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Flexible and Accurate Simulation 
of Radiation Cooling with FETD 
Method
Huan Huan Zhang1,4, Wei E. I. Sha   2, Zhi Xiang Huang3 & Guang Ming Shi1

Thermal management and simulation are becoming increasingly important in many areas of 
engineering applications. There are three cooling routes for thermal management, namely thermal 
conduction, thermal convection and thermal radiation, among which the first two approaches have 
been widely studied and applied, while the radiation cooling has not yet attracted much attention in 
terrestrial environment because it usually contributes less to the total amount of thermal dissipation. 
Thus the simulation method for radiation cooling was also seldom noticed. The traditional way to 
simulate the radiation cooling is to solve the thermal conduction equation with an approximate 
radiation boundary condition, which neglects the wavelength and angular dependence of the emissivity 
of the object surface. In this paper, we combine the heat conduction equation with a rigorous radiation 
boundary condition discretized by the finite-element time-domain method to simulate the radiation 
cooling accurately and flexibly. Numerical results are given to demonstrate the accuracy, flexibilities 
and potential applications of the proposed method. The proposed numerical model can provide a 
powerful tool to gain deep physical insight and optimize the physical design of radiation cooling.

Cooling techniques have become increasingly important in many areas. For instance, with the broad applications 
of three-dimensional (3-D) packaging and interconnection technologies, the integrated circuits (ICs) possess 
great benefits including high density, reduced signal delay, low power consumption, capable of heterogeneous 
integration, etc. But meanwhile it also jeopardizes the performance and reliability of ICs due to the increased 
power densities and high on-chip temperature1–3. Research indicates that more than 50% of ICs failure is associ-
ated with the thermal issues4. Driven by the modern military requirements, the power level of the RF/microwave 
components becomes higher and higher, leading to extremely high operating temperature5. Therefore, the effec-
tive dissipation of the high heat flux is indispensable for the normal operation of these components. Moreover, 
in the field of photovoltaics, the increased temperature of the solar cells induced by the sunlight shows a great 
influence on its reliability and efficiency. Each increase in temperature of 1 °C results in a relative efficiency drop 
of about 0.45% for crystalline silicon solar cells6. Countless examples can be provided to prove the necessity of 
developing cooling techniques.

Since the heat transfer mechanisms can be categorized into three different modes: conduction, convection 
and radiation, the corresponding cooling techniques also include conduction cooling, convection cooling and 
radiation cooling7. Among them the first two cooling ways have been widely studied and applied. For example, 
the heat flux in ICs is usually conducted to the heat sink through interconnects and thermal vias, then dissipated 
to the air through convective heat transfer between the air and the surface of the heat sink. The radiation cool-
ing technique was less utilized in terrestrial environment because it is considered to contribute less to the total 
amount of thermal dissipation when it is combined with other cooling techniques. However, recent research has 
shown that theoretically large temperature reduction as much as 60 °C can be obtained by adopting a selective 
thermal emitter and decreasing the parasitic thermal load simultaneously8,9.

Nowadays, the numerical simulation methods for thermal management and cooling designs are applied more 
and more extensively. Similar to the applications of the three cooling techniques, the numerical methods of the 
conduction and convection cooling are also well developed compared to those of radiation cooling. Commonly 
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adopted numerical methods for the transient thermal analysis include integral equation-based method, 
finite-difference time-domain (FDTD) method and finite-element time-domain (FETD) method10–22, etc. The 
integral equation-based method is very suitable for open problems due to the involvement of Green’s function. 
But its level of complexity will increase enormously when dealing with inhomogeneous material. The differential 
equation-based methods, such as FDTD and FETD, are preferred choice for analyzing complex inhomogeneous 
material in bounded geometries. The FDTD method is widely applied due to its simplicity and computational 
efficiency. Since orthogonal grids are employed in the conventional FDTD method, leading to the staircase error. 
Consequently, the mesh density must be increased dramatically to model objects with curved surfaces. By con-
trast, the FETD method with tetrahedral elements is more flexible to model arbitrarily-shaped geometries. Most 
of the aforementioned studies on numerical methods focus on the simulation of conduction cooling and convec-
tion cooling. Very few of them involve the simulation of radiation cooling. In particular, the radiation boundary 
condition used in these studies is an approximate one which neglects the wavelength and angular dependence 
of the emissivity of the object surface. For the real-world applications, this emissivity is always a function of the 
wavelength and direction angle. In this paper, the heat conduction equation with a rigorous radiation boundary 
condition is discretized with the FETD method to simulate the radiation cooling phenomena accurately and 
flexibly.

Methods
Governing Equation and Its Definite Conditions.  As shown in Fig. 1, consider an arbitrarily shaped 
object Ω within which there is no bulk motion, the governing equation for its transient thermal analysis can be 
expressed as

ρ κ∂
∂

= ∇ ⋅ ∇ +ρc
T
t

T Q( ) (1)

where ρ is the density of the materials, cρ is the specific heat capacity, T denotes the temperature distribution as a 
function of time and space, κ is the thermal conductivity, and Q represents the heat source, corresponding to the 
energy generated per unit volume in the medium.

The differential Eq. (1) with predefined boundary condition and initial condition can be solved to obtain the 
spatial temperature distribution in the medium. There are four categories of commonly-used boundary condi-
tions in thermal analyses. For the convenience of description, the surface of Ω is denoted by S = S0 ∪ S1 ∪ S2 ∪ S3. If 
S0 is maintained at a fixed temperature Ts, the Dirichlet boundary condition will be applied:

T T Sr, (2)s 0= ∈

The second category of boundary condition is termed as the Neumann condition, corresponding to a fixed 
heat flux at the surface S1:

κ− ⋅ ∇ = ∈n̂ T q Sr, (3)s 1

Figure 1.  An arbitrarily shaped object Ω and its boundary surface S = S0 ∪ S1 ∪ S2 ∪ S3.
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where n̂ denotes the unit outward normal vector of the boundary surface. The surface S1 becomes a perfectly 
insulated or adiabatic surface when qs = 0.

The third category of boundary condition is the convection boundary condition obtained from the Newton’s 
law of cooling:

κ− ⋅ ∇ = − ∈n̂ T h T T Sr( ), (4)sur 2

where h is the convective heat transfer coefficient. Tsur refers to the surrounding temperature. This boundary 
condition is utilized to describe the heat transfer between the surface S2 and the fluid moving over the surface.

If the temperature of the medium is above absolute zero, it will radiatively emit heat to outer space, which is 
called thermal radiation. The fourth category of boundary condition, namely radiation boundary condition, will 
be applied if thermal radiation occurs between the surface S3 of the medium and its surrounding environment:

κ− ⋅ ∇ = − ∈n̂ T P T P T Sr( ) ( ), (5)rad atm sur 3

∫ ∫ ∫ λ ε λ θ ϕ θ θ θ ϕ λ=
π π

λ

∞
P T I T d d d( ) ( , ) ( , , ) cos( ) sin( ) (6)rad B

0 0

2

0

2
,

∫ ∫ ∫ λ ε λ θ ϕ θ θ θ ϕ λ=
π π

λ

∞
P T I T d d d( ) ( , ) ( , , )cos( ) sin( ) (7)atm sur B sur

0 0

2
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2
,

where Prad(T) denotes the power radiated by the structure per unit area. Patm(Tsur) represents the power absorbed 
from the surrounding atmosphere per unit area. ε(λ, θ, ϕ) is the spectral and directional emissivity of S3. As 
shown in Fig. 2, θ is the zenith angle, while ϕ is the azimuthal angle. λ denotes the wavelength. Iλ,B(λ, T) refers to 
the spectral radiance of a blackbody at temperature T.

( )
I T hc( , ) 2 1

exp 1 (8)
B hc

k T

,
0
2

5

B

0
λ

λ
=

−
λ

λ

where c0 = 2.998 × 108 m/s is the speed of light in free space. kB = 1.381 × 10−23 J/K is the Boltzmann constant. 
h = 6.626 × 10−34 J · K is the Planck constant.

Equations (6) and (7) are the rigorous expression for Prad(T) and Patm(Tsur). In the traditional radiation bound-
ary condition, the emissivity of the medium surface is assumed to be independent of the wavelength and direc-
tion, namely ε(λ, θ, ϕ) = ε0. Since the total emissive power of a blackbody can be calculated as

∫ ∫ ∫ λ θ θ θ ϕ λ σ=
π π

λ

∞
I T d d d T( , )cos( ) sin( ) (9)B

0 0

2

0

2
,

4

where σ = 5.68 × 10−8W/m2K4 is the Stefan–Boltzmann constant. We can obtain the traditional radiation bound-
ary condition as

κ ε σ− ⋅ ∇ = − ∈n̂ T T T Sr( ), (10)sur0
4 4

3

Figure 2.  Illustration of the zenith angle and azimuthal angle in the spherical coordinate system.
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When adopting the rigorous expression of radiation boundary condition in (5), the trapezoidal rule of numer-
ical integration is utilized to calculate (6) an (7)23. It is worth mentioning that the infinite integral over the wave-
length should be truncated into a finite one. Equation (9) can be used to test the accuracy of different truncation 
boundary and resolution. Numerically, we find that 0.4% relative accuracy can be achieved with a spectral resolu-
tion of 2 nm from 1 μm to 1000 μm and with 3 degree angular resolution.

In Cartesian coordinates, the initial condition can be specified as

= =T x y z t T x y z( , , ; 0) ( , , ) (11)0

where T0(x, y, z) is the temperature distribution at t = 0.

Finite-Element Time-Domain Method.  The FETD method is employed to solve Eq. (1) with the above 
mentioned boundary conditions and the initial condition for obtaining the time-varying temperature distri-
bution of the medium. Firstly, the medium Ω is discretized into a set of tetrahedral elements Ωi. Nodal basis 
functions are employed to expand T in each element Ωi

24. Then considering the aforementioned Neumann, con-
vection and radiation boundary conditions simultaneously, we can obtain the spatially discrete form of equation 
(1) by using the Galerkin’s scheme:

{ }C T
t

K T f T[ ] [ ]{ } { ( )}
(12)

∂
∂

+ =

where

∫ρ= ρC c N N dV[ ] (13)ij
V

i j
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(14)ij
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i j

S
i j

2
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(15)i
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S
i s S
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S

i rad atm sur
1 2 3

Ni and Nj refer to the i-th and j-th nodal basis functions, respectively. {T} refers to the time-dependent expansion 
coefficients to be solved, which is also the vector constituted by the temperature at the nodes of the elements. 
For the nodes residing on S0, we need to impose the Dirichlet boundary condition. The corresponding unknown 
expansion coefficients on S0 are explicitly given by (2), only the unknown coefficients not over S0 are to be solved 
by (12).

Suppose that the temperature of the nodes at time ti = iΔt is {Ti}. Δt is the time step size. The Crank-Nicolson 
scheme is adopted for the temporal discretization of (12) to arrive at an unconditionally stable system25:




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Note that (16) is a nonlinear system of equations. Particularly, the last term arising from the radiation bound-
ary condition (5) requires to compute the radiation power Prad(T) at the time t = ti. In order to avoid solving 
nonlinear equation, Eq. (16) at the time t = ti is solved in an iterative manner:
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The initial value of T{ }i
n( )  is set to be = −T T{ }i i

(0)
1 in (17), which provides the values for the right hand side of 

(17), leaving the temperature vector +T{ }i
n( 1)  as unknowns. Then +T{ }i

n( 1)  can be solved by using the multifrontal 
method for sparse linear equations26. This process is repeated until the difference between +T{ }i

n( 1)  and T{ }i
n( )  is 

less than an acceptable tolerance. It is set to be 10−5 in this paper. Finally, we can obtain = +T T{ } { }i i
n( 1) . Figure 3 

shows the schematic picture for the numerical solution of the temperature distribution at each time step.

Results
Silicon Cube.  As shown in Fig. 4(a), a silicon cube with the side length of 0.5 m is studied to validate the accu-
racy and flexibility of the proposed method. The material parameters of the cube are κ = 135W/[m · K], ρ = 2330 
kg/[m3], cρ = 704 J/[kg · K]. The ambient temperature is set to be 300 K. The initial temperature of the cube is 800 K. 
The cube is meshed into 3736 tetrahedral elements as shown in Fig. 4(b). The temperature at a randomly chosen 
observation point r = (0.185 m, 0.18 m, 0.256 m) is recorded in the following simulation.

Firstly, the Dirichlet, Neumann, convection and traditional radiation boundary conditions are imposed to 
the whole boundary surface, respectively. The temperatures on the boundary surface are fixed to be 300 K in the 
Dirichlet boundary condition. The fixed heat flux in Neumann boundary condition equals to 800 K/m2. The con-
vective heat transfer coefficient is set to be h = 15 W/[m2 · K] in the convection boundary condition. The emissivity 
of the boundary surface is set to be ε0 = 0.9 in the traditional radiation boundary condition. Both the proposed 
method and the COMSOL software are employed to analyze this problem27. The temporal temperature at the 
observation point is shown in Fig. 5(a). Very good agreement between the proposed method and the COMSOL 
software is achieved. We can also find that the temperature at the observation point before 14000 s decreases faster 
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when applying the radiation boundary conditions than using the convection boundary condition, which implies 
that the radiation cooling can be very effective especially when the temperature of object surface is high since it is 
proportional to the fourth power of temperature.

Secondly, different boundary conditions are imposed to different surfaces of the cube to further check the 
code. The fixed outward heat flux 2000 W/[m2] is applied on the surfaces of x = 0 and x = 0.5. The convection 
boundary condition is imposed on the surfaces of y = 0 and y = 0.5. The radiation boundary condition is applied 
on the surfaces of z = 0 and z = 0.5. As shown in Fig. 5(b), four groups of the convective heat transfer coefficients 
and emissivities are tested, again good agreement between COMSOL and the proposed method can be observed. 
Moreover, it is easy to find that a larger convective heat transfer coefficient or emissivity can lead to faster cooling.

Thus far, we have validated the implementation of the Dirichlet, Neumann, convection and traditional radi-
ation boundary conditions. However, the treatment of the rigorous radiation boundary condition in (5) has 
not been proved yet. According to (9), if we set the emissivity to be a constant ε0 independent of the wave-
length and direction, the results obtained through utilizing (5) and (10) should be the same. This can be used to 
check the correctness of treatment of the rigorous radiation boundary condition. Figure 5(c) shows the results 

Figure 3.  Flow diagram for solving the temperature distribution at each time step.

Figure 4.  (a) Silicon cube model, (b) Meshed model with tetrahedral elements.
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corresponding to ε0 = 0.2, ε0 = 0.5 and ε0 = 0.9 when applying the radiation boundary condition to the six sur-
faces of the cube. Obviously, the results of the rigorous radiation boundary condition agree well with those of the 
traditional radiation boundary condition, which demonstrates the correctness of our proposed method.

Actually, the emissivity of an object surface is seldom uniform, and it is usually dependent on the wavelength 
and emission angle. In order to exhibit such a feature, we consider three different kinds of emissivities: (1) The 
emissivity only depends on the wavelength. It equals to 0.9 in the wavelength range from 8 μm to 11 μm and is 
zero elsewhere. (2) The emissivity only depends on the emission angle. It equals to 0.9 in the angle range from 0 to 
π/3 and is zero in the angle range from π/3 to π/2. (3) The emissivity depends both on the wavelength and emis-
sion angle. It equals to 0.9 in the wavelength range from 8 μm to 11 μm and in the angle range from 0 to π/3. The 
emissivity is zero elsewhere. The rigorous radiation boundary condition is applied with the above three different 
kinds of emissivities. The temperature of the observation point can be obtained by the proposed method as shown 
in Fig. 5(d). Note that the case of ε0 = 0.9 in Fig. 5(c) is also replotted in Fig. 5(d) for comparison. Obviously, the 
cooling effect will be overestimated if adopting the traditional radiation boundary condition. It is worth men-
tioning that the number of iterations for the solution of (17) at each time step in these three cases are less than 5.

3D IC Package with a Heat Sink.  Consider a 3D IC package model with a heat sink, the cross-section view 
of which is shown in Fig. 6(a). The model is composed of a heat sink, thermal interface materials (TIM), a chip, 
6 × 6 through-silicon-vias (TSVs) and an underfill layer. Its geometry and material parameters are summarized in 
Table 1. A uniform volume power of 1 W is assumed on the chip layer as the heat source. Initially, the system tem-
perature is supposed to be room temperature of 300 K. To perform the numerical simulation, this model is discre-
tized into 269,446 tetrahedral elements. The temperature of a randomly chosen observation point r = (7.25 mm, 
0.7 mm, 2.875 mm) at the top surface of the chip is recorded.

Case 1: Firstly, the convection boundary condition is imposed on the surface of the heat sink with h = 15W/
[m2 · K] to model the natural convection. Other surfaces are assumed to be adiabatic. Both the proposed method 

Figure 5.  The temperature at the observation point obtained by (a) the proposed method and the COMSOL 
software with the Dirichlet, Neumann, convection and traditional radiation boundary conditions imposed 
to the whole boundary surface of the cube, (b) the proposed method and the COMSOL software with the 
Neumann boundary condition applied to the surfaces at x = 0 and x = 0.5, convection boundary condition 
applied to the surfaces at y = 0 and y = 0.5, and traditional radiation boundary condition applied to the 
surfaces at z = 0 and z = 0.5, (c) the traditional radiation boundary condition and rigorous radiation boundary 
condition, (d) the rigorous radiation boundary condition with the surface emissivity depending on the 
wavelength and emission angle.
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and the COMSOL software are employed to simulate the temperature distribution of the model. Good agreement 
can be observed in Figs 6(b) and 7(a,b).

Case 2: Actually, anodic oxidation treatment is usually applied to the surface of the heat sink to improve its 
emissivity. Thus the effect of radiative cooling can be improved. Suppose that the surface emissivity of the heat 
sink equals to ε0 = 0.93 after the anodic oxidation treatment. Natural convection with h = 15 W/[m2 · K] still exists. 
Then the heat conduction equation combined with the radiation boundary condition and convection boundary 
condition can be utilized to analyze this problem. Figures 6(b) and 7(c,d) show that the results obtained by the 
proposed method agree well with those by COMSOL software. The highest temperature of the observation point 
decreases nearly 20 °C with the radiative cooling.

Case 3: In real-world applications, the assumption of a wavelength and direction independent emissivity is 
often invalid. The surface emissivity usually strongly depends on the wavelength and direction, which can be 
measured and then used for accurate simulation of radiation cooling. Suppose that the surface of the heat sink 
is treated to have a measured emissivity as shown in Fig. 6(c), corresponding to an average emissivity of 0.38. 
The cases of supposed emissivity and average emissivity are simulated based on the rigorous radiation boundary 
condition and the traditional radiation boundary condition, respectively. As shown in Figs 6(b) and 7(e,f), the 
result of the traditional wavelength and direction independent boundary condition apparently deviates from the 

Figure 6.  (a) Cross-section view of the 3D IC package model, (b) the temporal temperature at the observation 
point obtained by the proposed method and the COMSOL software, (c) the supposed emissivity and the 
emissivity in reference 28, (d) the relative errors between the proposed method and COMSOL software.

Geometry Dimension (mm3) κ ρ cρ

Heat sink 10 × 10 × 7 220 2707 896

TIM 10 × 10 × 0.2 10 2000 385

Chip 10 × 10 × 0.5 135 2330 704

TSV 0.25(Diameter) 0.5(Height) 400 8933 385

Underfill layer 10 × 10 × 0.2 50 9290 180

Table 1.  Geometry and material parameters.
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rigorous boundary condition. The highest temperature of the observation point decreases 10 °C with the tradi-
tional radiation boundary condition, while it decreases 16 °C with the rigorous radiation boundary condition. The 
significance difference suggests that a rigorous treatment of radiation boundary condition is crucial for modeling 
radiative cooling problems.

Case 4: Recently, a randomized, glass-polymer hybrid metamaterial was manufactured in reference28. The 
metamaterial is a 50 μm thick film containing 6% of microspheres by volume which has an averaged infrared 
emissivity 9.3. This material has a promising prospect for passive radiative cooling. Suppose the heat sink in this 

Figure 7.  The temperature distribution of the 3D IC package model at t = 460 s obtained by (a) our proposed 
method with h = 15 W/[m2 · k], (b) COMSOL with h = 15 W/[m2 · k], (c) our proposed method with h = 15 W/
[m2 · k] and ε0 = 0.93, (d) COMSOL with h = 15 W/[m2 ⋅ k] and ε0 = 0.93, (e) our proposed method with 
h = 15 W/[m2 ⋅ k] and ε0 = supposed emissivity, (f) COMSOL with h = 15 W/[m2 · k] and ε0 = 0.38.

Case 1 2 3 4

CPU Time (s) 21 151 3262 4219

Memory (MB) 421 430 431 431

Average Iterations 0 6 5 6

Table 2.  Computational statistics of the proposed method.
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example is wrapped with this film and thus its surface emissivity will be improved. The measured emissivity of 
the film in reference28 is replotted in Fig. 6(c). Then the temperature distribution of the 3D IC package can be 
analyzed again by our proposed method. The temporal temperature of the observation point is given in Fig. 6(b). 
Since the measured emissivity of the film has a weak dependence on the wavelength and is very closed to the ideal 
wavelength and direction independent emissivity, the cooling effect with the practical emissivity is also very close 
to that with the ideal wavelength and direction independent emissivity.

For the aforementioned four cases, the relative errors of the temperature at the observation point between the 
proposed method and COMSOL software are shown in Fig. 6(d). The CPU time for the whole simulation, peak 
memory and average number of iterations per time step are given in Table 2. All of the numerical experiments are 
performed on 2.4 GHz CPU and 8 GB RAM.
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