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Abstract A novel framework to construct an efficient sensing (measurement) matrix, called
mixed adaptive-random (MAR) matrix, is introduced for directly acquiring a compressed
image representation. The mixed sampling (sensing) procedure hybridizes adaptive edge
measurements extracted from a low-resolution image with uniform random measurements
predefined for the high-resolution image to be recovered. The mixed sensing matrix seam-
lessly captures important information of an image, and meanwhile approximately satisfies
the restricted isometry property. To recover the high-resolution image from MAR measure-
ments, the total variation algorithm based on the compressive sensing theory is employed
for solving the Lagrangian regularization problem. Both peak signal-to-noise ratio and
structural similarity results demonstrate the MAR sensing framework shows much better
recovery performance than the completely random sensing one. The work is particularly
helpful for high-performance and lost-cost data acquisition.
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1 Introduction

As a novel and revolutionary sensing (sampling) paradigm, compressive sensing (CS) theory
has attracted much interest over the past few years. Now one can recover certain signals
and images after directly acquiring far fewer samples or measurements in comparison with
massive amounts of data collected in traditional data acquisitions [5, 11, 18, 22]. The sensing
(measurement) matrix is essential to CS framework and must capture important information
about the object of interest.

The basic principle of CS is that sparse signals can be recovered from very few mea-
surements. A signal x = {xn}Nn=1 of length N is said to be sparse in a basis space Ψ =
{ψn}1�n�N if transform coefficients 〈x, ψn〉, 1 ≤ n ≤ N are mostly zero; or nearly sparse
in the space Ψ if a dominant portion of these N coefficients are either zero or very close
to zero. The sparsity of x in Ψ is quantified by the number of significant (nonzero) coeffi-
cients K . The signal can be perfectly recovered from M = O(K log(N/K)) observations
with a high probability.

Given M measurements y = Φx, with Φ producing the random projections, standard
CS recovers x from y by using the following constrained optimization problem:

min
x

‖Ψ T x‖p s.t. y = Φx (1)

where p is usually set to be 1 or 0, guaranteeing the sparse solution of the vector Ψ T x. ‖∗‖1
is �1 norm, i.e. the summation of the absolute value of all the elements in a vector. While
‖ ∗ ‖0 is �0 norm, counting the nonzero entries of a vector. The �1 minimization problem
of (1) can be solved by a linear programming [4]. Other recovery algorithms have been
recently proposed also, including gradient projection sparse reconstruction [13], matching
pursuit [24], and iterative thresholding methods [9].

The recovery performance of CS depends significantly on the measurements and its sens-
ing strategies. In the literature [2] Baraniuk et al. prove that the sensing matrix satisfying
the Johnson-Lindenstrauss lemma also holds true for the restricted isometry property (RIP)
in compressive sensing. Furthermore, a sparse random projection [17], which is almost as
accurate as the conventional random projection, is proposed to reduce computational cost
in the measurement process. Moreover, a structurally random matrix (SRM) [10] is also
constructed for fast and efficient CS, where the incoherence between SRM and sparsify-
ing transforms is comparable to that between completely random sensing matrix and the
transforms. However, all the measurement processes above are nonadaptive, i.e., the sensing
matrix is predefined or fixed. On one hand, the predefined random sampling obeys the inco-
herence condition (with the RIP). Thus it is a fascinating character of CS as well, where all
the measurements are equally important. On the other hand, a completely random sampling
pattern capturing information of object aimlessly becomes inefficient for reconstructing
high-resolution data. For example, the completely uniform random sampling [3, 18] in k-
space for magnetic resonance imaging application performs worse than the nonuniform
random sampling, where low frequency components are densely sampled.

In CS, each measurement is a projection from the whole signal, which consumes a large
number of computer resources. In this paper, we sense the signal in a different and simple
way, which partially sample or “select” the signal elements in spatial domain.
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Fig. 1 The schematic diagram for the mixed adaptive-random sampling protocol

Could one acquire more important information of object in spatial (time) domain
with fewer measurements? Could one improve the completely random sampling in spa-
tial domain? In this work, we involve the object-dependent and “most important” edge
information of object, which can be extracted from a low-cost sampling procedure with
much lower sampling rate, into the sensing matrix. The novel mixed adaptive-random
(MAR) sensing hybridizes adaptive edge measurements obtained from a low-resolution
image with uniform random measurements predefined for the high-resolution image to be
reconstructed. The adaptive edge measurements can be regarded as a way of measure-
ment learning. This is the basic idea of the paper and also our contribution. To the best
of our knowledge, it is the first time we have introduced the mixed sampling concept into
the compressed partial sampling framework. We will employ the MAR sensing matrix to
directly acquire a compressed image representation and meanwhile adopt total-variation
(TV) regularizer to recover the high-resolution image. Numerical examples demonstrate
significant advantages of the MAR sensing framework over the completely random sensing
one.

2 Mixed sampling protocol

Figure 1 shows the schematic diagram for the MAR sampling protocol. Here we assume the
image f (x, y) as a function in 2D Hilbert space L(R) × L(R). The MAR sensing matrix
can be constructed by the following procedures:

Step 1, sampling a low-resolution image fl with an extremely low cost to predict the edge
information of the high-resolution image f to be recovered. Regarding practical
hardware implementation, the low-resolution image requires much fewer pho-
tosensitive elements (such as 128 × 128) instead of millions (such as 1024 ×
1024) required in convectional data acquisition for the high-resolution image.
Mathematically, we have

Γ (f ) ≈ Γ (fp) = Γ (I (fl)) (2)

where �(f ) = 1 for the edge pixels of f , otherwise Γ (f ) = 0. The interpolation
operator I maps the low-resolution image fl to the predicted high-resolution one
fp . The Γ denotes the edge detection operator that can be implemented with the
Sobel edge detector [6, 21] and binary thresholding. As a result, real edges of the
high-resolution image Γ (f ) can be approximated by the predicted edges Γ (fp).



Multimed Tools Appl

Step 2, due to a possible inaccuracy of the predicted edges, morphological operations can
be used to generate an adaptive sampling pattern around the edges of f .

Sa = Mp(Γ (fp)) (3)

where Sa is the adaptive sampling pattern and Mp is the binary morphological
operator on the edges of the predicted image fp. The morphological operator
involves dilation M

p
d and closing M

p
c (dilation followed by erosion), which can

be found at MATLAB image processing toolbox. Additionally, M
p
n suggests no

morphological operation is executed. After understanding the role of edges in
computer vision and image processing, we suppose that the image pixels that
located at edges or near the edges are more important than those located at smooth
regions. Consequently, involve the adaptive sampling pattern into the sensing
procedure is highly reasonable.

Step 3, generating the random sampling pattern Sr with a 2D uniform distribution
U(0, 1) × U(0, 1) and with a binary thresholding for controlling the sampling
ratio. The completely random sampling, which acquires pixels at edges and
smooth regions uniformly, captures the image profile information and guarantees
the RIP and incoherence condition.

Step 4, we mix the random and adaptive sampling patterns via a union operation to get
the new MAR sampling pattern (sensing matrix with 0/1 elements).

Sm = Sa

⋃
Sr

⋃
Sl (4)

where Sl is the low-resolution sampling pattern corresponding to fl , Sa is the
adaptive sampling pattern defined in step 2, and Sr is the random sampling pattern
defined in step 3. In other words, we reuse (do not resample) the pixels of fl

obtained at the Step 1 for saving the measurements.

To physically acquire the pixels corresponding to the MAR sensing matrix Sm, we may
use integrated circuits to control reset transistors (or switches) in complementary metal-
oxide-semiconductor (CMOS) camera. As a result, only a portion of photodetectors and
amplifiers (with respect to Sl and Sm\Sl) are turned on. Compared to traditional image
acquisitions, the MAR sensing saves electrical power and increases lifetime of image sen-
sors. Most importantly, the MAR sensing can be generalized to other data acquisitions where
the most important information of object is adaptively extracted and learned via a low-cost
sampling.

For convenience, the sensing ratio of the MAR sensing matrix η1 is defined as the number
of nonzero elements of Sm over the dimension of Sm (i.e. image size of f ). The adaptive
sampling ratio η2 is defined as the number of nonzero elements of Sm\Sr , which is the
complement of Sr in Sm, over that of Sm.

η1 =
∑

i,j S(i, j)

Dim(Sm)
, η2 = 1 −

∑
i,j Sr (i, j)

∑
i,j Sm(i, j)

(5)

The sensing ratio η1 could be considerably smaller and thus measurement cost can be
reduced. In addition, the adaptive sampling ratio η2 cannot be too large to satisfy the RIP
and incoherence condition.

At the end of this section, we would like to discuss the RIP of our sensing matrix. A
linear measurement (sensing) operator A : CN1×N2 → C

m has the RIP of order s and level
δ ∈ (0, 1), if

(1 − δ)‖X‖2
2 ≤ ‖A(X)‖2

2 ≤ (1 + δ)‖X‖2
2 for all s-sparse X ∈ C

N1×N2 (6)
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where ‖X‖2 denotes the Frobenius norm of the image X. The smallest such δ that (6) holds
is denoted by δs and called the RIP constant.

In [19], Needell and Ward adopted the bivariate Haar transform to state and prove the
following theorem

Theorem 1 Consider n, m, s ∈ N, and let N = 2n. There is an absolute constant
C > 0 such that if A : C

N×N → C
m is such that, composed with the inverse bivari-

ate Haar transform, AH−1 : C
N×N → C

m has the restricted isometry property of
order Cs log3(N) and level δ < 1/3, then the following holds for any X ∈ C

N×N .
If noisy measurements y = A(X) + ξ are observed with noise level ‖ξ‖2 ≤ ε,
then

X̂ = arg min
Z

‖Z‖T V such that ‖A(Z) − y‖2 ≤ ε

satisfies

‖X − X̂‖2 � ‖∇X − (∇X)s‖1√
s

+ ε (7)

From the theorem, when A is an identity operator and H is the orthogonal bivariate
Haar transform, the measurements A will satisfy the RIP. Considering the proposed sens-
ing strategy, which can be regarded as an approximation of the identity operator, could
satisfy the RIP. We will further discuss the RIP condition at the Section of Numerical
Results.

3 Recovery algorithm

After using the MAR sensing matrix to directly acquire a compressed image represen-
tation, the recovery algorithm is essential to reconstruct a high-quality image with a
high resolution. The greedy pursuit algorithm [8, 12, 24] offers a �0 minimization for
sparse reconstruction. Linear programming [11] and other convex optimization algorithms
[3, 7, 15, 25] have been proposed to solve the �1-minimization also. The TV regularizer
was introduced by Rudin, Osher and Fatemi in [23] and became popular in recent years
[1, 7, 20, 23].

Needell and Ward show that there are choices of underdetermined linear measurements
(constructed from RIP matrices) for which the TV minimization program is guaranteed to
recover images stably and robustly up to the best s-term approximation of their gradient
[19]. Fixing integers m, N and s such that m ≥ C1s log(N2/s), the reconstruction error
satisfies

‖X − X̂‖2 ≤ C2 log(N2/s)

(‖∇X − (∇X)s‖1√
s

+ ε

)
(8)

where X and X̂ are original and reconstructed images, ε is the noise level of
the measurement, ∇X is the gradient of X, and C1 and C2 are universal con-
stants. The above inequality relies on the compressibility of the bivariate Haar
wavelet transform (More details can be found at [19]). The fundamental rea-
son why the MAR sensing could achieve better performance is that the sensing
matrix contains the edge information, which captures the s most important nonzero
∇X.
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For reconstructing the high-resolution image f from the measurements (compressed
image representation) g, a Lagrangian regularization problem should be solved, i.e.

min
f

⎧
⎨

⎩

∫
(g − Smf )2dxdy + α

∫ √(
df

dx

)2

+
(

df

dy

)2

dxdy

+β

∫ √
(Tf )2dxdy

}
(9)

where Sm is the MAR sensing operator, α and β are Lagrangian multipliers, and dx and
dy are the differential operators. The second term is the TV regularizer; and the third-
term relates to �1-minimization with a sparsifying transform operator T . According to the
variational principle, we have

δO(f )

δf
= 2S∗

m (g − Smf ) − α
d

dx

⎛

⎜⎝
df/dx

√
(df/dx)2 + (df/dy)2

⎞

⎟⎠

−α
d

dy

⎛

⎜⎝
df/dy

√
(df/dx)2 + (df/dy)2

⎞

⎟⎠ + βT ∗

⎛

⎜⎝
Tf

√
(Tf )2

⎞

⎟⎠ (10)

where O(f ) is the objective functional given in (9), δ is the variational oper-
ator, and S∗

m and T ∗ are adjoint operators of Sm and T , respectively. In
this work, we did not focus on the recovery algorithm and set β to zero
for fast and simple reconstruction. With the help of nonlinear conjugate gradi-
ent method [14, 23] and (10), the Lagrangian regularization problem (9) can be
solved.

4 Numerical results

In this section, numerical performances of the proposed MAR sensing matrix will be
evaluated. Without loss of generality, we assume Dim(Sm) = Dim(f ) = 256 × 256.
The sensing ratio η1 and adaptive sampling ratio η2 defined in (5) can be tuned by the
threshold values of the binary thresholding procedures of Steps 1 and 3 at Section 2.
We will demonstrate that incorporation of edge information to the sensing procedure
can pronouncedly improve the recovery performance. In the beginning, the MAR sens-
ing performance for different edge extraction methods are investigated. Then, we compare
recovery results by the MAR sensing matrix to those by the completely random sens-
ing matrix. Finally, we will discuss the influence of η2 on the recovery performance
and compare our method with the standard CS and other random partial sampling
methods.

The low-resolution image fl is numerically generated by downsampling the original
high-resolution image f by a factor of 4, i.e. Dim(fl) = 64 × 64. Using the bicubic inter-
polation method [16], we can get the predicted image fp (Step 1 of Section 2). The edges
of f and fp can be extracted by the Sobel method (Step 1 of Section 2). For simple nota-
tions, Mn, Md and Mc correspond to the edges of f with null morphological operation,
dilation and closing. Similarly, M

p
n , M

p
d and M

p
c correspond to the edges of fp (Step 2 of
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Fig. 2 PSNR performance as a function of the sensing ratio η1 for the completely random sensing Sr and
MAR sensing Sm

Section 2). Moreover, we use abbreviations of Sr and Sm to denote sensing methods using
the completely random matrix and MAR matrix, respectively (Step 4 of Section 2).

Figure 2 shows the peak signal-to-noise ratio (PSNR) as a function of the sensing ratio
η1. We observe: (1) the convergence of all the methods are comparable; (2) the performance
of Sm sensing is much better than that of Sr ; (3) the best PSNR is achieved by the Sm

sensing involving the dilated edge information. This also suggests the pixels around edges
contain very important information of image. Figure 3 shows the sensing performance of
the Phantom. After comparing Figs. 3(g,k,o) to Figs. 3(h,l,p), Sm + Mn,d,c shows better
recovery results than Sm + M

p
n,d,c. Instead of setting the parameter η2 directly, in Figure 2

and Figure 3 we select the 1.75 % × 256 × 256 edge pixels combined with the 64 × 64 low
resolution samples as the adaptive samples for each η1. So the parameter η2 in Figure 2 or
Figure 3 is not fixed for the different η1s. However, the MAR sensing matrix incorporating
predicted edges by M

p
n,d,c operations still achieves high PSNR values (such as 29.93 dB

with the sensing ratio η1 = 29.94 %) in contrast to the completely random sensing matrix
(21.77 dB with the sensing ratio η1 = 30.24 %). Using standard images, Figure 4 and
Table 1 demonstrate significant advantages of the MAR sensing matrix not only on PSNR
but also on structural similarity (SSIM).

Too much edge information in the MAR sensing matrix will destroy the RIP and inco-
herence condition of the framework. This situation occurs when an extremely high adaptive
sampling ratio η2 is set. Generally speaking, there is a tradeoff between the η2 and the
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Fig. 3 Reconstructed Phantom images with sensing ratios of 30.24 %, 29.41 %, 29.16 %, 29.85 %, 29.94 %,
28.87 % and 28.01 % respectively for Sr , Sm +Mn, Sm +M

p
n , Sm +Md , Sm +M

p
d , Sm +Mc and Sm +M

p
c .

(a) The original Phantom image; (b) The predicted image fp ; (c) Low-resolution sampling pattern Sl ; (d) Sr

sensing: 21.7653 dB; (e) Mn for edges of (a); (f) M
p
n for edges of (b); (g) Sm + Mn sensing: 30.1195 dB;

(h) Sm + M
p
n sensing: 24.5746 dB; (i) Md for edges of (a); (j) Mn

d for edges of (b); (k) Sm + Md sensing:
65.3853 dB; (l) Sm +M

p
d sensing: 29.9294 dB; (m) Mc for edges of (a); (n) M

p
c for edges of (b); (o) Sm +Mc

sensing: 31.2032 dB; (p) Sm + M
p
c sensing: 24.1066 dB

recovery performance. Figure 5 and Table 2 show the tradeoff between η2 and recovery
performance. The bigger η2 the better performance. But with very large η2 both objec-
tive PSNR/SSIM measurements and visually quality will decline. Especially the details in
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Fig. 4 Reconstructed Phantom, Fruits, Lena and Boat images using Sr , Sm+M
p
d and Sm+M

p
c strategies. (a)-

(d): The original images; (e)-(h), (i)-(l) and (m)-(p) are corresponding reconstructed images for Sr , Sm +M
p
d

and Sm + M
p
c , respectively. The corresponding key parameters are listed in Table 1

smooth regions of the images are vanished to some extent although the objective measure-
ments are still well for some images when η2 is very large. We evaluate the optimum value
of η2 for η1 as illustrated in Figure 6. Using morphology operations, better reconstruction
results are achieved by the MAR sensing even if the number of adaptive sampling is larger
than that of random sampling (the optimum η

opt

2 ≈ 80 % for Sm + M
p
d ). It is necessary to

state that the curve lines in Figure 6 (b) and (d) are missing when η2 is large. On one hand
the Sm + M

p
c curve line will descend when the parameter η2 increase and exceed a tradeoff
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Table 1 Reconstruction performance using the MAR sensing matrix Sm and completely random sensing
matirx Sr

Image PSNR SSIM η1 η2

Phantom Sr 21.7653 0.9486 30.24 %

Sm + M
p
d 72.4857 1.0000 29.81 % 43.76%

Sm + M
p
c 25.5346 0.9712 30.24 % 26.64 %

Fruits Sr 25.6011 0.8336 30.46 %

Sm + M
p
d 33.6908 0.8767 30.30 % 68.11 %

Sm + M
p
c 27.0509 0.8409 30.28 % 23.00 %

Lena Sr 25.5683 0.8634 30.18 %

Sm + M
p
d 31.3728 0.8845 29.82 % 68.55 %

Sm + M
p
c 27.5257 0.8714 29.82 % 37.38 %

Boat Sr 24.4288 0.7433 29.85 %

Sm + M
p
d 28.7316 0.7715 29.81 % 84.69 %

Sm + M
p
c 25.0184 0.7513 29.82 % 36.02 %

Fig. 5 Reconstructed Lena and Boat images using Sr and Sm + M
p
n strategies. (a) and (d) are reconstructed

images for Sr . (b) and (e) are reconstructed images for Sm + M
p
d with the optimum η2. (c) and (f) are

reconstructed images for Sm + M
p
d with the very large η2. The corresponding key parameters are listed in

Table 2
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Table 2 The dependence of reconstruction performance on the adaptive sampling ratio η2: optimum η2 and
very large η2

Image PSNR SSIM η1 η2

Lena Sr 28.8945 0.9143 44.48 %

Sm + M
p
d 36.9584 0.9448 44.48 % 74.10 %

Sm + M
p
d 22.9407 0.8777 44.47 % 99.64 %

Boat Sr 26.3038 0.8337 44.69 %

Sm + M
p
d 32.9985 0.8701 44.69 % 90.61 %

Sm + M
p
d 30.4449 0.8524 44.69 % 94.22 %

The RIP cannot be maintained when η2 goes beyond a threshold.

threshold. With the increasing of η2 the Sm + M
p
c curve line will lies under the horizontal

line of the random sampling pattern Sr . In the other hand, we just want to find the optimum
η2. The optimum η2 reasonably locates at the top point of the Sm + M

p
c curve lines and it
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Fig. 6 Evaluating the threshold of η2 for Sm + M
p
d and Sm + M

p
c . The sensing ratio η1 for Sr is set as (a):

30.05 %, (b): 44.48 %, (c): 29.81 % and (d): 44.69 %. And the sensing ratio η1 for Sm + M
p
d,c is almost the

same as that of Sr with the error no more than ±0.01%
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Fig. 7 Experiment results: the visual performance of standard CS and the random partial sampling frame-
work.(a) the original ball image, and the recovered ball by (b): standard CS; (c) completely random partial
sampling and (d) mixed adaptive-random sampling: Sm + M

p
d

should lies above the horizontal line of Sr . So the Sm +M
p
c curve lines under the horizontal

line of Sr can be omitted.
As a sampling method in spatial domain, we also compare it with the projection charac-

terized standard CS with the same sampling rate. In Figure 7 we show the original ball image
with size 64 × 64 in Figure 7 (a), and the reconstructed image by the standard CS in Fig-
ure 7 (b); the completely random partial sampling method in spatial domain in Figure 7 (c)
and the mixed adaptive-random sampling (Sm + M

p
d ) method in Figure 7 (d).

For the three methods above the sample rate is 30% and the PSNR value for the recov-
ered images are 28.9019, 32.2531 and 34.1675 respectively. In the traditional random
projection method in CS, the OMP algorithm and the “sym 8” wavelet transform are
employed, and the the ball image is denoted as a vector with size 4096 × 1 to directly
sense and recovery. Here there are two main reasons for the poor performance of stan-
dard CS. One is the OMP recovery algorithm, which focus on the operation speed rather
than the recovery efficiency, and the other is the limited sparse representation ability of
wavelet transformation. Other good recovery algorithm and better sparse representation will
achieve better performance, which may surpass our algorithm. However this paper do not
aim at developing a reconstruction algorithm but proposing a new concept for measurement
learning.

Table 3 The PSNR (dB) comparisons among different algorithms

Image Data Ratio MAR R-GSR [26, 27] TRPS MAR-GSR TRPS-GSR

House 30 % 32.7723 36.7562 33.6687 37.1779 37.0893

50 % 35.6070 40.3797 38.7431 40.6712 41.7113

80 % 38.7992 46.3753 47.7785 45.6682 49.8807

Barbara 30 % 24.5645 34.9229 24.7261 33.5012 34.3876

50 % 27.4300 39.2226 29.3758 39.6593 39.8125

80 % 29.8954 45.7269 42.1341 42.3528 47.7081

Lena 30 % 28.1117 30.3159 28.7301 31.2212 31.7998

50 % 32.3837 33.9816 35.1140 36.1792 37.7648

80 % 35.5468 40.2195 43.2416 40.2195 46.1186

Boat 30 % 25.4256 25.7810 26.3588 26.7768 27.1711

50 % 28.5856 28.7616 30.8805 30.3538 32.0989

80 % 31.7591 34.4550 39.3448 34.1296 40.0811
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We mainly focus on the importance of edges as the prior information exploited in the
sampling processing. Our sampling strategy is the random partial sampling in spatial domain
of signals. The paper did not aim at developing a reconstruction algorithm but proposing a
new concept for measurement learning. In our method the sampling strategy includes three
successive sampling processes. The first one is to get the low-resolution image and then
the predicted edges are employed to guide for the second adaptive sampling process. By
combining the third random sampling process the total samplings can achieve much better
performance than completely random sampling with the same sampling rate and recov-
ery algorithm as demonstrated above. Some improved recovery algorithm can also achieve
much better performance in the partial random sampling methods [26, 27].

In the end of this section we compare our method with the partial random sampling
method, which we note it as the random sampling and GSR recovery (R-GSR), in the lit-
erature [26, 27]. R-GSR employs the nonlocal adaptive 3-D sparse representation prior to
developed the Split-Bregman based iterative recovery algorithm. Our method and R-GSR
use the different strategies to achieve better performance. Our method focus on the adap-
tive sampling strategy with TV recovery algorithm while the later pays close attention to
the improved recovery algorithm with completely random sampling strategy. MAR-GSR
denotes the method with MAR sampling strategy and the GSR recovery algorithm. As
MAR-GSR, TRPS-GSR denotes the method with TRPS sampling strategy and the GSR
recovery algorithm.

Fig. 8 Experiment results: the sampling masks with sample ratio 50 % and the visual performance of the
random partial sampling frameworks.(a),(b) and (c) are the partial sampling masks with the same ratio 50 %
for random sampling, MAR and TRPS respectively. (d), (e) and (f) are the corresponding recovered images
for R-GSR, MAR-GSR and TRPS-GSR with the GSR recovery algorithm
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In practice we can directly use the random partial sampling S̄r to get the low-resolution
image and then the predicted edges. The edges are employed to guide for the adaptive
sampling S̄a . We name this sampling strategy, S̄m = S̄r

⋃
S̄a , as the two random partial

samplings (TRPS). The η̄2 is defined as η̄2 = 1 −
∑

i,j S̄r (i,j)
∑

i,j S̄m(i,j)
. In this way we can get rich

edges by adjusting the ratio between the fist random sampling S̄r and the second adaptive
sampling S̄a .

For fair comparison, we use four standard test gray images with the size of 256 × 256
including House, Barbara, Lean and Boat. The iterative number in the literature [26, 27] are
set to 60, 50 and 40 for the sample ratio 0.3, 0.5 and 0.8 respectively. We set η2 = 0.6 and
η̄2 = 0.4 for MAR and TRPS respectively. Table 3 shows the PSNR comparisons among
different algorithms.

We can see that our sampling strategy can achieve better or comparable recovery per-
formance when we use the same recovery algorithm GSR. Figure 8 shows the random
partial sampling masks and the recovered images for R-GSR, MAR-GSR and TRPS-GSR
respectively with the same ratio (50 %) and the same recovery algorithm (GSR).

5 Conclusion

In this paper, a novel MAR sensing protocol is proposed to acquire a compressed image rep-
resentation in space domain. Incorporating adaptive edge information that can be trivially
extracted from a low-resolution sampling, the MAR measurements show much better recon-
struction results in comparison with the completely random measurements. The RIP and
incoherence condition of the MAR sensing matrix can be satisfied by balancing the number
of adaptive sampling with that of completely random sampling. The mixed sensing concept
opens up a bright and unexplored way for high-resolution and lost-cost data acquisition.
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