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a b s t r a c t

Using the three-order symplectic integrators and fourth-order collocated spatial differences, a high-
order symplectic finite-difference time-domain (SFDTD) scheme is proposed to solve the time-dependent
Schrödinger equation. First, the high-order symplectic framework for discretizing a Schrödinger equation
is described. Then the numerical stability and dispersion analyses are provided for the FDTD(2, 2),
higher-order FDTD(2, 4) and SFDTD(3, 4) schemes. Next, to implement the Dirichlet boundary condition
encountered in the quantum eigenvalue problem, the image theory and one-sided difference technique
are manipulated particularly for high-order collocated differences. Finally, a detailed numerical study on
1D and 2D quantum eigenvalue problems is carried out. The simulation results of quantum wells and
harmonic oscillators strongly confirm the advantages of the SFDTD scheme over the traditional FDTD
method and other high-order approaches. The explicit SFDTD scheme, which is high-order-accurate and
energy-conserving, is well suited for a long-term simulation and can save computer resources with large
time step and coarse spatial grids.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Numerical solutions of the Schrödinger equation have become increasingly important because of the tremendous demands for the
design and optimization of nanodeviceswhere quantum effects are significant or dominate [1]. The eigenvalue problem of the Schrödinger
equation is fundamentally important for the quantum transport and nanodevice modeling. The ballistic electron transport strongly
depends on the transverse eigenstates of the conducting channel,which strongly relates to thenonequilbriiumGreen’s function [1]. Various
intriguing phenomena related to the microscopic electron transport, such as the resonant tunneling effect [2], Fano-resonance [3], etc.,
are attributed to the excitation of eigenstates or interplay of different eigenstates. Thus, an accurate and efficient method to calculate the
eigenstates and eigenfrequencies plays an important role in understanding the fundamental and device physics. Moreover, eigenstates
and eigenfrequencies extraction tailored to industrial requirements is also indispensable in quantum computer aided design (CAD). One
of the commonly adopted methods to solve the time-dependent eigenvalue problem of the Schrödinger equation is the FDTD method
[4,5], but it suffers from intolerable dispersion errors in a long term simulation.

A large quantity of physical phenomena can be modeled by Hamiltonian differential equations whose time evolution is the symplectic
transform and flow conserves the symplectic structure [6–9]. The symplectic schemes include a variety of different temporal discretization
strategies designed to preserve the global symplectic structure of the phase space for a Hamiltonian system. They have demonstrated their
advantages in numerical computations for the Hamiltonian system, especially for a long-term simulation. The symplectic scheme has been
successfully applied to solve the Schrödinger equation with three different strategies. For the time-dependent Schrödinger equation, one
scheme splits the complex wave function into real and imaginary parts [10–13], and another one decomposes the Hamiltonian into the
kinetic and potential operators [13,14]. For the time-independent Schrödinger equation, the symplectic scheme can also be employed
if the generalized coordinate (complex wave function) and generalized velocity (spatial derivatives of complex wave function) are
introduced [15,16]. Moreover, the symplectic scheme has been extended to solve the nonlinear Schrödinger equation [17,18]. Rigorously
speaking, the symplectic scheme is particularly useful for solving Schrödinger equation satisfying the energy conservation law for the
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sum of kinetic and potential energy, which is different fromMaxwell’s equations dissipating the electromagnetic energy through the lossy
materials [19].

In comparison with previous works, our work offers some new contributions described as follows: (1) a rigorous numerical stability
and dispersion analyses of the high-order SFDTD scheme; (2) a comparative study of boundary treatments for infinite potential wells;
(3) apply the high-order SFDTD scheme to the eigenvalue problem of Schrödinger equation and demonstrate its advantages
comprehensively in terms of accuracy, convergence, and energy conservation.

The organization of the paper is given as follows. The general formulations of the high-order SFDTD scheme for discretizing the time-
dependent Schrödinger equation are presented in Section 2. Analyses and comparisons of numerical stability and dispersion are described
in Section 3. The boundary treatments for quantum eigenvalue problems are discussed in Section 4. The numerical results of 1D and 2D
quantum wells and harmonic oscillators are shown in Section 5. A conclusion is summarized in Section 6.

2. Symplectic framework of the Schrödinger equation

2.1. Traditional formulations

The time-dependent Schrödinger equation is given by Griffiths [2]

ih̄
∂ψ (r, t)
∂t

= −
h̄2

2m∗
∇

2ψ (r, t)+ V (r) ψ (r, t) (1)

whereψ is the wave function that is a probability amplitude in quantummechanism describing the quantum state of a particle at position
r and time t , m∗ is the mass of the particle, − h̄2

2m∗ ∇
2 is the kinetic energy operator, V (r) is the time-independent potential energy, and

−
h̄2
2m∗ ∇

2
+V is theHamiltonian operator. To avoid using complex numbers, one can separate the variableψ (r, t) into its real and imaginary

parts as

ψ (r, t) = ψR (r, t)+ iψI (r, t) . (2)

Inserting Eq. (2) into Eq. (1), we can get the following coupled set of equations [5]

h̄
∂ψR (r, t)

∂t
= −

h̄2

2m∗


∂2ψI (r, t)
∂x2

+
∂2ψI (r, t)
∂y2

+
∂2ψI (r, t)
∂z2


+ V (r) ψI (r, t) (3)

h̄
∂ψI (r, t)
∂t

=
h̄2

2m∗


∂2ψR (r, t)

∂x2
+
∂2ψR (r, t)

∂y2
+
∂2ψR (r, t)

∂z2


− V (r) ψR (r, t) . (4)

A mesh is defined in a discrete set of grid points that sample the wave function in space and time. The discretized real and imaginary
parts of the wave function can be represented as

ψR (r, t) ≈ ψn
R (i, j, k) = ψR(i∆x, j∆y, k∆z, n∆t) (5)

ψI (r, t) ≈ ψn
I (i, j, k) = ψI(i∆x, j∆y, k∆z, n∆t) (6)

where∆x,∆y, and∆z are, respectively, the spatial steps in the x, y, and z coordinate directions,∆t is the time step, i, j, k and n are integers.
The first-order time derivatives can be discretized by a second-order centered-difference scheme. The second-order Laplace operator in
Eqs. (3) and (4) is discretized by using the second-order collocated difference, which distinguishes from the Yee (staggered) cell in the
FDTDmethod of Maxwell’s equations [20,21]. As a result, the update equations of the real and imaginary parts of the wave function are of
the forms

ψn+1
R (i, j, k) = ψn

R (i, j, k)−
∆t

(∆x)2
h̄

2m∗


ψ

n+1/2
I (i + 1, j, k)− 2Ψ n+1/2

I (i, j, k)+ ψ
n+1/2
I (i − 1, j, k)


−

∆t

(∆y)2
h̄

2m∗


ψ

n+1/2
I (i, j + 1, k)− 2Ψ n+1/2

I (i, j, k)+ ψ
n+1/2
I (i, j − 1, k)


−

∆t

(∆z)2
h̄

2m∗


ψ

n+1/2
I (i, j, k + 1)− 2Ψ n+1/2

I (i, j, k)+ ψ
n+1/2
I (i, j, k − 1)


+

V (i, j, k)∆t
h̄

× Ψ
n+1/2
I (i, j, k) (7)

ψ
n+1/2
I (i, j, k) = ψ

n−1/2
I (i, j, k)+

∆t

(∆x)2
h̄

2m∗


ψn

R (i + 1, j, k)− 2Ψ n
R (i, j, k)+ ψn

R (i − 1, j, k)


+
∆t

(∆y)2
h̄

2m∗


ψn

R (i, j + 1, k)− 2Ψ n
R (i, j, k)+ ψn

R (i, j − 1, k)


+
∆t

(∆z)2
h̄

2m∗


ψn

R (i, j, k + 1)− 2Ψ n
R (i, j, k)+ ψn

R (i, j, k − 1)

−

V (i, j, k)∆t
h̄

× Ψ n
R (i, j, k) . (8)
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Table 1
Coefficients of qth-order collocated differences.

Order (q) W−2 W−1 W0 W1 W2

2 1 −2 1
4 −1/12 4/3 −5/2 4/3 −1/12

2.2. Symplectic scheme

A wave function of space and time evaluated at a discrete point in the collocated grid and at a discrete stage in the time step can be
notated as

ψ(i, j, k) = ψn+l/m i∆x, j∆y, k∆z, (n + τl)∆t


(9)

where n + l/m denotes the lth stage after n time steps,m is the total stage number, and τl is the fixed time with respect to the lth stage.
For the spatial domain, the explicit qth-order-accurate collocated differences are used to discretize the second-order spatial derivatives,

i.e. 
∂2ψn+l/m

∂δ2


h

=
1
∆2
δ

q/2
r=−q/2

Wrψ
n+l/m (h + r)+ O


∆

q+1
δ


(10)

where δ = x, y, z, h = i, j, k, and Wr are the spatial difference coefficients as shown in Table 1.
With the help of Eqs. (3) and (4), the Schrödinger equation can be casted into a matrix form

∂

∂t


ψR
ψI


= L


ψR
ψI


= (A + B)


ψR
ψI


(11)

A =


0 K
0 0


B =


0 0

−K 0


(12)

K = −
h̄

2m∗


∂

∂x2
+

∂

∂y2
+

∂

∂z2


+

V
h̄

(13)

where Av = 0 and Bv = 0 if v ≥ 2. It is easy to prove that L in Eq. (11) is an asymmetric operator and therefore the exact solution of
Schrödinger equation exp(Lt) is an orthogonal operator. In other words, the time evolution of Schrödinger equation essentially rotates
the normalized wave function with a perfectly energy-conserving feature. Using the product of elementary symplectic mapping, the exact
solution of (11) from t = 0 to t = ∆t can be approximately reconstructed [22,23]

exp(∆t(A + B)) =

m
l=1

exp(dl∆tB) exp(cl∆tA)+ O(∆p+1
t ) =

m
l=1

(1 + dl∆tB)(1 + cl∆tA)+ O(∆p+1
t ) (14)

where cl and dl are the coefficients of symplectic integrators, and p is the order of the approximation. The symplectic integrators can satisfy
the time-reversible condition or symmetric condition [11,22,24]. Here we use m = 3 and p = 3, thus a three-stage three-order explicit
symplectic integrator is constructed [20]. The high-order SFDTD(3, 4) scheme, which is third-order-accurate in time and fourth-order-
accurate in space, can hold the energy-conserving property of Schrödinger equation without the amplitude error. The detailed update
equation for the real part of the wave function at the lth stage can be written as

ψ
n+l/m
R (i, j, k) = ψ

n+(l−1)/m
R (i, j, k)+

V (i, j, k)∆t
h̄

Ψ
n+l/m
I (i, j, k)

−αx1 ×


ψ

n+l/m
I (i + 1, j, k)− 2ψn+l/m

I (i, j, k)+ ψ
n+l/m
I (i − 1, j, k)


−αx2 ×


ψ

n+l/m
I (i + 2, j, k)− 2ψn+l/m

I (i, j, k)+ ψ
n+l/m
I (i − 2, j, k)


−αy1 ×


ψ

n+l/m
I (i, j + 1, k)− 2ψn+l/m

I (i, j, k)+ ψ
n+l/m
I (i, j − 1, k)


−αy2 ×


ψ

n+l/m
I (i, j + 2, k)− 2ψn+l/m

I (i, j, k)+ ψ
n+l/m
I (i, j − 2, k)


−αz1 ×


ψ

n+l/m
I (i, j, k + 1)− 2ψn+l/m

I (i, j, k)+ ψ
n+l/m
I (i, j, k − 1)


−αz2 ×


ψ

n+l/m
I (i, j, k + 2)− 2ψn+l/m

I (i, j, k)+ ψ
n+l/m
I (i, j, k − 2)


(15)

αx1 =
4
3
cl × Sx αy1 =

4
3
cl × Sy αz1 =

4
3
cl × Sz (16)

αx2 =
−1
12

cl × Sx αy2 =
−1
12

cl × Sy αz2 =
−1
12

cl × Sz (17)

Sx =
h̄

2m∗

∆t

∆2
x

Sy =
h̄

2m∗

∆t

∆2
y

Sz =
h̄

2m∗

∆t

∆2
z
. (18)
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3. Numerical stability and dispersion analyses

3.1. Stability analysis

According to the vonNeumann stabilitymethod, the solution of thewave function can be represented as a superposition of plane-waves

ψ(x, y, z, t) = A0 exp

−j0(i∆xkx + j∆yky + k∆zkz)


kx = k0 sin θ cosϕ, ky = k0 sin θ sinϕ, kz = k0 cos θ (19)

where k0 =
pm
h̄ is the wave number, pm is the momentum, and θ and ϕ are the spherical angles. The qth-order collocated differences are

used to discretize the second-order spatial derivatives, i.e.

∂2ψ

∂z2
≈

q/2
r=−q/2

Wr
ψ (i, j, k + r)

∆2
z

=

q/2
r=−q/2

Wr
exp(−j0rkz∆z)

∆2
z

ψ(i, j, k) = ηzψ (20)

where ηz =
q/2

r=−q/2 Wr
exp(−j0rkz∆z )

∆2
z

.
For simplicity, we consider a 1D Schrödinger equation with zero potential energy

∂

∂t


ψR
ψI


=

 0 −
h̄

2m∗

∂2

∂z2
h̄

2m∗

∂2

∂z2
0

ψR
ψI


(21)

and corresponding spatial discretization form is given by

∂

∂t


ψR
ψI


=

 0 −
h̄

2m∗
ηz

h̄
2m∗

ηz 0

ψR
ψI


. (22)

It is trivial to access the discretized evolution matrix Ld with the high-order symplectic integration scheme

Ld =


l11 l12
l21 l22


=

m
l=1


1 0

h̄
2m∗

ηzdl∆t 1


1 −

h̄
2m∗

ηzcl∆t

0 1


. (23)

The eigenvalues λ of the evolution matrix satisfy the following eigen-equation

λ2 − tr(Ld)λ+ det(Ld) = 0 (24)

where tr(Ld) and det(Ld) are the trace and determinant of the evolution matrix, respectively. Regarding that the discretized evolution
matrix is a symplectic matrix with the determinant of 1. The eigen-equation then can be simplified as

λ2 − tr(Ld)λ+ 1 = 0 (25)

and its solutions are λ1,2 =
tr(Ld)±j0


4−[tr(Ld)]2
2 . A stable algorithm requires |λ1,2| = 1, and thus |tr(Ld)| ≤ 2. Implementing terms of matrix

multiplications, we can get

tr(Ld) = 2 +

m
l=1

(−1)lgl


h̄

2m∗

2

∆2
t η

2
z

l

(26)

gl =


1≤i1≤j1<i2≤j2<···<il≤jl≤m

ci1dj1ci2dj2 · · · cildjl +


1≤i1<j1≤i2<j2≤···≤il<jl≤m

di1cj1di2cj2 · · · dilcjl . (27)

The above results can be generalized to a 3D Schrödinger equation with zero potential energy, i.e.

tr(Ld) = 2 +

m
l=1

(−1)lgl


h̄

2m∗

2

∆2
t (ηx + ηy + ηz)

2

l

. (28)

Finally we can get
h̄
m∗

∆t

∆2
δ

≤ CFL (29)

where CFL is the Courant–Friedrichs–Levy (CFL) number. Table 2 lists the maximum stability (CFL number) of the traditional FDTD(2, 2)
method, FDTD(2, 4) approach, and SFDTD(3, 4) scheme. The symmetric symplectic integrators for the SFDTD(3, 4) scheme are given as
follows: c1 = 0.26833010, c2 = −0.18799162, c3 = 0.91966152, and dl = cm−l+1(1 ≤ l ≤ m).

From the table, we can conclude that the spatial high-order collocated differences decrease the CFL number, which can be improved by
the high-order symplectic integrators. Particularly, the stability of the SFDTD(3, 4) scheme can go beyond that of the traditional FDTD(2, 2)
method through a careful optimization of symplectic integrators. An open question lies at what is the fundamental stability limit for the
high-order symplectic scheme, which should be studied in future work.
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Table 2
The numerical stability for various algorithms. d = 1, 2, 3 is the dimension number.

Algorithm CFL number

FDTD(2, 2) 1/
√
d

FDTD(2, 4) 0.8660/
√
d

SFDTD(3, 4) 1.3019/
√
d

Fig. 1. The relative dispersion error as a function of the spatial resolution (points per wavelength). Here, the spherical angles are set to θ = 0°, ϕ = 0°, and the stability
constant is Sδ =

∆t
∆δ2

h̄
2m∗ = 0.125.

3.2. Numerical dispersion analysis

The dispersion relation of free space photon described by Maxwell’s equations is of the form

ω = c|k0| (30)

where c is the speed of light and k0 = (kx, ky, kz) is the wave vector with the amplitude of k0. Critically different from the free space
photon with the cone-shaped 3D dispersion relation, the dispersion relation of free electron is a paraboloid, i.e.

ω =


h̄

2m∗


|k0|

2. (31)

Resembling Maxwell’s equations, we can define a dummy velocity of the Schrödinger equation as v0 =
 h̄
2m∗


, so Eq. (31) can be rewritten

as

ω = v0|k0|
2. (32)

According to the plane wave expansion and energy-conserving property of symplectic schemes, the dispersion relation of free electron
can be written as

ω∆t = a cos

tr

Ld

/2

. (33)

The relative error of phase velocity is given by

η = 20 log10

vp − v0

v0

 (34)

where vp =
ω

k20
, and ω can be obtained by Eq. (33).

We set the stability criterion to be Sδ =
∆t
∆δ2

h̄
2m∗ = 0.125 that is the maximum stability of the FDTD(2, 4) approach. Fig. 1 shows

the relative phase velocity error as a function of points per wavelength (PPW) for a plane wave traveling at θ = 0◦ and ϕ = 0◦. The
spatial resolution is set to be 7 points per wavelength. We redraw the relative error at θ = 30◦ versus the propagating angle ϕ as shown in
Fig. 2. According to Figs. 1 and 2, the SFDTD(3, 4) scheme and the FDTD(2, 4) approach show lower numerical dispersion than the traditional
FDTD(2, 2)method. Accordingly, the high-order collocated differences allow coarser gridswithin a given error bound, which in turn results
in shorter CPU time and less storage. Intriguingly, the high order symplectic integrators did not reduce the dispersion compared to the
low-order symplectic integrators (second-order staggered time stepping strategy), which is quite different from the corresponding results
of Maxwell’s equations [19,25].



J. Shen et al. / Computer Physics Communications 184 (2013) 480–492 485

Fig. 2. The relative dispersion error as a function of the spherical angle ϕ. The spherical angle is θ = 30°, the spatial resolution is 7 points per wavelength, and the stability
constant is Sδ =

∆t
∆δ2

h̄
2m∗ = 0.125.

a b

Fig. 3. A schematic pattern of the image theory method.

a b

Fig. 4. A schematic pattern of the one-sided difference technique.

4. Boundary conditions

For solving the eigenvalue problem of the Schrödinger equation, the Dirichlet boundary condition should be implemented properly to
guarantee the simulation accuracy. Taking a one-dimensional quantumwell as an example, we haveψ (0) = 0 andψ (L) = 0 respectively
for the left and right boundaries, where L is the length of the quantum well.

In view of high-order spatial differences, the image theory [26] and one-sided difference technique [27] adopted inMaxwell’s equations
can be naturally extended to the Schrödinger equation. For the image theory, we impose the wave function at the left boundary as
ψ (0) = 0, ψ̃ (1) = −ψ (1), and ψ̃ (2) = −ψ (2), where ψ̃ (1) and ψ̃ (2) correspond to the image points ofψ (1) andψ (2) as illustrated
in Fig. 3(a). For the right boundary, we have ψ (L) = 0, ψ̃ (L − 1) = −ψ (L − 1), and ψ̃ (L − 2) = −ψ (L − 2) as shown in Fig. 3(b).

For the one-sided difference technique (Fig. 4), the high-order one-sided difference at the left boundary is given by
∂2ψ

∂δ2


i=1

=
1

12 (∆δ)2
[10ψ (0)− 15ψ (1)− 4ψ (2)+ 14ψ (3)− 6ψ (4)+ ψ (5)] + O(∆q+1

δ ). (35)

Likewise, the one-sided difference at the right boundary is of the form
∂2ψ

∂δ2


i=L−1

≈
−1

12 (∆δ)2
[10ψ (L)− 15ψ (L − 1)− 4ψ (L − 2)+ 14ψ (L − 3)− 6ψ (L − 4)+ ψ (L − 5)] . (36)

5. Numerical results

5.1. 1D Schrödinger equation

5.1.1. A particle in a 1D box
The simplest formof a particle in a boxmodel considers a one-dimensional system. Here, the particle onlymoves backward and forward

along a straight line with impenetrable barriers at either end. The walls of a one-dimensional box may be visualized as regions of space
with an infinitely large potential energy. The potential energy is

V (x) =


0, 0 < x < a
∞, otherwise (37)

where a is the length of the box and x is the position of the particle within the box.
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Table 3
The eigenfrequency comparisons for a particle in a 1D infinite well.

Algorithm FDTD(2, 2) FDTD(2, 4) SFDTD(3, 4) Analytical

ω1 240 242 247 247
ω2 981 983 998 998
ω3 2220 2222 2227 2227

Fig. 5. The errors between the third eigenstate (the real part of the wave function) calculated and the analytical solution for a particle in a 1D infinite well.

Fig. 6. The L2 norm error (between the third eigenstate calculated and the analytical solution) as a function of the grid size. The image theory is adopted for boundary
treatments.

Regarding the simulation domain and cell size, they depend on the length of the box to be simulated and the highest eigenenergy of
the particle of interest, respectively. Without loss of generality, we choose the domain to be x ∈ [0, 34]. The cell size∆x = 1, the stability
constant in Eq. (18) is Sδ =

∆t
∆x2

h̄
2m∗ = 0.1, and the iteration step Nmax = 41,000. The eigenenergies of the quantum well are quantized as

En =
h̄2 π2

2m∗a2
n2, n = 1, 2, 3, . . . . (38)

In order to excite all possible modes, the delta source is located at the center of the box with two grids offset. Table 3 lists the calculated
eigenfrequencies. Compared with the analytical solution, SFDTD(3, 4) scheme can achieve best accuracy.

To further confirm the advantages of the SFDTD(3, 4) scheme, the errors between the calculated eigenstates and the analytical solutions
are depicted in Fig. 5. Obviously, the error associated with the SFDTD(3, 4) scheme is significantly suppressed.

Fig. 6 shows the L2 norm error as a function of the grid size for the third eigenstate. Using the image theory to treat the impenetrable
boundary, the high-order spatial differences indeed reduce the numerical error but achieve the same convergence rate compared with the
low-order spatial differencemethod. Fig. 7 corresponds to the one-sided difference technique, where the high-order convergence rate can
be clearly observed. By the aid of the high-order strategies applied both in space and time domains, the SFDTD(3, 4) scheme achieves the
best convergence rate.

The energy-conserving property of Schrödinger equation determines the normalized condition of the wave function in long-term
simulations. In order to testify the property, a Gaussian pulse is employed as the initial condition and the iteration step Nmax = 10,000.
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Fig. 7. The L2 norm error (between the third eigenstate calculated and the analytical solution) as a function of the grid size. The one-sided difference technique is adopted
for boundary treatments.

Fig. 8. The wave function integral over the quantum well region after 10,000 iterations.

Fig. 8 shows the wave function integral over the quantum well region by using various approaches. The SFDTD(3, 4) scheme can hold the
normalized condition of the wave function better.

5.1.2. 1D harmonic oscillator
The simulation domain is confined to be x ∈ [0, 34], ∆x = 1, Sδ =

∆t
∆x2

h̄
2m∗ = 0.1, and Nmax = 41,000. The one-sided difference

technique is used for boundary treatments. The harmonic oscillator model is fundamentally important for the quantum simulation of
nanodevices and its potential energy is given by

V (x) =
1
2
kx2 (39)

where k = mω2. The eigenenergies of the harmonic oscillator are

En =


n +

1
2


h̄ω n = 0, 1, 2, 3, . . . . (40)

The analytical wave function ψ(x, t) can be written as

ψn (x, t) =


β

√
π2nn!

e−x2β2/2Hn (βx) (41)

where β =


m∗ω
h̄ andHn is the Hermite polynomial. Table 4 and Fig. 9 respectively show the eigenfrequencies and the eigenstate errors of

the harmonic oscillator. Likewise, the SFDFD(3, 4) scheme shows good numerical performances for the eigenvalue problem of Schrödinger
equation with a parabolic potential.
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Table 4
The eigenfrequency comparisons for a 1D harmonic oscillator model.

Algorithm FDTD(2, 2) FDTD(2, 4) SFDTD(3, 4) Analytical

ω1 1510 1513 1518 1518
ω2 4545 4550 4554 4554
ω3 7573 7582 7590 7590

Fig. 9. The errors between the sixth eigenstate (the real part of the wave function) calculated and the analytical solution for a 1D harmonic oscillator.

Table 5
The eigenfrequency comparisons for a 2D quantum well.

Algorithm FDTD(2, 2) FDTD(2, 4) SFDTD(3, 4) Analytical

ω1,1 254 267 272 272
ω1,2 662 670 679 679
ω2,2 1072 1080 1088 1088
ω1,3 1366 1380 1388 1388

5.2. 2D Schrödinger equation

5.2.1. 2D quantum well
The simulation domain is set to D = [0, Lx] × [0, Ly] = [0, 29] × [0, 29], ∆δ = 1, Sδ =

∆t
∆δ2

h̄
2m∗ = 0.1, and the iteration step

Nmax = 40,000. The one-sided difference technique is adopted to handle the boundaries of the infinite potential well. The eigenenergies
can be trivially obtained

Enx,ny =
h̄2 π2

2m∗


n2
x

L2x
+

n2
y

L2y


(42)

where (nx, ny) is the mode number. Table 5 lists the eigenfrequencies and Fig. 10 shows the obtained eigenstate ψ3,3. In contrast to the
FDTD(2, 2) and FDTD(2, 4) approaches, the SFDTD(3, 4) scheme could obtain more accurate results.

Fig. 11 shows the L2 norm error of the eigenstate ψ2,2 plotted as a function of the grid size. The error by the SFDTD(3, 4) scheme
decreases fastest with a reduced grid size.

5.2.2. 2D harmonic oscillator
For a 2D harmonic oscillator, the potential is taken as V (x, y) =

1
2k(x

2
+ y2). The other parameters are set to be the same as those in

the 2D quantum well. The time-dependent solution of the wave function is

ψ(x, y, t) =


β2

π2nxnx!2nyny!
e−(x2+y2)β2/2Hnx(βx)Hny(βy) (43)

Enx,ny =

nx + ny + 1


h̄ω. (44)

The eigenfrequencies of the 2D harmonic oscillator are calculated by the FDTD(2, 2), FDTD(2, 4), and SFDTD(3, 4) methods (see Table 6).
The SFDTD(3, 4) scheme shows very significant advantages under the complicated potential energy condition, which is always met in the
quantum device simulation.
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Fig. 10. The eigenstate (the real part of the wave function) corresponding to nx = 3 and ny = 3 for a 2D quantum well.

Fig. 11. The L2 norm error (between the eigenstate ψ2,2 calculated and the analytical solution) as a function of the grid size. The one-sided difference technique is adopted
for boundary treatments.

Table 6
The eigenfrequency comparisons for a 2D harmonic oscillator model.

Algorithm FDTD(2, 2) FDTD(2, 4) SFDTD(3, 4) Analytical

ω1,1 352 363 360 360
ω1,2 773 788 785 785
ω2,2 1210 1218 1189 1189

6. Conclusion

The high-order SFDTD(3, 4) scheme, which is fourth-order accurate in space and third-order accurate in time, is energy-conserving and
conditionally stable. On one hand, the scheme can achieve high-order accuracy by using both the fourth-order spatial collocated difference
and the one-sided difference technique. On the other hand, incorporating the symplectic integrators, the scheme demonstrates desirable
numerical performances under a long-term simulation. In this work, we studied the numerical stability and dispersion of the SFDTD(3, 4)
scheme and successfully applied it to the analyses of the eigenvalue problem of Schrödinger equation. Our numerical results validate
significant advantages of the SFDTD(3, 4) scheme in terms of accuracy, converge, and energy conservation. The work is fundamentally
important for the quantum device simulation. The simple source code for implementing the SFDTD(3, 4) scheme can be found in the
Appendix.
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Appendix

A simple C++ code for implementing the SFDTD(3, 4) scheme is given as follows:
/*1D SFDTD program for Schrodinger equation simulation*/
#include<math.h>
#include<stdlib.h>
#include<stdio.h>
#define KE 14
const int CountFreq=1200;
double SweepFreq[CountFreq];
double Real_Point[CountFreq][KE];
double Imag_Point[CountFreq][KE];
double Real_Ref[CountFreq];
double Imag_Ref[CountFreq];
int main()
{
double psi_rl[KE],psi_im[KE];
int n,k,kc,ke,kstart,kcenter,NSTEPS,n_pml;
double P;
double pi,melec,hbar;
double ddx,dt,ra;
FILE *fp;
double lap_rl,lap_im,ke_rl,ke_im,kine,PE,s1,s2;
double RealTime=0;
double Fourier_Frq=0;
int TIMESTAGE=3; //number of stages
for(k=0;k<KE;k++)
{
psi_rl[k]=0.;
psi_im[k]=0.;
}
pi=3.141592653589793;
melec=9.10938188e-31;
hbar=1.05457148e-34;
double const1=8637.993775443278; //m_elec/hbar
ddx=2.5*pow(10.0,-4.0);
double stab=0.5;
dt=stab*(const1)*pow(ddx,2.0);
ra=(dt/(ddx*ddx))*(hbar/(2*melec));
int Pos=int(KE/2+3);
psi_rl[Pos]=1;
psi_im[Pos]=0;
double ra1[3]={0,0,0};
double ra2[3]={0,0,0};
//Symplectic integrator
double
D[3]={0.91966152301739985705089763815343,-0.1879916187991597820078528680789,

0.2683300957817599249569552299255};
double
C[3]={0.2683300957817599249569552299255,-0.1879916187991597820078528680789,

0.91966152301739985705089763815343};
double TimeTableH[3]={C[0],C[0]+C[1],C[0]+C[1]+C[2]}; //time table of H-field for SFDTD
const double TimeTableE[3]={0,D[0],D[0]+D[1]}; //time table of E-field for SFDTD
int i,w;
//Frequency
for (w=0;w<CountFreq; w++)
{
SweepFreq[w]=1+0.5*w;
}
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// Fourier transform initial
for (w=0; w<CountFreq; w++)
{
Real_Ref[w]=0.;
Imag_Ref[w]=0.;
for ( int j=0; j<KE; j++)
{
Real_Point[w][j]=0.;
Imag_Point[w][j]=0.;
}
}
NSTEPS=41000; //time steps
for (n=0;n<=NSTEPS;n++)
{
for (int i=0; i<TIMESTAGE; i++)
{
printf("%d\n",n);
s1=C[i]*dt; //time coef
//boundary treatment (one-sided difference)
psi_rl[1]=exp(-s1)*psi_rl[1]-1.0/12*ra*(1-exp(-s1))/(s1)*(psi_im[5]-6*psi_im[4]+14*psi_im[3]-4*psi_im[2] -15*psi_im[1]);
psi_rl[KE-2]=exp(-s1)*psi_rl[KE-2]-1.0/12*ra*(1-exp(-s1))/(s1)*(psi_im[KE-6]-6*psi_im[KE-5]+14*psi_im[KE-4]-4*psi_im[KE-3]

-15*psi_im[KE-2]);
//update equation for real part of wave function
for (k=2;k<KE-2;k++)
{
psi_rl[k]=exp(-s1)*psi_rl[k]-1.0/12*ra*(1-exp(-s1))/(s1)*((-1)*psi_im[k-2]+16*psi_im[k-1]-\
30*psi_im[k]+16*psi_im[k+1]-1*psi_im[k+2]);
}
//boundary condition
psi_rl[0]=0.;
psi_rl[KE-1]=0.;
s2=D[i]*dt; //time coef
//boundary treatment (one-sided difference)
psi_im[1]=exp(-s2)*psi_im[1]+1.0/12*ra*(1-exp(-s2))/(s2)*(psi_rl[5]-6*psi_rl[4]+14*psi_rl[3]-4*psi_rl[2]-15*psi_rl[1]);
psi_im[KE-2]=exp(-s2)*psi_im[KE-2]+1.0/12*ra*(1-exp(-s2))/(s2)*(psi_rl[KE-6]-6*psi_rl[KE-5]+14*psi_rl[KE-4]-4*psi_rl[KE-3]

-15*psi_rl[KE-2]);
//update equation for imaginary part of wave function
for (k=2;k<KE-2;k++)
{
psi_im[k]=exp(-s2)*psi_im[k]+1.0/12*ra*(1-exp(-s2))/(s2)*((-1)*psi_rl[k-2]+16*psi_rl[k-1]-\
30*psi_rl[k]+16*psi_rl[k+1]-1*psi_rl[k+2]);
}
//boundary condition
psi_im[0]=0.;
psi_im[KE-1]=0.;
RealTime=(n+TimeTableH[i])*dt; //real time
//Fourier transform
for (w=0; w<CountFreq; w++)
{
Fourier_Frq=SweepFreq[w];
Real_Ref[w]=Real_Ref[w]+cos(Fourier_Frq*RealTime)*psi_rl[Pos];
Imag_Ref[w]=Imag_Ref[w]-sin(Fourier_Frq*RealTime)*psi_rl[Pos];
for (i=1; i<KE-1; i++)
{
Real_Point[w][i]=Real_Point[w][i]+cos(Fourier_Frq*RealTime)*psi_rl[i];
Imag_Point[w][i]=Imag_Point[w][i]-sin(Fourier_Frq*RealTime)*psi_rl[i];
}
}
}
}
// save results
fp=fopen(‘‘power_SFDTD.txt",‘‘w");
for (w=0; w<CountFreq; w++)
{
P=0.;
for (i=1; i<KE-1; i++)



492 J. Shen et al. / Computer Physics Communications 184 (2013) 480–492

{
P=P+pow(Real_Point[w][i],2.0)+\
pow(Imag_Point[w][i],2.0);
}
fprintf(fp,‘‘%lf %lf\n",SweepFreq[w],P);
}
fclose(fp);
for (k=0;k<KE;k++)
{
printf(‘‘%d %lf %lf\n",k,psi_rl[k],psi_im[k]);
}
fp=fopen(‘‘prl_SFDTD.txt",‘‘w");
for (k=0;k<KE;k++)
{
fprintf(fp,‘‘%lf\n",psi_rl[k]);
}
fclose(fp);
fp=fopen(‘‘pim_SFDTD.txt",‘‘w");
for (k=0;k<KE;k++)
{
fprintf(fp,‘‘%lf\n",psi_im[k]);
}
fclose(fp);
fp=fopen(‘‘eigenfunction_SFDTD.txt",‘‘w");
w=937;
for (i=0; i<KE; i++)
{
fprintf(fp,‘‘%lf %lf\n",Real_Point[w][i],Imag_Point[w][i]);
}
fclose(fp);
return 0;
}.
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