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Abstract—Applications of metallic metamaterials have generated significant interest in recent years.
Electromagnetic behavior of metamaterials in the optical range is usually characterized by a local-
linear response. In this article, we develop a finite-difference time-domain (FDTD) solution of the
hydrodynamic model that describes a free electron gas in metals. Extending beyond the local-
linear response, the hydrodynamic model enables numerical investigation of nonlocal and nonlinear
interactions between electromagnetic waves and metallic metamaterials. By explicitly imposing the
current continuity constraint, the proposed model is solved in a self-consistent manner. Charge, energy
and angular momentum conservation laws of high-order harmonic generation have been demonstrated for
the first time by the Maxwell-hydrodynamic FDTD model. The model yields nonlinear optical responses
for complex metallic metamaterials irradiated by a variety of waveforms. Consequently, the multiphysics
model opens up unique opportunities for characterizing and designing nonlinear nanodevices.

1. INTRODUCTION

The field of metallic metamaterials has demonstrated spectacular experimental progresses in recent
years. One of the main driving forces in the field of metallic metamaterials is the potential usage of
these materials in nanoantenna, nanosensing, and plasmonic devices [1–5]. In most literature works,
the Drude model is commonly used for analyzing the electron gas (plasma) in metals at optical regime;
however this approach does not account for the nonlinear and nonlocal electromagnetic responses.
Owing to this limitation, the Drude model has been termed the local-response approximation (LRA)
model. However, the experimental and fabrication techniques associated with metallic metamaterials are
becoming increasingly sophisticated, which allows for an exciting investigations on a very small length
scales and under the condition of very high-power condition. In these situations, the LRA model with
the local response becomes inaccurate and even incorrect. In the regimes of small scale and high power,
nonlinear and quantum effects may lead to unusual physical phenomena [6–9]. For example, when an
electromagnetic wave strongly interacts with an metallic metamaterial with a versatile geometry, the
wave can couple to free electrons near the metal surface resulting in a normal linear response and inherent
nonlinear optical behavior [10–12] (generating fundamental and high-order harmonics). These nonlinear
optical effects are promising for optimizing metamaterials used in detection, sensing, electromagnetic
sources, and quantum information.

A full quantum treatment of the situation, such as density functional theory (DFT), would be
the best approach [13]. However, owing to computational limitations and a high number of electrons
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within the metallic metamaterials, such a fully quantum mechanical model is limited to very small
nanoparticles. For “large” plasmonic systems, the quantum approach becomes very demanding.
Alternatively, a classical electrodynamic framework with suitable approximations and improvements
could be used. For instance, a perturbative treatment of local polarization by the hydrodynamic model
allows to obtain the generation of high-order harmonics in metals using a quasi-Fourier transform [14, 15].

Inspired by the above observations, a non-perturbative and universal Maxwell-hydrodynamic model
has been proposed to investigate the nonlinear and nonlocal effects. A self-consistent finite-difference
time-domain (FDTD) method was used here with the multiphysics model to simulate the interaction
between electromagnetic waves and electron gas in metallic nanostructures. The proposed time-domain
model fully considers the linear and nonlinear dynamics of the electron gas and does not rely on the
experimentally measured bulk and surface nonlinear susceptibilities. The proposed model can also be
potentially used for investigating other quantum effects. Compared to the Maxwell-hydrodynamic
model in previous literatures, our model has the following differences and advantages. First, our
model is based on the classical time-domain FDTD approach and the hydrodynamic equation is
solved nonperturbatively. In contrast to the time-domain approach, the alternative frequency-domain
approaches such as boundary element method (BEM) and finite element method (FEM) [16, 17] compute
the nonlinear response relying on the results of perturbation theory; and the density of electrons is
treated as homogeneous. Second, specified interpolation techniques are proposed, which is essential to
capture the fundamental conservation laws of charge, energy and angular momentum governing the high-
order harmonic generation. Third, different from other models [18, 19] showing some inconsistences, our
model produces consistent results with analytical models in literatures [20]. Four, both linearly and
circularly polarized excitations are successfully implemented, which is important to understand versatile
selection rules of second-harmonic generation (SHG). Finally, the numerical aspects of the proposed
model including accuracy, convergence and stability are analyzed in detail.

This paper is structured as follows. The proposed approach’s numerical framework is introduced in
Section 2. In Section 3, the linear response of metamaterials is first calculated and the result is compared
with the classical Drude model. Then, nonlinear responses of a standard gold nanosphere and a variety
of metasurfaces are presented. The numerical results demonstrating that the Maxwell-hydrodynamic
model can be used for simulating the high-order harmonics in metallic metamaterials. Moreover, the
model also demonstrates a powerful potential for investigating the characteristics of second harmonic
radiation for the metasurfaces with different symmetries.

2. COMPUTATIONAL METHOD

2.1. Electromagnetic-Hydrodynamic Model

The interaction of electromagnetic fields E and H with an arbitrary nonmagnetic (metallic) material
can be described by

∇× H = ε0
∂E
∂t

+
∂P
∂t

(1)

∇× E = −μ0
∂H
∂t

, (2)

where ε0 and μ0 are the vacuum permittivity and permeability, and P is the polarization. To investigate
the dynamics of electrons in a metallic/plasmonic system, the hydrodynamic model [21] is adopted

∂v
∂t

+ v · ∇v = − e

m
(E + μ0v × H) − γv − ∇p

n
(3)

∂n

∂t
= −∇ · (nv), (4)

where n(r, t) and v(r, t) are the time- and position-dependent electron density and velocity; γ is the
phenomenological damping frequency (capturing optical loss); e and m are the electron charge and mass,
respectively; p is the quantum pressure p = (3π2)2/3(�/5)n5/3 evaluated according to the Thomas-Fermi
theory [22]. Equation (3) is an Euler’s equation representing the force balance on a fluid element, while
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Equation (4) is the current continuity equation, ensuring the conservation of charge. The nonlinear
terms v · ∇v, v × H, and nv underlie the physical origins of the nonlinear and nonlocal effects. The
quantum pressure term can be ignored for metallic metamaterials with a typical size larger than 10 nm.
Maxwell’s Equations (1)–(2) and hydrodynamic Equations (3)–(4) are coupled through the polarization
term P, which can be expressed as the velocity

∂P
∂t

= −env. (5)

Equations (1)–(5) provide a self-consistent formulation of free electron gas in plasmonic systems. Both
nonlocal and nonlinear effects can be considered using the self-consistent formulations. The multiphysics
equations can be numerically solved by employing the FDTD method [23–27], which has been extended
to model nonlinear and nonlocal effects in dispersive media.

2.2. The Computational Grids

To numerically model the transient problem in the plasmonic systems, we used the Yee grids to maintain
charge conservation and divergence-free condition, as shown in Fig. 1. The electric field E and electron
density n are defined at the time step l + 1/2 and are respectively located at the grid face center and
grid center, respectively. The velocity v and magnetic field H are defined at the time step l and located
at the grid face center and the grid edges, respectively.
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Figure 1. The Yee grids for the Maxwell-hydrodynamic system. (a) Maxwell’s equations. (b)
Hydrodynamic equations.

With the central spatial difference and with the explicit time stepping, the equations for updating
the x components of the physical quantities of {E,H,v, n} are given by

El+1/2
x (i, j+1/2, k+1/2) = El−1/2

x (i, j+1/2, k+1/2)+
Δt

ε0Δy
(H l

z(i, j+1, k+1/2) − H l
z(i, j, k+1/2))

− Δt

ε0Δz
(H l

y(i, j+1/2, k+1) − H l
y(i, j+1/2, k))+

Δte

ε0
n̄l(i, j+1/2, k+1/2) · vl

x(i, j+1/2, k+1/2) (6)

H l+1
x (i + 1/2, j, k) = H l

x(i+1/2, j, k)+
Δt

μ0Δz
(El+1/2

y (i+1/2, j, k+1/2) − El+1/2
y (i+1/2, j, k − 1/2))

− Δt

μ0Δy
(El+1/2

z (i+1/2, j+1/2, k) − El+1/2
z (i+1/2, j − 1/2, k)) (7)
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vl+1
x (i, j+1/2, k+1/2) = vl

x(i, j+1/2, k+1/2)−Δtγvl
x(i, j+1/2, k+1/2)−Δte

m
El+1/2

x (i, j+1/2, k+1/2)

−
[

Δt

2Δx
(vl

x(i, j+1/2, k+1/2) · vl
x(i+1, j+1/2, k+1/2)−vl

x(i, j+1/2, k+1/2) · vl
x(i−1, j+1/2, k+1/2))

+
Δt

2Δy

(
v̄l
y(i, j + 1/2, k + 1/2) · vl

x(i, j + 3/2, k + 1/2) − v̄l
y(i, j + 1/2, k + 1/2) · vl

x(i, j − 1/2, k + 1/2)
)

+
Δt

2Δz

(
v̄l
z(i, j + 1/2, k + 1/2) · vl

x(i, j + 1/2, k + 3/2) − v̄l
z(i, j + 1/2, k + 1/2) · vl

x(i, j + 1/2, k − 1/2)
)]

−Δtμ0e

m

(
v̄l
y(i, j+1/2, k+1/2)H̄ l+1/2

z (i, j+1/2, k+1/2)−v̄l
z (i, j+1/2, k+1/2)·H̄ l+1/2

y (i, j+1/2, k+1/2)
)

(8)

nl+3/2(i + 1/2, j + 1/2, k + 1/2) = nl+1/2(i + 1/2, j + 1/2, k + 1/2)

−
[
Δt

Δx
(n̄l+1/2(i+1, j+1/2, k+1/2)vl+1

x (i+1, j+1/2, k+1/2)−n̄l+1/2(i, j+1/2, k+1/2)vl+1
x (i, j+1/2, k+1/2))

+
Δt

Δy
(n̄l+1/2(i+1/2, j+1, k+1/2)vl+1

y (i+1/2, j+1, k+1/2)−n̄l+1/2(i+1/2, j, k+1/2)vl+1
y (i+1/2, j, k+1/2))

+
Δt

Δz
(n̄l+1/2(i+1/2, j+1/2, k+1)vl+1

z (i+1/2, j+1/2, k+1)−n̄l+1/2(i+1/2, j+1/2, k)vl+1
z (i+1/2, j+1/2, k))

]
(9)

where the overbar notations correspond to spatial and temporal averaging. For example, the quantity
H̄

l+1/2
y (i, j + 1/2, k + 1/2) is the spatial and time average of H l+1

y (i, j + 1/2, k), H l+1
y (i, j + 1/2, k + 1),

H l
y(i, j + 1/2, k), and H l

y(i, j + 1/2, k + 1). The discrete equations for the y and z components can be
derived in a similar way.

2.3. Stability Condition of the Method

In general, the stability of the FDTD scheme can be analyzed by finding the roots of the corresponding
growth matrix. Regarding the FDTD method, the stability condition obeys the Courant-Friedrichs
limit (CFL)

Δt ≤ 1
c

(√
1

(Δx)2
+

1
(Δy)2

+
1

(Δz)2

)−1

. (10)

Unfortunately, the matrix roots for the coupled Maxwell-hydrodynamic system are difficult to obtain
in a closed form [28]. The system amplification matrices also cannot be trivially found or defined for
the nonlinear coupled system including the four variables {E,H,v, n} and their products, such as nv,
v · ∇v and v × H. Here, the nonlinear terms of v · ∇v and v × H in Equation (3) mainly contribute
to the high-order harmonic generation. Compared to the linear response, the nonlinear response from
centrosymmetric metals is much weaker. Therefore, the amplitudes of the linear (fundamental) scattered
waves in the nonlinear model is regarded to be the same as that of the scattered waves in a linear Drude
model, which is called the undepleted pump approximation. After removing the two nonlinear terms
v · ∇v and v × H in Equation (3), we have

∂v
∂t

+ γv = − e

m
E (11)

The above is nothing but the linear Drude model for metals. After modeling many complex metallic
nanostructures under a long-term simulation, we found that the hydrodynamic model was stable within
the commonly used CFL condition in the FDTD method. Physically, the nonlinear terms, which produce
much weaker nonlinear response than the linear one, do not significantly affect the stability condition
of the FDTD method with the linear Drude model.



Progress In Electromagnetics Research, Vol. 157, 2016 67

3. NUMERICAL RESULTS

3.1. Linear Response

In a recent paper, we outlined a computational method for investigating the loss compensation
and photoluminescence spectra of the metamaterials and a four-level atomic gain media coupled
system [29]. The Drude model was used to simulate the plasmonic metamaterials, and can only be
used for investigating the linear and local properties of these materials. In this section, the developed
self-consistent Maxwell-hydrodynamic equations are utilized for calculating the optical properties of
plasmonic metamaterials. The parameters used were the same as the parameters in [29]. The initial
electron density n was obtained from the plasma frequency ωp of the Drude model n0 = ε0mω2

p/e
2.

We computed the transmission spectra of a metasurface and validated the self-consistent model by
comparing it to the Drude model, and the results are shown in Fig. 2(a). Here, we show the results for
a periodic array of complementary split ring resonators (CSRRs) with a lattice constant of D = 540 nm
sandwiched between a glass substrate and a polymethyl methacrylate (PMMA) layer. Fig. 2(b) shows
the feature size of the unit cell of CSRR. The thicknesses of the PMMA layer and the glass slab were
180 nm and 50 nm, with the relative permittivity of 2.2 and 2.56, respectively.

In the FDTD scheme, the probe source was an x-polarized or y-polarized Gaussian pulse signal,
propagating in the z direction. The source was introduced using the total-field and scattered-field
(TF/SF) technique [30]. The configuration for the FDTD method is illustrated in Fig. 2(c). Perfectly
matched layers (PMLs) were set to be in the z direction and periodic boundary conditions are employed
in both the x and y directions. The temporal evolutions of the transmitted and reflected fields were
recorded in the two planes in the total field region and scattered field region, respectively. Next, the data
were Fourier transformed for determining the complex transmission t(ω) and reflection r(ω) coefficients
in the frequency domain. The results were calculated by adopting uniform spatial steps Δx = Δy = Δz.
The convergence of the model was validated by using different spatial steps from 5 × 10−9 m through
2.5 × 10−9 m to 1 × 10−9 m.

In Fig. 3, we show the simulated transmittance T (ω) = |t(ω)|2, reflectance R(ω) = |r(ω)|2, and
absorptance A(ω) = 1− T (ω)− R(ω) spectra as functions of frequency. In Fig. 3, dotted lines indicate
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Figure 2. (a) Schematic pattern of the metamaterial comprising a periodic array of complementary
SRRs. (b) The feature size of a unit cell. D = 540 nm, lateral slit a = 470 nm, top vertical slit and gap
t = g = 170 nm, and slit width w = 65 nm. (c) Configuration for the FDTD method. PMLs were set to
be in the z direction and periodic boundary conditions were used at the both x and y directions.
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Figure 3. The calculated spectra of transmittance (T (ω) = |t(ω)|2), reflectance (R(ω) = |r(ω)|2), and
absorptance (A(ω) = 1 − T (ω) − R(ω)) for the metamaterial system in Fig. 2. The results are shown
for (a) x-polarization and (b) y-polarization.

the spectra obtained using the Drude model, while the other lines are the spectra obtained using the
Maxwell-hydrodynamic model with different spatial steps. One can see that the results obtained using
the proposed method are in good agreements with those obtained using the Drude method. In addition,
the results obtained using our method are comparable to the experimental results in [31].

3.2. Characteristics of Nonlinear Response

In this section, we study the nonlinear response from a metallic nanoparticle to demonstrate that our
model is a rigorous and universal approach. As a case study, we consider the nonlinear scattering
from a 20-nm-radius (R = 20 nm) gold sphere, illuminated by a cosine-modulated Gaussian pulse. The
parameters of gold were chosen as n0 = 5.98×1028 m−3 and γ = 1.075×1014 s−1. The three-dimensional
computational domain is shown in Fig. 4; in this system, the PMLs were imposed in the x, y, and z
directions. The incident pulse was an x-polarized plane wave that propagates in the z direction, with a
fundamental carrier frequency f0 = 577 THz and a temporal width τ = 10 fs. The settings of the pulse
were chosen for ensuring significant separation of second, and third harmonic spectra from fundamental
spectra. The maximal peak intensity of I0 = 9 × 1018 W/m2 was selected to ensure a stable and
significant nonlinear process. The spatial and temporal steps were Δx = Δy = Δz = 1.25×10−9 m and
Δt = 1.5 × 10−18 s. The temporal offset was t0 = 3τ and total simulation time was T = 7τ .

Figure 5 shows the Ex component of the scattered field and the fluctuating electron intensity
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z(k)

TF
x(E)

y

PML

Figure 4. Layout of the simulation of nonlinear optical scattering from a gold nanosphere illuminated
by a strong lasing pulse.
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Figure 6. Nonlinear scattering spectra for a 20 nm radius gold nanosphere under different pump power.

ΔN = n − n0 on the nanosphere surface as a function of time. We measured the Ex component of the
scattered field at a blue probe point as shown in the bottom inset of Fig. 5. Meanwhile, the electron
density on the surface of the gold nanosphere was recorded at the red probe point, as shown in the
bottom inset of Fig. 5. In the nonperturbative model, the total electron number is conserved with time,
as shown in the top inset of Fig. 5. The total electron Ntotal is the sum over the electron density on all
of the Yee grids within the nanosphere region.

To characterize the generation of high-order harmonics, we Fourier transformed the time-dependent
scattered field in Fig. 5. Both second-harmonic and third-harmonic spectra were detected as shown in
Fig. 6. To further validate our method, we varied the fundamental pump power to investigate the power-
dependent nonlinear harmonics. The peak intensities of the second and third harmonics are plotted as
functions of the quadratic and cubic power of the fundamental intensity, respectively (Fig. 7). Fig. 7
demonstrates that the intensity of the nonlinear harmonics can be satisfactorily described by the power
dependence on the fundamental intensity, with second and third power dependence for the second and
third harmonics, respectively. Our model captures a correct energy conversion relation between the
fundamental pump and high-order harmonics.

To determine the accuracy and convergence of our method for modeling the second harmonic waves,
the radiation pattern corresponding to the second harmonic radiation of the gold sphere in Fig. 5 was also
calculated using the near-to-far-field transformation technique [3] and compared to the corresponding
analytical solution [20]. Spatial increments were uniform and were 10 nm, 5 nm, 2.5 nm, and 1.25 nm.
Fig. 8 shows the calculated diagram for the second harmonic radiation, for different scenarios of spatial
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Figure 7. The peak intensities of the second and third harmonics vs. the second and third power of
the fundamental intensities, respectively. (a) Second harmonics; (b) Third harmonics.

Table 1. Comparisons of computational statistics across different spatial of scenarios discretization.

Δ Memory (MB) Time (s) Time step Grids ErrL2 Errmean

10 nm 756 191 1 × 104 803 0.2037 0.0612
5 nm 952 682 2 × 104 1003 0.0912 0.0259

2.5 nm 1536 2364 4 × 104 1603 0.0379 0.0110
1.25 nm 3128 12884 8 × 104 2203 0.0151 0.0050

step as well as the analytical solution (black curve), at a frequency f = 770 THz along the E-plane. It
is worth noting that the linear radiation power in the forward and backward directions is the strongest,
as seen in the right inset of Fig. 8. However, the second-harmonic radiation power vanishes in both
the forward and backward directions. The unusual angular response of second harmonics is a direct
consequence of the rotational symmetry of the sphere with respect to the propagation axial of the
fundamental incident wave.

Besides the hydrodynamic model, boundary element method (BEM) is an alternative approach
to model the SHG from metals, which has been developed by our group [17]. In contrast to the
hydrodynamic model that only needs two input parameters (initial electron density and damping
frequency), the BEM needs the surface nonlinear susceptibility of metals relying on the experimental
data. At Appendix A, we show that the hydrodynamic model results agree with the BEM well.
The main deviations between the two methods lie at the side lobes of the second-harmonic radiation
patterns. Because for the centrosymmetric metals, the BEM only considers the dominated surface
nonlinear sources and ignores the small bulk nonlinear sources for the SHG.

We used two error criteria to evaluate the accuracy; these criteria were the mean absolute error and
the global relative L2 error. The errors, the required memory and the CPU time are listed in Table 1.
As shown in the Table 1, higher numerical precision was obtained for smaller spatial steps. The order
of convergence p was estimated as

p = ln
[

Err(hi) − Err(hi+1)
Err(hi+1) − Err(hi+2)

]/
ln
[

hi

hi+1

]
(12)

where hi is the spatial step. At least three computations were required where hi/hi+1= hi+1/hi+2. The
orders of convergence for the mean absolute error were p = 1.3123 (Δ = 10 nm, 5 nm, and 2.5 nm) and
1.2444 (Δ = 5nm, 2.5 nm, and 1.25 nm). For the global relative L2 error are 1.077 (Δ = 10 nm, 5 nm,
and 2.5 nm) and 1.2006 (Δ = 5nm, 2.5 nm, and 1.25 nm). The orders of convergence for both mean
absolute error and the global relative L2 error were above 1.
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3.3. Perfectly Matched Layer for Higher-Order Harmonics

The PML technique is an efficient tool to solve “open” problems and absorb outgoing waves at a
broadband. Here, we used the split-field PML technique that was proposed by Berenger [32]. In this
technique, each component of electromagnetic fields is split into two subcomponents in the absorbing
boundary regions. In our 3D simulation, the six electric and magnetic field components yield 12
subcomponents in the Cartesian coordinates. The discretized Exz subcomponent in the PML region
was

El+1/2
xz (i, j + 1/2, k + 1/2) = e(−σyΔt/ε0)El−1/2

xz (i, j + 1/2, k + 1/2)

+
1 − e(−σyΔt/ε0)

σyΔy

(
H l

z(i, j + 1, k + 1/2) − H l
z(i, j, k + 1/2)

)
(13)

Here, σy is the local electric conductivity at (i, j + 1/2, k + 1/2) in the PML region. To demonstrate
the absorbing property for a nonlinear beam, we considered electromagnetic waves scattered by a 400-
nm-radius sphere (the material parameters of gold were set as before). The sphere was illuminated
by a point source. A Gaussian pulse at the driving frequency of 385 THz was generated by the point
source, with a temporal width of 6 fs and electric field peak amplitude of E0,max = 1 × 1013 V/m. The
parameters of the point source were chosen to obtain satisfactory separation between the scattered
linear and nonlinear harmonics in the frequency domain. The space was discretized by employing a
FDTD lattice with Δx = Δy = Δz = 20 nm, the time step was Δt = 3 × 10−17 s and total time steps
N = 2000. Ten-cell-thick PML layers were at the grid edges and were placed at a lattice distance of
ten cells from the sphere, on all sides. This results in a 80 × 80 × 80 cell lattice. The electric field was
recorded at a predefined point as shown in Fig. 9.

To investigate the nonlinear reflection error owing to the PML, we performed a reference simulation.
In this simulation, the mesh was extended to 1920 cells at both the x, y and z directions, resulting in
a 2000 × 2000 × 2000 cell lattice in a system without the PML. The fields were then excited using the
identical source. The time-dependent fields are recorded at the same point before waves were reflected
back by the truncated boundaries. The error relative to the reference solution was

η = 20 log10

|χ̃ − χ̃ref |
max |χ̃ref | (14)
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Figure 9. The FDTD simulation setup. The electric field was recorded at the probe point.
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Figure 10. (a) Electric field as a function of time. (b) A semi-log plot of the Fourier transform of the
electric field as a function of frequency with the logarithmic scale used for the y axis.

where χ is the frequency-domain field including the reflection error by the PMLs, χref is the
corresponding reference field excluding the reflection error, and max denotes the maximal value.

The electric field profiles in the time domain and in the frequency domain are presented in
Figs. 10(a) and 10(b). The reflection errors by Equation (14) are illustrated in Figs. 11(a)–(c),
respectively for the fundamental harmonics, second harmonics, and third harmonics around their central
frequencies. It is demonstrated that the maximum error around the fundamental frequency is on the
order of −63 dB. Around the central frequencies of the second and third harmonics, the errors are on
the order of −41 dB and −27 dB, respectively.

3.4. SHG for Circularly Polarized Pulses

In this section, we numerically verified our model by calculating the nonlinear response for metasurfaces
with different rotational symmetries. The results were compared to the selection rules of SHG in the
Appendix B and experimental results [33]. In fact, the selection rules indicate angular momentum
conservation in the process of SHG, which is a powerful law for analyzing the second harmonic response
of metallic nanostructures with rotational symmetries.
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Figure 11. Reflection errors for the (a) linear scattered waves, (b) second harmonic waves and (c)
third harmonic waves.

The metasurfaces were arranged periodically in the xoy plane and were illuminated by a circularly
polarized beam propagating along the z axis (i.e., symmetry axis). The cross sections of the triangle
nanorod, L-shape and cylinder in the xoy plane are shown in Fig. 12. The dimensions of the unit cells
are indicated in Fig. 12 also. The thicknesses of the metasurfaces were 100 nm. The PMLs were used
in the z direction and the periodic boundary conditions were imposed at both the x and y directions.
The metasurfaces have the same lattice constant of 700 nm. The incident cosine-modulated Gaussian
pulse was circularly polarized and propagated in the z direction as shown in Fig. 12(d). The driving
frequency, temporal width, and maximum amplitude were f = 380 THz, τ = 20 fs, and E = 1010 V/m,
respectively. In the FDTD simulation, we used a uniform grid with Δx = Δy = Δz = 1.25 × 10−9 m
and a time step Δt = 1.5 × 10−18 s. A computational domain of 560 × 560 × 400 grids and a total of
6.0 × 105 iterations were used. The total computational memory was ∼ 24.9 GB. In the FDTD model,
the spatial resolution of grids is 1.25 nm, which is typically smaller than the highest spatial resolution
achievable in current fabrication technique (electron-beam lithography). However, the selection rules
are not susceptible to geometric distortions; and our theoretical results agree well with the experimental
ones (See Figs. 2 and 3 of the reference [33]).

Excited by the circularly polarized beam, the transmitted left-circularly polarized (LCP) and right
circularly polarized (RCP) components of the second harmonics are shown in Fig. 13. The LCP
and RCP components of the transmitted electric field in the FDTD method were separated by the
method presented in Appendix C. Figs. 13(a) and 13(b) show that for the triangle nanorod array,
the polarization state of the second harmonics is almost flipped in reference to the fundamental beam.
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Figure 12. Unit cells of metasurfaces with different rotational symmetries. (a) A triangle rod with a
three-fold rotational symmetry. (b) An L-shape with symmetry breaking. (c) A cylinder with a central
symmetry. (d) Simulation layout for modeling the SHG from the metasurfaces illuminated by circularly
polarized pulses.
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The dominant component is the RCP component under the LCP excitation and vice versa. For the
L-shaped array in Figs. 13(c) and 13(d), the observed LCP and RCP components were of comparable
intensity. For the cylindrical array in Figs. 13(e) and 13(f), the intensities for both polarized components
were quite small compared with the two other cases. From the numerical experiments, the polarization
states of the second harmonic beam can be controlled by a metasurface with a predefined symmetry
group. The observation is of practical importance to nonlinear devices for detection, sensing, and optical
manipulation.

4. CONCLUSIONS

In conclusion, we presented a self-consistent FDTD method for investigating both linear and nonlinear
responses of metallic metamaterials. We have shown that the developed method enables the investigation
of nonlinear high-order harmonics from arbitrarily shaped metallic nanostructures and for different levels
of pump excitation. We validated our multiphysics model by comparing it to the traditional Drude
model and analytical model, and by demonstrating the exact power dependence for the second and
third harmonics generated from a gold nanosphere. In particular, the polarization states of the second
harmonic waves generated from metamaterials with a pre-defined rotational symmetry satisfactorily
captured the corresponding selection rules. These findings are likely to be useful for the structural
analysis of biological molecules [34] and spin-polarized photoemission spectroscopy [35], which require
circularly polarized emitters in the vacuum-ultraviolet frequency region. In future, a more accurate
solution scheme of nonlocal and quantum effects can be developed by incorporating electron exchange
correlations into our approach [36].
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APPENDIX A. COMPARISONS BETWEEN DIFFERENT MODELS

To compare the hydrodynamic model to other existing schemes, the second-harmonic radiation pattern
for a 100 nm radius gold sphere was calculated using the BEM. Fig. A1 shows the calculated patterns.
The sphere was illuminated by a plane wave at the frequency of 385 THz. The main deviations between
the BEM and FDTD method lie at the side lobes of the second-harmonic radiation patterns. Regarding
the centro symmetric metals, the BEM only considers the dominated surface nonlinear sources and
ignores the small bulk nonlinear sources for the SHG.

0180

90

270

FDTD H-plane
BEM E-plane
BEM H-plane

FDTD E-plane

Figure A1. Second-harmonic radiation pattern of a 100 nm radius gold sphere calculated by the
boundary element method (BEM) and the proposed FDTD method. The computational configuration
for the BEM can be found in our published work [17].



76 Fang et al.

APPENDIX B. THE SHG SELECTION RULE

In this appendix, we present a powerful principle for analyzing the second harmonic response of
nanostructures, and we use it to analyze the selection rules for a circular framework.

In the treatment, both second harmonic and fundamental waves propagate in the z direction. The
normal of a N -fold rotational symmetric metasurface points in the z direction. In the Cartesian basis,
an electric field can be written as E = Exex + Eyey + Ezez. The electric field of the transverse wave
in the circular frame can be given by

E(ω) = Ẽl(ω)el + Ẽr(ω)er + Ẽz(ω)ez (B1)
Here l = +1, r = −1, and z = 0 represent the left circular, right circular and normal components
at a frequency ω, respectively. The left-circularly and right-circularly polarized waves have the unit
vectors el = 1/

√
2(ex + iey) and er = 1/

√
2(ex − iey). The electric field of the second harmonics at the

frequency 2ω can be obtained from the incident electric field at ω

Ev(2ω) =
∑

μρ=±1

Λv
μρE

μ(ω)Eρ(ω) (B2)

where Λv
μρ is the nonlinear response tensor. If the coordinates are rotated by the angle φ around the z

axis, the rotated tensor is given by

Λv′
μ′ρ′(φ) = δv′

v (φ)δμ′
μ (φ)δρ′

ρ (φ)ei(−v+μ+ρ)φΛv
μρ (B3)

According to Neumann’s principle and Eq. (B3), in the N -fold symmetry Λv
μρ is invariant with the

rotation angle φ = 2π/N . Then, the following must hold
−v + μ + ρ = nN (B4)

where n is an integer. This is the polarization selection rule for the second-harmonic process, for a
metasurface with the N -fold rotational symmetry. For a fundamental incident wave propagating in the
z direction, the parameters v, μ, and ρ are either +1 or −1. If the unit cell of the metamaterial has
three-fold rotational symmetry N = 3, only the combinations v = +1, μ = −1, ρ = −1 and v = −1,
μ = +1, ρ = +1 are allowed. For N > 3, no combination of v, μ, ρ is allowed and SHG is forbidden.
Thus, for the fundamental wave propagating along the rotational symmetry axis, the SHG is forbidden
for the centro symmetric cylindrical structures.

In addition, in a mirror symmetric structure, we assume that the mirror plane is the x-z plane.
The covariant unit vector operator at the mirror position of the unit vector ev yields

ev′ = −ev (B5)
Thus, the SHG tensor Λv

μρ in the new system of coordinate is given by

Λv′
μ′ρ′ = δv′

−vδ
−μ
μ′ δ−ρ

ρ′ Λv
μρ (B6)

According to Neumann’s principle, the restriction on the SHG tensor can be summarized as
Λv

μρ = Λ−v
−μ−ρ, (B7)

Therefore, the left-circular polarized wave is equal to right-circular polarized wave.

APPENDIX C. CIRCULAR COMPONENT IN FDTD

For a transmitted second-harmonic wave illuminated by a z directed circular excitation, complex
amplitudes of electric fields in the frequency domain Ẽx and Ẽy, can be divided into left-circularly
and right-circularly polarized components, i.e., Ẽl

x, Ẽr
x, Ẽl

y and Ẽr
y . We assume

Al + iBl = Ẽl
x, Ar + iBr = Ẽr

x (C1)

In the circularly polarized frame, we have Ẽl
x = Ẽl

y and Ẽr
x = Ẽr

y . Considering the phase delay between
the left-circularly and right-circularly polarized components, the components Ẽl

y and Ẽr
y can be written

as
Al − iBl = Ẽl

y, −Ar + iBr = Ẽr
y (C2)
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By solving the linear Eqs. (C1)–(C2), the amplitudes of left-circularly and right-circularly polarized
waves are given by

I l =

(
Re(Ẽx) + Im(Ẽy)

2

)
+

(
Im(Ẽx) − Re(Ẽy)

2

)
(C3)

Ir =

(
Re(Ẽx) − Im(Ẽy)

2

)
+

(
Im(Ẽx) + Re(Ẽy)

2

)
(C4)

REFERENCES

1. Soukoulis, C. M. and M. Wegener, “Past achievements and future challenges in the development of
three-dimensional photonic metamaterials,” Nature Photonics, Vol. 5, No. 9, 523–530, Jul. 2011.

2. Soukoulis, C. M. and M. Wegener, “Optical metamaterials-more bulky and less lossy,” Science,
Vol. 330, No. 6011, 1633–1634, Dec. 2010.

3. Hess, O., J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active
nanoplasmonic metamaterials,” Nature Materials, Vol. 11, No. 7, 573–584, Jul. 2012.

4. Jarrahi, M., “Advanced photoconductive terahertz optoelectronics based on nano-antennas and
nano-plasmonic light concentrators,” IEEE Transactions on Terahertz Science and Technology,
Vol. 5, No. 3, 391–397, May 2015.

5. Campbell, S. D. and R. W. Ziolkowski, “Near-field directive beams from passive and active
asymmetric optical nanoantennas,” IEEE Journal of Selected Topics in Quantum Electronics,
Vol. 21, No. 4, 4800112, Jul.–Aug. 2015.

6. Palomba, S., L. Novotny, and R. E. Palmer, “Blue-shifted plasmon resonance of individual size-
selected gold nanoparticles,” Optics Communications, Vol. 281, No. 3, 480–483, Feb. 2008.

7. Anderegg, M., B. Feuerbacher, and B. Fitton, “Optically excited longitudinal plasmons in
potassium,” Physical Review Letters, Vol. 27, 1565, Dec. 1971.

8. Kauranen, M. and A. V. Zayats, “Nonlinear plasmonics,” Nature Photonics, Vol. 6, No. 11, 737–748,
Nov. 2012.

9. Fan, W., S. Zhang, N. C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and
S. R. J. Brueck, “Second harmonic generation from a nanopatterned isotropic nonlinear material,”
Nano Letters, Vol. 6, No. 5, 1027–1030, May 2006.

10. Mingaleev, S. F. and Y. S. Kivshar, “Nonlinear transmission and light localization in photonic-
crystal waveguides,” Journal of the Optical Society of America B-Optical Physics, Vol. 19, No. 9,
2241–2249, Sep. 2002.

11. Minovich, A. E., A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and
Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser & Photonics Reviews, Vol. 9,
No. 2, 195–213, Mar. 2015.

12. Newell, A. C. and J. V. Moloney, Nonlinear Optics, Addison-Wesley, 1992.
13. Quijada, M., A. G. Borisov, I. Nagy, R. D. Muino, and P. M. Echenique, “Time-dependent density-

functional calculation of the stopping power for protons and antiprotons in metals,” Physical Review
A, Vol. 75, No. 4, 042902, Apr. 2007.

14. Makitalo, J., S. Suuriniemi, and M. Kauranen, “Boundary element method for surface nonlinear
optics of nanoparticles,” Optics Express, Vol. 19, No. 23, 23386–23399, Nov. 2011.

15. Butet, J., B. Gallinet, K. Thyagarajan, and O. J. F. Martin, “Second-harmonic generation from
periodic arrays of arbitrary shape plasmonic nanostructures: A surface integral approach,” Journal
of the Optical Society of America B-Optical Physics, Vol. 30, No. 11, 2970–2979, Nov. 2013.

16. Bachelier, G., J. Butet, I. Russier-Antoine, C. Jonin, E. Bencichou, and P. F. Brevet, “Origin
of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal
bulk contribution bulk contributions,” Physical Review B, Vol. 82, No. 23, 235403, 2010.

17. Xiong, X. Y. Z., L. J. Jiang, W. E. I. Sha, Y. H. Lo, and W. C. Chew, “Compact nonlinear
Yagi-Uda nanoantennas,” Scientific Reports, Vol. 6, 18872, 2016.



78 Fang et al.

18. Ginzburg, P., A. V. Krasavin, G. A. Wurtz, and A. V. Zayats, “Nonperturbative hydrodynamic
model for multiple harmonics generation in metallic nanostructures,” ACS Photonics, Vol. 2, No. 1,
8–13, Jan. 2015.

19. Hille, A., M. Moeferdt, C. Molff, C. Matssek, R. Rodriguez-Oliveros, C. Prohm, J. Niegemann,
S. Grafstrom, L. M. Eng, and K. Busch, “Second harmonic generation from metal nano-particle
resonators: Numerical analysis on the basis of the hydrodynamic drude model,” The Journal of
Physical Chemistry, Vol. 120, No. 2, 1163–1169, 2016.

20. Capretti, A., C. Forestiere, L. D. Negro, and G. Miano, “Full-wave analytical solution of second-
harmonic generation in metal nanospheres,” Plasmonics, Vol. 9, 151–166, Sep. 2013.

21. Sipe, J. E., V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second-harmonic generation
at metal surfaces,” Physical Review B, Vol. 21, No. 10, 4389, May 1980.

22. Thomas, L. H., “The calculation of atomic fields,” Mathematical Proceedings of the Cambridge
Philosophical Society, Vol. 23, No. 5, 542–548, 1927.

23. Huang, Z., T. Koschny, and C. M. Soukoulis, “Theory of pump-probe experiments of metallic
metamaterials coupled to a gain medium,” Physical Review Letters, Vol. 108, No. 18, 187402, May
2012.

24. Fang, A., T. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of
metamaterials with gain,” Physical Review B, Vol. 79, No. 24, 241104, Jun. 2009.

25. Ahmed, I., H. Chu, W. B. Ewe, E. Li, and Z. Chen, “Modeling and simulation of nano-interconnects
for nanophotonics,” Electronics Packaging Technology Conference, 436–440, 2007.

26. Fang, M., Z. Huang, Th. Koschny, and C. M. Soukoulis, “Electrodynamic modeling of quantum
dot luminescence in plasmonic metamaterials,” ACS Photonics, Vol. 2, 558–563, 2016.

27. Okoniewski, M. and E. Okoniewska, “Drude dispersion in ADE FDTD revisited,” Electronics
Letters, Vol. 42, No. 9, 503–504, Apr. 2006.

28. Greenwood, A. D., “FDTD models for complex materials,” The Open Plasma Journal, Vol. 3,
42–47, 2010.

29. Fang, M., Z. Huang, and X. Wu, “Quantum electrodynamic modeling of quantum dot
luminescence in plasmonic metamaterials,” IEEE MTT-S International Conference on Numerical
Electromagnetic and Multiphysics Modeling and Optimization 2015, Ottawa, 2015.

30. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-
Domain Method, 3rd Edition, Artecb House, 2005.

31. Tanaka, K., E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum
dot luminescence in plasmonic metamaterials,” Physical Review Letters, Vol. 105, No. 22, 227403,
Nov. 2010.

32. Berenger, J., “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of
Computational Physics, Vol. 114, No. 2, 185–200, 1994.

33. Konishi, K., T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. K. Gonokami, “Polarization-controlled
circular second-harmonic generation from metal hole arrays with threefold rotational symmetry,”
Physical Review Letters, Vol. 112, No. 13, 135502, Apr. 2014.

34. Kelly, S. M., T. J. Jess, and N. C. Price, “How to study proteins by circular dichroism,” Biochimica
Et Biophysica Acta-Proteins and Proteomics, Vol. 1751, No. 2, 119–139, Aug. 2005.

35. Wang, Y. H. and N. Gedik, “Circular dichroism in angle-resolved photoemission spectroscopy of
topological insulators,” Physica Status Solidi-Rapid Research Letters, Vol. 7, No. 1–2, 64–71, Feb.
2013.

36. Toscano, G., J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. X. Xu, N. A. Mortensen, and
M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,”
Nature Communications, Vol. 6, 7132, May 2015.


