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Abstract: As an important figure of merit for characterizing the quantized collective behaviors
of the wavefunction, Chern number is the topological invariant of quantum Hall insulators.
Chern number also identifies the topological properties of the photonic topological insulators
(PTIs), thus it is of crucial importance in PTI design. In this paper, we develop a first principle
computatioal method for the Chern number of 2D gyrotropic photonic crystals (PCs), starting
from the Maxwell’s equations. Firstly, we solve the Hermitian generalized eigenvalue equation
reformulated from the Maxwell’s equations by using the full-wave finite-difference frequency-
domain (FDFD) method. Then the Chern number is obtained by calculating the integral of Berry
curvature over the first Brillouin zone. Numerical examples of both transverse-electric (TE) and
transverse-magnetic (TM) modes are demonstrated, where convergent Chern numbers can be
obtained using rather coarse grids, thus validating the efficiency and accuracy of the proposed
method.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Topology studies the invariant properties of geometry under continuous deformation [1]. While
in mathematics, topological invariants are commonly used to classify topological spaces, in
topological physics, topological invariants are explored to distinguish the bulk properties of
materials. If physical observables can be expressed as topological invariants, they can only vary
discretely and will not be affected by small perturbations of system parameters.
With the discovery of the quantum Hall effects [2,3] and recent advances in the study of

topological insulators [4], topological phases of matter have attracted great attention in condensed
matter physics. In 2005, Haldane and Raghu transferred the key feature of quantum Hall effect
in quantum mechanics to classical electromagnetics [5] and soon after, it was numerically and
experimentally verified by using photonic crystals (PCs) [6,7].
Chern number in a photonic system is defined on the dispersion bands in wave-vector space.

For a two-dimensional (2D) periodic system, the Chern number is the integration of the Berry
curvature over the first Brillouin zone. Once the Chern number is calculated, the topological
properties of the system can be identified (trivial or non-trivial). In addition, the Chern number
can be used to explain the phenomenon of “topological protection” of the edge state transmission
in photonic topological insulators (PTIs). Therefore, the accurate computation of the Chern
number is of crucial importance in the PTI design [8–10].
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In this paper, we propose a first-principle computation method for Chern number calculation,
based on the finite-difference frequency-domain (FDFD) method [11–14]. Compared with the
commonly used plane-wave expansion (PWE) method [15–17], the FDFD method is not only
accurate and stable but also has lower computational complexity. Firstly, the FDFD method is
used to compute the band structure of 2D gyrotropic PCs by solving the generalized eigenvalue
equations derived from Maxwell’s equations. Then, the formulae for the numerical calculation of
the Chern number are derived in the discretized first Brillouin zone. At last, numerical examples
are given to demonstrate the accuracy of the proposed method. Note, in this work, we will
focus on 2D PCs with lossless, non-dispersive, local materials, which is a common practice in
computing Chern numbers. The effects of material dispersion and loss in a real microwave ferrite
has been discussed in [6]. One remark we would like to make is that as the Chern number is a
global property of the energy band, it does not depend on the local changes of the band caused
by material dispersion as long as the band gap is still open, which also means that the Chern
number has a certain degree of built-in robustness against material dispersion. Nevertheless, the
extension of the current method to fully include the effect of material dispersion on the energy
bands and Chern number calculations is an interesting direction for future research.

2. Generalized eigenvalue problem using FD method

2.1. Maxwell’s equations in the generalized coordinates

Firstly, the Maxwell’s curl equations in free space in the generalized coordinate (Fig. 1) are
expressed by

∇q × Ĥ = ık0ε̂(r)Ê, ∇q × Ê = −ık0 µ̂(r)Ĥ. (1)

Here, ∇q is the partial differential operator in the generalized coordinate with three unit vectors
ûq(x, y, z), (q = 1, 2, 3). Ê and Ĥ are the normalized vector fields with Êi = Qi

»
ε0
µ0

Ei, Ĥi =

QiHi(i = 1, 2, 3). Actually, in the numerical implementation, Qis are the sizes of the discrete grids
along each direction [19]. k0 is the free-space wavenumber. ε̂ and µ̂ are the relative permittivity
and permeability in the form of 3 × 3 tensor which are written as

ε̂ij(r) = [ ¯̄ε(r) · g]ij · |û1 · û2 × û3 |
Q1Q2Q3

QiQj
; µ̂ij(r) = [ ¯̄µ(r) · g]ij · |û1 · û2 × û3 |

Q1Q2Q3
QiQj

; (2)

where ¯̄ε(r) and ¯̄µ(r) are the original relative permittivity and permeability in the Cartesian basis.
g is the metric tensor matrix which can be expressed as,

g =


û1 · û1 û1 · û2 û1 · û3

û2 · û1 û2 · û2 û2 · û3

û3 · û1 û3 · û2 û3 · û3


−1

. (3)

With the metric tensor matrix, the length of a vector in the generalized coordinate is calculated
by

|r|2 = rT · g−1 · r. (4)

2.2. Bloch’s theorem

In 2D PCs, due to the translational symmetry, the modes can be written in the Bloch form:

E(n,kz,k‖)(r) = e−ik‖ ·ρe−ikzzue(n,kz,k‖)(ρ),

H(n,kz,k‖)(r) = e−ik‖ ·ρe−ikzzuh(n,kz,k‖)(ρ).
(5)
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Fig. 1. The 2D Yee’s grid in general coordinates. The dashed arrows are where the periodic
boundaries apply.

Here, n is the band number, ρ is the mapping of vector r in the (u1, u2) plane. ue(ρ) and uh(ρ)
are periodic functions satisfying uh(ρ) = uh(ρ + R), ue(ρ) = ue(ρ + R), where R stands for any
lattice vectors.

In 2D PCs, we only need to investigate the in-plane propagating modes, i.e. kz = 0. Hence, the
mode can be rewritten as

E(ρ) = e−ik‖ ·ρue(ρ),

H(ρ) = e−ik‖ ·ρuh(ρ).
(6)

Then, the Bloch’s theorem can be written as

E(ρ + R) = e−ik‖ ·RE(ρ),

H(ρ + R) = e−ik‖ ·RH(ρ).
(7)

2.3. Discretization of the eigenvalue problems

From the Maxwell’s curl equations (Eq. (1)), we can derive the governing equations for the
modes of the PCs:

∇ × µ̂−1(r)∇ × E(r) = ω2ε̂(r)E(r), (8)

∇ × ε̂−1(r)∇ ×H(r) = ω2 µ̂(r)H(r). (9)

In 2D PCs, the modes can be separated into two distinct polarizations, transverse-magnetic
(TM) modes with z-polarized electric fields and transverse-electric (TE) modes with z-polarized
magnetic fields. The generalized eigenvalue matrix equations for the TM and TE modes of the
2D PCs can be discretized as,{

U1
(
µ−121V2 − µ

−1
22V1

)
− U2

(
µ−111V2 − µ

−1
12V1

)}
Êz = ε33k20Êz (10){

V1
(
ε−121 U2 − ε

−1
22 U1

)
− V2

(
ε−111 U2 − ε

−1
12 U1

)}
Ĥz = µ33k20Ĥz (11)
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U1 =
1

Q1



−1 1
. . . . . .

ux −1 0

−1 1
. . . . . .

ux −1 0
. . . 1

−1
. . .

ux −1



(12)

V1 =
1

Q1



1 vx

−1 1
. . . . . .

0 1 vx

−1 1
. . . . . .

0 1 vx

−1
. . .
. . . 1



(13)

U2 =
1

Q2



−1 1

−1 1
. . . . . .

−1
. . .

. . . 1

−1 1

uy −1
. . . . . .

uy −1



(14)
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V2 =
1

Q2



1 vy
. . . vy

1 vy

−1 1
. . .

. . .
. . . . . .

−1 1



(15)

The grid points at the boundaries are treated by the Bloch’s theorem, consequently

ux = exp (ik · a1û1) , vx = − exp (−ik · a1û1) , uy = exp (ik · a2û2) , vy = − exp (−ik · a2û2) ,
(16)

where a1, a2 are the lengths of the unit cell along the directions of û1 and û2.
By solving these eigenvalue equations, the band structure together with the eigenstates of 2D

PCs can be easily obtained. The matrices

ΘE =
{

U1
(
µ−121V2 − µ

−1
22V1

)
− U2

(
µ−111V2 − µ

−1
12V1

)}
(17)

ΘH =
{

V1
(
ε−121 U2 − ε

−1
22 U1

)
− V2

(
ε−111 U2 − ε

−1
12 U1

)}
(18)

are discretized from the operator ∇ × µ̂−1(r)∇× and ∇ × ε̂−1(r)∇×. The condition of the
electromagnetic modes Eω1 ,Eω2 (or Hω1 ,Hω2) orthogonality is the Hermitian inner product
satisfies

〈
Eω1 |Eω2

〉
=
∫
ε(r)E∗ω1 · Eω2d2r = 0 or

〈
Hω1 |Hω2

〉
=
∫
µ(r)H∗ω1 · Hω2d2r = 0. The

subscript ω1 and ω1 stand for the different eigen-frequency under a fixed wave-vector k.

3. Chern number calculation

3.1. Single-band Chern number

Chern number is an integer which determines the topological classification of different materials
or structures. Taking the TM mode of a 2D PC as an example, the Chern number of the nth band
can be computed by integrating the Berry curvature over the first Brillouin zone as following
[20],

C(n) =
1
2π

∫
BZ

Fn(k)dk

=
1
2π

∫
BZ
∇k × An(k)dk

=
1
2πi

∮
∂BZ

〈
un,e,k |∇k | un,e,k

〉
dk.

(19)

Here, the Fn(k) is the Berry curvature. An(k) = −i
〈
un,e,k |∇k | un,e,k

〉
is the Berry connection.

un,e,k denotes the normalized eigenstate satisfying
∣∣un,e,k(ρ)

〉
=
∣∣eik·ρEn,e,k(ρ)

〉
and

∣∣En,e,k(ρ)
〉

is the eigenstate solved from Eq. (10).
For numerical discretization, the Chern number is calculated in the discretized Brillouin zone.

In Fig. 2(a), an example for a square-shaped first Brillouin zone is shown. It is discretized into



Research Article Vol. 28, No. 4 / 17 February 2020 / Optics Express 4643

4 × 4 plaquettes. Then, the Chern number is calculated using

C(n) =
1
2π

∫
BZ

Fn(k)dk

=
1
2πi

∮
∂BZ

〈
un,e,k |∇k | un,e,k

〉
dk

=
1
2π

∑
k∈BZ

F(n)
k ∆Sk

=
1
2π

∑
k∈BZ

Im ln
î
U(n)

k1→k2
U(n)

k2→k3
U(n)

k3→k4
U(n)

k4→k1

ó
(20)

where U(n)
kα→kβ

≡

¨
un,e,kα |un,e,kβ

∂∣∣∣¨un,e,kα |un,e,kβ

∂∣∣∣ , α, β = 1, 2, 3, 4, and
〈
un,e,kα |un,e,kβ

〉
=

∫
ε(r)un,e,kα (r)∗ ·

un,e,kβ (r)d2r. k1,k2,k3,k4 are the vertices of the each plaquette. The integration is replaced by a
summation

∑
k∈BZ F(n)

k ∆Sk.

Fig. 2. Computational scheme for the calculation of Chern numbers. (a) A square-shaped
first Brillouin zone; (b) Discretization of the first Brillouin zone, and the computational
scheme for the Chern number.

For the first Brillouin zone in different shape, similar discretization scheme can be used. It
should be noted that to simplify the numerical calculation, we may need to use the equivalent
Brillouin zone which shares the same size with the first Brillouin zone but in a parallelogram
shape with its edges coinciding with the reciprocal lattice vector [18].

3.2. Composite Chern number

When the bands are degenerate, the Chern number can not be assigned to each band, so Eq. (20)
will no longer be valid. For this case, these degenerate bands (taking the {n, n+ 1, . . . , n+N − 1}
bands as an example) jointly share a composite (first) Chern number, C(n⊕n+1⊕···⊕n+N−1) which is
associated with the multiplets unk ⊕ un+1,k ⊕ · · · ⊕ un+N−1,k. It is calculated using [20,21]



Research Article Vol. 28, No. 4 / 17 February 2020 / Optics Express 4644

C(n⊕n+1⊕···⊕n+N−1) =
1
2π

Tr
∮
∂BZ

A(n⊕n+1⊕···⊕n+N−1)
k dk

=
1
2πi

∮
∂BZ


. . .

... . ..

· · ·
〈
unl,e,k |∇k | unm,e,k

〉
· · ·

. ..
...

. . .

 dk (21)

Here, A(n⊕n+1⊕···⊕n+N−1)
k is an N × N matrix with the (l,m) element, −i

〈
unl,e,k |∇k | unm,e,k

〉
, and

nl = n + l − 1, nm = n + m − 1.
By applying Stokes’ theorem, the composite Chern number can be rewritten in terms of the

composite Berry flux:

C(n⊕n+1⊕···⊕n+N−1) =
1
2π

∫
BZ

F(n⊕n+1⊕···⊕n+N−1)
k dSk

=
1
2π

∫
BZ

Tr∇k × A(n⊕n+1⊕···⊕n+N−1)
k dSk, (22)

F(n⊕n+1⊕···⊕n+N−1)
k dSk

= ImTr
¶

ln
î
U(n⊕···⊕n+N−1)

k1→k2
U(n⊕···⊕n+N−1)

k2→k3
U(n⊕···⊕n+N−1)

k3→k4
U(n⊕···⊕n+N−1)

k4→k1

ó©
= Im ln

¶
det
î
U(n⊕···⊕n+N−1)

k1→k2
U(n⊕···⊕n+N−1)

k2→k3
U(n⊕···⊕n+N−1)

k3→k4
U(n⊕···⊕n+N−1)

k4→k1

ó©
. (23)

The element (l,m) of the link matrix U(n⊕···⊕n+N−1)
kα→kβ

is

U(n⊕···⊕n+N−1)
kα→kβ

(l,m) =
〈
unl,e,kα |unm,e,kβ

〉∣∣〈unl,e,kα |unm,e,kβ

〉∣∣ . (24)

Different from the single-band Chern number, in the composite Chern number, the link matrix
U(n⊕···⊕n+N−1)

kα→kβ
is used to replace the link variable U(n)

kα→kβ
. In the discretized Brillouin zone, the

Chern number is expressed as

C(n⊕n+1⊕···⊕n+N−1)

=
1
2π

∑
BZ

Im ln
¶

det
î
U(n⊕···⊕n+N−1)

k1→k2
U(n⊕···⊕n+N−1)

k2→k3
U(n⊕···⊕n+N−1)

k3→k4
U(n⊕···⊕n+N−1)

k4→k1

ó©
(25)

As for the calculation of the Chern number of TE modes, the derived formulae are still valid,
except that the normalized eigenstates now become the normalized magnetic field, un,h,kα (r).
Finally, we would like to note that the algorithm for the Chern number calculations described
above guarantees the calculated Chern number is strictly an integer for arbitrary discretization
spacing (for the detailed proof, see [20]). However, this does not mean that any discretization
will give the correct Chern numbers, but rather, convergence to the correct Chern numbers still
requires a sufficient sampling of the Brillouin zone, which can be achieved using rather coarse
discretization as we will show in the following section.

4. Numerical results

In the first numerical example, a 2D PC composed of Yttrium-Iron-Garnet (YIG) rods (ε = 15ε0)
in a square lattice is analyzed. The radius of the rods is 0.11a, where a is the lattice constant. An
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external direct current (DC) magnetic field is applied in the z direction (out-of-plane) to break
the time-reversal symmetry. The permeability is a tensor matrix written as

¯̄µ =


µ iκ 0

−iκ µ 0

0 0 µ0

 , µ = 1 +
ωmω0

ω2
0 − ω

2
, κ =

ωmω

ω2
0 − ω

2
, (26)

where ω0 = γH0 is the precession frequency and ωm = 4πγMs. When the external magnetic
field is 1600 Gauss at 4.28 GHz, κ = 12.4µ0, and µ = 14µ0 [6,24].

Firstly, we calculate the band structure of the PC using the FDFD method. In order to ensure
the accuracy, the mesh size is set to be a/100. The calculated band structures for the TM modes
and TE modes are plotted in Figs. 3(a) and Figs. 3(b), respectively. In Fig. 3(a), C(1)

TM,C
(2)
TM,C

(3)
TM

stand for the Chern numbers of the first, second and third bands. Then, we investigate the
computational accuracy of the Chern number by discretizing the Brillouin zone with different
numbers of plaquettes. The computational results are shown in Table 1. We can see that the
computational results of Chern numbers are converged when the number of plaquettes is larger
than 4 × 4. By further checking the values of the Chern numbers and composite Chern numbers,
we find C(1⊕2)

TM = C(1)
TM + C(2)

TM, and C(1⊕2⊕3)
TM = C(1)

TM + C(2)
TM + C(3)

TM, which is as expected.

Fig. 3. The Band structures of a 2D PC composed of YIG rods in a square lattice when a
1600 Gauss +z DC magnetic field is applied. C(1)

TM, C(2)
TM,C(3)

TM denote the Chern numbers of
the TM modes of the associated bands.

In the second numerical example, a 2D PC composed of gyrotropic rods in a square lattice is
analyzed. The geometric parameters are the same as these of the first example (r = 0.11a). The
relative permittivity and permeability are expressed as following,

¯̄ε =


εd iεf 0

−iεf εd 0

0 0 ε⊥

 , ¯̄µ =


µd iµf 0

−iµf µd 0

0 0 µ⊥

 . (27)
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Table 1. The TM-mode Chern numbers and composite Chern numbers of different bands
calculated with different mesh sizes of the first Brillouin zone.

Mesh

Chern
C(1)
TM C(2)

TM C(3)
TM C(1⊕2)

TM C(1⊕2⊕3)
TM

2 × 2 0 1 0 1 −1

4 × 4 0 1 −2 1 −1

8 × 8 0 1 −2 1 −1

16 × 16 0 1 −2 1 −1

Here, the parameters are chosen to satisfy the relationship εd = µd, εf = −µf , ε⊥ = µ⊥. Referring
to the YIG material under an external magnetic field at 4.28 GHz, the corresponding parameters
are set as εd = 14, εf = −12.4 and µ⊥ = 15, µd = 14, µf = 12.4 and ε⊥ = 15 [22].
The band structures of TM and TE modes are shown in Fig. 4. Different from the first

numerical example, by using the gyrotropic material, there are band gaps for both the TM and TE
modes. The C(1)

TM/TE, C(2)
TM/TE, C(3)

TM/TE stand for the Chern numbers of the first, second and third
bands for the TM/TE mode. As shown in the Table 2 and Table 3, 4 × 4 meshes in the Brillouin
zone are also sufficient for the Chern number computation for TM/TE modes. With the increase
of the discretization density, the calculated results are stable.

Fig. 4. The Band structures of a 2D PC composed of gyrotopic rods in a square lattice
when a 1600 Gauss +z DC magnetic field is applied. C(1)

TM/TE, C(2)
TM/TE, C(3)

TM/TE denote the
Chern numbers of the TM/TE modes of the associated bands.

Table 2. The TM-mode Chern numbers and composite Chern numbers of different bands
calculated with different mesh sizes of the first Brillouin zone.

Mesh

Chern
C(1)
TM C(2)

TM C(3)
TM C(1⊕2)

TM C(1⊕2⊕3)
TM

2 × 2 0 1 0 1 −1

4 × 4 0 1 −2 1 −1

8 × 8 0 1 −2 1 −1

16 × 16 0 1 −2 1 −1
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Table 3. The TE-mode Chern numbers and composite Chern numbers of different bands calculated
with different mesh sizes of the first Brillouin zone.

Mesh

Chern
C(1)
TE C(2)

TE C(3)
TE C(1⊕2)

TE C(1⊕2⊕3)
TE

2 × 2 0 −1 0 −1 1

4 × 4 0 −1 2 −1 1

8 × 8 0 −1 2 −1 1

16 × 16 0 −1 2 −1 1

In the third numerical example, a 2D PC composed of YIG rods in a honeycomb lattice
[23] is analyzed. The unit cell of the lattice is shown in the Fig. 5. The corresponding first
Brillouin zone (hexagon region) constructed in the reciprocal lattice is also shown in the Fig. 5.
As shown in this figure, for the convenience of discretization, the hexagon region needs to be
equivalently transformed into a rhombus region, which can be discretized into smaller rhombus
cells straightforwardly. The detailed reshaping and discretization procedure for the Brillouin
zone can be found in [18]. In Fig. 6(a), the first two TM bands with zero DC magnetic field
are given. It can be seen that the two bands are degenerate at the K point. By applying a DC
magnetic field, the time-reversal symmetry is broken and the degeneracy is lifted, as shown in
the Fig. 6(b). The calculated Chern numbers and composite Chern numbers corresponding to the
two bands are shown in the Table 4. The non-zero Chern numbers can be used to explain the
edge-state in [23] at 7.5 GHz. Also, as can be seen from this table, a very coarse mesh (2 × 2)
can guarantee the accuracy of the results.

Fig. 5. The unit cell and first Brillouin zone of the honeycomb lattice.

Table 4. The honeycomb lattice’s Chern numbers and composite Chern numbers of the first two
bands calculated with different mesh sizes of the first Brillouin zone.

Mesh

Chern
C(1) C(2) C(1⊕2)

2 × 2 1 −1 0

4 × 4 1 −1 0

8 × 8 1 −1 0

16 × 16 1 −1 0
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Fig. 6. The band structure of 2D honeycomb lattice without and with DC magnetic field.

5. Conclusion

In conclusion, a first-principle computational method for the Chern number of 2D gyrotropic PCs
has been developed [25]. Firstly, the full-wave FDFD method was used to solve the generalized
eigenvalue problem based on the Maxwell’s equations. Then, the band structures of the PCs with
different material properties were analyzed. The Chern numbers were calculated by integrating the
Berry curvature over the first Brillouin zone. All the three numerical examples have demonstrated
the accuracy and convergence of this method. Importantly, the method proposed in the current
work could be potentially applied to 3D PCs [26] or 3D planar PCs when one cannot separate
the TE and TM polarizations, in which case the full vectorial eigenmodes could be used for the
Chern number calculations [5].
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