.9487 × 108 cos(ky − ωt) V/m which corre-
sponds to an average number of six photons in the simulation
space. The simulation domain is narrow in x- and y-directions
to reduce the number of unknowns and the simulation time.

The state of a harmonic oscillator driven by a classical field
is called a coherent state. The expression for a coherent state is
given by [22]

|z〉 = e−
|z |2

2

∞∑
n=0

zn

√
n!
|n〉 (16)

where z =
√

E0e
iϕ(t) , n is the mode number in the harmonic

oscillator, E0 is the average number of photons in the mode, and
ϕ(t) is a real function in time that represents the phase of the
state. The probability of finding mode n in this coherent state is

pn (z) =
En

0

n!
e−E0 (17)

which is a Poisson distribution.
For the excitation of the coherent state, the electron is excited

initially by a classical plane wave, and then the technique de-
scribed in [23] is used to map out the distribution of eigenstates
in the electron’s wavefunction. In Fig. 2, the overlapped distri-
bution of eigenstates at several observation points (represented
by different colors) is shown to match the Poisson distribution
as the theory suggests. Due to the spatial dependence of the
eigenstates of a harmonic oscillator, the Poisson distribution is
not reflected at every observation point. Note that the eigenfre-
quencies are all equidistant, which is characteristic of a quantum
harmonic oscillator. We see that mainly three modes are excited
by the plane wave, and the peak is located at n = 0. In order to
find the Poisson distribution with the peak at the same location,
derivative of (17) is taken

d

dn
pn (z) =

En
0 (ln E0 − ψ(0)(n + 1))

eE0 Γ(n + 1)
(18)

Δt ≤ �

1
m ∗

[
4�2

(
1

Δx2 + 1
Δy 2 + 1

Δz 2

)
− 2�q

(
Ax

Δx + Ay

Δy + Az

Δz

)
+ q2 |A|2

]
+ Vmax

(15)
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Fig. 3. Plot of the Poisson distribution with E0 = 0.5615 photons.

Fig. 4. Plots of xy- and yz-plane slices of an electron in a ground state in an
artificial atom with the quadratic confinement potential.

Fig. 5. Snapshots of yz-plane slices at different time steps. The electron is in
a coherent state after it has been excited by light.

where ψ(m )(z) is the polygamma function of order m and Γ(n)
is the gamma function. To find a Poisson distribution with a peak
located at n = 0, we let the above derivative be equal to zero
and find the value of E0 . It is found to be E0 = 0.5615 photons.
The corresponding Poisson distribution is plotted in Fig. 3.

In the simulation space, the average number of photons was
set to be six photons, and this indicates that the electron absorbed
E0
6 × 100 ≈ 9.36% of the photons in space. In terms of volume,

this corresponds to a sphere with a radius of 4.1758 nm, and most
of the probability density of the electron is contained in this
sphere. As a reference, a plot of the electron in the ground state
is shown in Fig. 4. In contrast, Fig. 5 shows the electron after it
has been excited by the plane wave. It shows the movement of
the electron in the z-direction swinging back and forth.

If the number of photons in the simulation space is tripled
from 6 to 18, then E0 is also expected to triple from the previ-

Fig. 6. Plot of the Poisson distribution with E0 = 1.6844 photons.

Fig. 7. Plot of eigenenergy levels of a simulated coherent state.

ous value. This expected Poisson distribution is plotted in Fig. 6.
With 18 photons in the simulation space, the coherent state sim-
ulation result is plotted in Fig. 7. We can see that the simulated
distribution of states closely resembles the predicted Poisson
distribution.

V. CONCLUSION

In this paper, a new FDTD simulation scheme for the coupled
Maxwell–Schrödinger system is presented. By directly using
the potentials A and Φ, approximations existing in the liter-
ature are avoided, and the computation made more efficient.
The formulation is based on the first principle minimal coupling
Hamiltonian. The only restriction is that of the semiclassical
picture, which dictates the field to be in coherent states not en-
tangled with the electron states. The calculations are numerically
exact within this framework. This is unlike previous works in
atom-field modeling where either the Jaynes–Cummings model
is used, or the rotating wave approximation is made [24].

This paper portends well for future work where a fully quan-
tized numerical model for field-atom system needs to be de-
veloped. It also allows the incorporation of field-atom effects
in future quantum systems, such as density functional calcula-
tions, or more sophisticated k · p calculations in effective mass
Schrödinger system. It is directly applicable in the study of quan-
tum optics using quantum dots, or in nanoplasmonics, where the
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quantum confinement of charges are important for their electro-
magnetic response. Also, the FDTD scheme is not costly for
low-dimensional system, such as the popular quantum wells
and quantum wires. Explicit time-domain simulations that al-
low the visualization of electron wavefunctions and field profiles
will open up new understanding in these structures. Hence, the
prowess of modern computers can be harnessed for the FDTD
simulation scheme of the Maxwell–Schrödinger system which
is a valid and useful tool in the study of nanostructures interact-
ing with light.

APPENDIX A
DISCRETE VECTOR CALCULUS

The discrete vector calculus forms the basis for the electro-
magnetic theory on a lattice. A brief overview is given on this
topic. The paper [15] includes the details.

A differentiation can be approximated by a forward or back-
ward difference. When g(x) = ∂xf(x)

gm+1/2 = ∂̃xfm =
fm+1 − fm

Δx
(19)

gm−1/2 = ∂̂xfm =
fm − fm−1

Δx
(20)

where ∂x = ∂
∂x , fm = f(mΔx), and Δx is the length of

one cell. A discrete gradient also has forward and backward
directions as given below when g = ∇f

g̃mnp = ∇̃fmnp = x̂∂̃xfmnp + ŷ∂̃y fmnp + ẑ∂̃z fmnp (21)

ĝmnp = ∇̂fmnp = x̂∂̂xfmnp + ŷ∂̂y fmnp + ẑ∂̂z fmnp (22)

where x̂, ŷ, ẑ are unit vectors in x, y, z directions, g̃mnp is a
fore-vector emanating from point (m,n, p) to (m + 1/2, n, p),
(m,n + 1/2, p), and (m,n, p + 1/2), and ĝmnp is a back-
vector located on points (m − 1/2, n, p), (m,n − 1/2, p), and
(m,n, p − 1/2) all pointing to (m,n, p).

If we have a fore-vector F̃mnp = x̂fx
m+1/2,n,p + ŷf y

m,n+1/2,p

+ ẑf z
m,n,p+1/2 , then we define a discrete divergence associated

with point (m,n, p) such that

dmnp = ∇̂ · F̃mnp

= ∂̂xfx
m+1/2,n,p +∂̂y fy

m,n+1/2,p +∂̂z f
z
m,n,p+1/2 . (23)

Similarly, the direction can be in the other way as dmnp =
∇̃ · F̂mnp .

The discrete curl is defined as in (24) are shown at the bot-
tom of the page. Similarly, B̃m−1/2,n−1/2,p−1/2 = ∇̂ × F̂mnp
is possible.

With these definitions, the discretization of the A-Φ equations
can be carried out, and produces the (8) through (9) in Section II.
Furthermore, when discretization in time is done, these can be
rearranged into the time-stepping equations for the field and
sources, given in (25)–(27),

ρn
m = ρn−1

m − Δt(∇̂ · J̃n−1/2
m ) (25)

Φn+1
m = 2Φn

m − Φn−1
m +

Δt2

μm ε2
m

(
∇̂ · εm ∇̃Φn

m + ρn
m

)
(26)

Ãn+1/2
m = 2Ãn−1/2

m − Ãn−3/2
m

+
Δt2

εm

(
−∇̂ × μ−1

m+1/2∇̃ × Ãn−1/2
m

+εm ∇̃μ−1
m ε−2

m ∇̂ · εmÃn−1/2
m +J̃n−1/2

m

)
.

(27)

APPENDIX B
PERFECTLY MATCHED LAYER

We implement PML following the coordinate stretching idea
in [18]. To this end, modify (3) and (4) by replacing the ∇
operator with its stretched coordinate counterpart ∇s , given by

∇s = x̂
1
sx

∂

∂t
+ ŷ

1
sy

∂

∂t
+ ẑ

1
sz

∂

∂t
. (28)

It can be shown that the wave vector becomes ks = x̂ kx

sx
+

ŷ
ky

sy
+ ẑ kz

sz
, so if one of sx, sy , or sz is complex, the wave gets

attenuated in the corresponding x-, y-, or z-direction. These
coordinate stretching parameters are defined as

sx = 1 + i
σx

ωε
sy = 1 + i

σy

ωε
sz = 1 + i

σz

ωε
. (29)

Substituting (3) into (28) and transforming to the frequency
domain we produce three equations for the so-called split-fields,
Φsx

,Φsy
,Φsz

1
sx

∂

∂x
[ε∇sΦ]x + ε2μω2Φsx

= −ρ (30)

1
sy

∂

∂y
[ε∇sΦ]y + ε2μω2Φsy

= 0 (31)

1
sz

∂

∂z
[ε∇sΦ]z + ε2μω2Φsz

= 0. (32)

B̂m+1/2,n+1/2,p+1/2 = ∇̃ × F̃mnp = x̂

(
fz

m,n+1,p+1/2 − fz
m,n,p+1/2

Δy
−

fy
m,n+1/2,p+1 − fy

m,n+1/2,p

Δz

)

+ ŷ

(
fx

m+1/2,n,p+1 − fx
m+1/2,n,p

Δz
−

fz
m+1,n,p+1/2 − fz

m,n,p+1/2

Δz

)

+ ẑ

(
fy

m+1,n+1/2,p − fy
m,n+1/2,p

Δx
−

fx
m+1/2,n+1,p − fx

m+1/2,n,p

Δy

)
(24)
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The choice of placing the source in the first equation of the
above three is an arbitrary and inconsequential. Further substi-
tuting (29) into (30) and transforming back into the time domain
gives

(
ε2μ

∂2

∂t2
+ σxεμ

∂

∂t

)
Φsx

=
∂

∂x
[ε∇sΦ]x + ρ. (33)

By turning the equation into a discrete one, the time-stepping
equation can be found as follows:

Φn+1
sx

=
1

ε2 μ
Δt2 + σx εμ

2Δt

(
−ε2μ

−2Φn
sx

+ Φn−1
sx

Δt2
+ σxεμ

Φn−1
sx

2Δt

+ ∂̂x [ε∇̃sΦ]nx + ρn

)
. (34)

The only remaining term to find is the third term in the paren-
thesis on the right-hand side. We can write

[∇̃sΦ]nx =
1
sx

∂̃xΦn (35)

which becomes (
1 + i

σx

ωε

)
[∇̃sΦ]x = ∂̃xΦn . (36)

Transforming this into a time-domain equation yields

[∇̃sΦ]nx

(
i +

1
2
, j, k

)
+

σx

ε

( n−1∑
m=1

[∇̃sΦ]mx

(
i +

1
2
, j, k

)

+
1
2
[∇̃sΦ]nx

(
i +

1
2
, j, k

))
Δt

=
Φn (i + 1, j, k) − Φn (i, j, k)

Δx
. (37)

The summation in this equation is a discrete integral using
the midpoint rule. When i

ω is transformed to an operator in the
time-domain, it is written as [25]

i

ω
↔

∫ t

0
dt′ ≈

n∑
m=0

Δt. (38)

Equation (37) can be used to find [∇̃sΦ]nx using Φn . After
finding this term, it can be used to find

∂̂x [ε∇̃sΦ]nx =
ε(i + 1

2 , j, k)[∇̃sΦ]nx − ε(i − 1
2 , j, k)[∇̃sΦ]nx

Δx
.

(39)
The spatial coordinates of [∇̃sΦ] terms follow the ones of ε’s

multiplied to them. This concludes the derivation of coordinate
stretching PML for the discrete Φ equation.

Next, we apply PML to the A equation. Plug the following
quantities:

H = μ−1∇s × A (40)

and

f = ε−2μ−1∇s · εA (41)

into the coordinate stretched (4), we get

∇s × H + ε
∂2

∂t2
A − ε[∇sf ] = J. (42)

Consider the x-component of this equation. By converting
this to the frequency-domain, applying (28), and taking the x-
component, we find

1
sy

∂Hz

∂y
− 1

sz

∂Hy

∂z
− εω2Ax − ε[∇sf ]x = Jx. (43)

Substituting (29) into this and simplifying the expression
yields

(
−ω2 − iω

σz

ε

)[
∂Hz

∂y

]
+

(
ω2 + iω

σy

ε

) [
∂Hy

∂z

]

+
(
εω4 + iω3(σy + σz ) − ω2 σyσz

ε

)
Ax

+
(
ω2ε + iω(σy + σz ) −

σyσz

ε

)
[∇sf ]x

= −ω2Jx. (44)

Converting this back to time-domain equation (46) shown at
the bottom of next page.
(

∂2

∂t2
+

σz

ε

∂

∂t

)[
∂Hz

∂y

]
+

(
− ∂2

∂t2
− σy

ε

∂

∂t

) [
∂Hy

∂z

]

+
(

ε
∂4

∂t4
+ (σy + σz )

∂3

∂t3
+

σyσz

ε

∂2

∂t2

)
Ax

+
(
−ε

∂2

∂t2
− (σy + σz )

∂

∂t
− σyσz

ε

)
[∇sf ]x =

∂2

∂t2
Jx.

(45)

Discretizing the above equation yields (46), as shown on the
next page. This is essentially time-stepping A equation with
PML. equation (46) at the bottom of the next page

Going back to (40), we can substitute (29) and take the sx -
component to find

1
sx

∂

∂x
x̂ × A = μHsx

. (47)

The process is similar for sy - and sz -components, so it will
not be repeated here. In the frequency-domain, this equation
becomes

∂

∂x
(ẑAy − ŷAz ) =

(
μ + i

σxμ

ωε

)
Hsx

. (48)

Since this equation has two vector components, we can split
them into two, each in z- and y-directions, and convert them
into time-domain equations as follows:

A
n− 1

2
y (i + 1, j + 1

2 , k) − A
n− 1

2
y (i, j + 1

2 , k)
Δx

= μH
n− 1

2
sx ,z +

σxμ

ε

(
n−1∑
m=1

H
m− 1

2
sx ,z +

1
2
H

n− 1
2

sx ,z

)
Δt (49)

−
A

n− 1
2

z (i + 1, j, k + 1
2 ) − A

n− 1
2

z (i, j, k + 1
2 )

Δx

= μH
n− 1

2
sx ,y +

σxμ

ε

(
n−1∑
m=1

H
m− 1

2
sx ,y +

1
2
H

n− 1
2

sx ,y

)
Δt. (50)
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H
n− 1

2
sx ,z can be calculated from A

n− 1
2

y , and H
n− 1

2
sx ,y can be calcu-

lated from A
n− 1

2
z . Once sy - and sz -components are also found

from (40) in a similar manner, the magnetic field can be recov-
ered as Hx = Hsx ,x + Hsy ,x + Hsz ,x and same for Hy and Hz .
From this, the partial derivatives of H terms in (46) can easily
be found[

∂Hz

∂y

]
=

Hz

(
i + 1

2 , j + 1
2 , k

)
− Hz (i + 1

2 , j − 1
2 , k)

Δy

(51)
[
∂Hy

∂z

]
=

Hy

(
i + 1

2 , j, k + 1
2

)
− Hz (i + 1

2 , j, k − 1
2 )

Δz
.

(52)

The remaining term to be derived in (46) is the gradient of f
term. In order to derive this, f must be derived first. We have
the following relationship:

με2f = ∇s · εA. (53)

Applying the split-field method and taking the sx -component
of this equation

(
1 + i

σx

ωε

)
fsx

=
1

με2

∂

∂x
(εAx). (54)

We convert this to time-domain and discretize it

f
n− 1

2
sx +

σx

ε

(
n−1∑
m=1

f
m− 1

2
sx +

1
2
f

n− 1
2

sx

)
Δt

=
1

με2

ε(i + 1
2 , j, k)An− 1

2
x − ε(i − 1

2 , j, k)An− 1
2

x

Δx
.

(55)

Using this equation, f
n− 1

2
sx can be found from A

n− 1
2

x . The
terms fsy

and fsz
can be found similarly, and then f = fsx

+
fsy

+ fsz
. From this f term, the gradient of f can be calculated

as follows:

∇sf = [∇sf ]. (56)

Taking the sx -component of this

1
sx

∂

∂x
x̂f = [∇sf ]sx

= [∇sf ]x . (57)

Note that the sx -component in this case happens to be the
x-component because the vector is only in the x-direction. The
discretized time-domain version of this equation is

fn− 1
2 (i + 1, j, k) − fn− 1

2 (i, j, k)
Δx

= [∇sf ]n−
1
2

x +
σx

ε

(
n−1∑
m=1

[∇sf ]n−
1
2

x +
1
2
[∇sf ]n−

1
2

x

)
Δt.

(58)

This concludes the derivation of the coordinate stretching
PML for the A-Φ equations.

APPENDIX C
DISCRETIZATION OF THE MAXWELL–SCHRÖDINGER

EQUATIONS

The discrete version of the modified Schrödinger equation is
very similar to the original one

i�
ˆ̃
∂tψ

n
m =

[
1

2m∗

(
�

i
∇̂ − qÃn

m

)
·
(

�

i
∇̃ − qÃn

m

)

+ qΦn
m + Vm

]
ψn

m . (59)

The time-stepping equation obtained from the above is

ψn+1
m = ψn−1

m +
Δt

m∗

[
i�∇̂ · ∇̃ψn

m + q∇̂ · (Ãn
mψn

m )

+ qÃn
m · ∇̃ψn

m − i
q2 |Ãn

m |2
�

ψn
m

]
− i

2ΔtqΦn
m

�
ψn

m

− i
2ΔtVm

�
ψn

m . (60)

The discretized expression for the second term on the right-
hand side of the above equation has been derived in other papers
such as [23]. The rest can be written down using the same
discrete vector calculus method as given in Appendix A. It is
worth noting that, whereas A and ψ are not on the same grid,
average values for ψ are used at the two nearby nodes.

[
∂Hz

∂y

]n− 1
2 − 2

[
∂Hz

∂y

]n− 3
2

+
[

∂Hz

∂y

]n− 5
2

Δt2
+

σz

ε

[
∂Hz

∂y

]n− 1
2 −

[
∂Hz

∂y

]n− 5
2

2Δt
−

[
∂Hy

∂z

]n− 1
2 − 2

[
∂Hy

∂z

]n− 3
2

+
[

∂Hy

∂z

]n− 5
2

Δt2

− σy

ε

[
∂Hy

∂z

]n− 1
2 −

[
∂Hy

∂z

]n− 5
2

2Δt
+ ε

A
n+ 1

2
x − 4A

n− 1
2

x + 6A
n− 3

2
x − 4A

n− 5
2

x + A
n− 7

2
x

Δt4

+ (σy + σz )
1
2 A

n+ 1
2

x − A
n− 1

2
x + A

n− 5
2

x − 1
2 A

n− 7
2

x

Δt3
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σyσz

ε

A
n− 1

2
x − 2A

n− 3
2

x + A
n− 5

2
x

Δt2
− ε

[∇sf ]n−
1
2

x − 2[∇sf ]n−
3
2

x [∇sf ]n−
5
2

x

Δt2

− (σy + σz )
[∇sf ]n−

1
2

x − [∇sf ]n−
5
2

x

2Δt
− σyσz

ε
[∇sf ]n−

3
2

x =
J

n− 1
2

x − 2J
n− 3

2
x + J

n− 5
2

x

Δt2
(46)
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The remaining equation to be discretized is the particle current
equation. The discrete version of that is

J̃n+1/2
q ,m =

q

2

{[
�

i ∇̃ − qÃn+1/2
m

m∗ ψn+1/2
m

]∗

ψn+1/2
m

+(ψn+1/2
m )∗

[
�

i ∇̃ − qÃn+1/2
m

m∗

]
ψn+1/2

m

}
.

(61)

This can be simplified as

J̃n+1/2
q ,m = − q

m∗

[
Re{i�(ψn+1/2

m )∗∇̃ψn+1/2
m }

+ q|ψn+1/2
m |2Ãn+1/2

m

]
. (62)

There are two terms in this equation, and the x-component of
the discretized expression for the first terms looks like

[ψ∗
m ∇̃ψm ]x =

ψ∗(i + 1, j, k) + ψ∗(i, j, k)
2

×ψ(i + 1, j, k) − ψ(i, j, k)
Δx

. (63)

Only the real part of the above term enters into (62). The y-
and z-components are analogous. For the x-component of the
second term, we have

[|ψm |2Ãm ]x =
ψ2(i + 1, j, k)+ψ2(i, j, k)

2
Ax

(
i+

1
2
, j, k

)
.

(64)
The y- and z-components can be written analogously, and

this completes the discretization for the Maxwell–Schrödinger
system.
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