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Abstract—Large-scale characteristic mode analysis (CMA)
poses challenges in computational electromagnetics as it calls for
efficient solutions of large dense generalized eigenvalue prob-
lems. In this paper, we consider two applications that involve
large-scale CMA, and demonstrate that fast multipole algorithms
(FMAs) can be easily incorporated into the implicitly restarted
Arnoldi method (IRAM) for eigenanalysis after simple modifica-
tions. The first application performs CMA for large platforms
made by closed perfectly conducting surfaces. Multilevel FMA
(MLFMA) is embedded into a combined field integral equation-
based theory of characteristic mode (TCM). The second appli-
cation addresses multiscale modeling of small but geometrically
complicated objects, which possess fine subwavelength structures.
An augmented electric field integral equation-based TCM is for-
mulated, and low-frequency (LF-)FMA is adopted to accelerate
the required matrix–vector products.

Index Terms—Augmented electric field integral equation,
characteristic mode, combined field integral equation, fast
multipole algorithm (FMA), large scale.

I. INTRODUCTION

A FTER its humble beginnings in the 1970s, characteristic
mode analysis (CMA) has gained a recent resurgence of

interest in the field of antenna design and optimization. Initiated
by Garbacz and refined by Harrington and Mautz [1]–[3], CMA
was popularized in the antenna community by the work of
Cabedo–Fabrés, as it has been shown promising for system-
atic antenna design [4]. Such a systematic approach becomes
increasingly favored, since heuristic approaches based on the
experience and intuition of antenna engineers hardly survive
the demanding requirement of designing complex antenna sys-
tems. CMA is capable of characterizing an arbitrary object’s
radiation and scattering properties only relying on its geome-
try and material properties rather than the source configuration,
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which makes it a favorable candidate for systematic design
methods where complicated functionality tradeoffs can be han-
dled. Moreover, CMA provides useful physical insight into
antenna operation as well as guidance on the excitation of
desired radiating modes [5]–[7].

Although CMA has shown success in antenna design and
synthesis, a relatively little effort has been devoted to char-
acteristic mode computation. Development of new theory of
characteristic mode (TCM) becomes indispensable in various
large-scale applications where the conventional theory based
on an electric field integral equation (EFIE) fails to properly
function. One example is an automotive antenna where a cou-
pling element excites multimodes of a large platform (closed
vehicle chassis), and the entire platform operates as an antenna
[8]. In this case, the conventional theory suffers from the spu-
rious internal resonance corruption [9]. Another example is
multiscale modeling of a small complex geometry, such as a
metamaterial-inspired antenna. Due to the existence of fine sub-
wavelength structures, a portion or all of the mesh elements are
of small electrical size, which normally results in a large num-
ber of unknowns. In this case, the conventional theory may be
susceptible to a low frequency or dense mesh breakdown [10].

Regarding computational complexity, current strategies of
CMA can only deal with small-scale problems as they explic-
itly generate EFIE impedance matrices. The memory cost is
O(N2), where N is the number of unknowns resulted from
the method of moment (MoM). The complexity of computing
all eigenpairs (eigenvalues and eigenvectors) of a dense gen-
eralized eigenvalue problem is O(N3) with QZ factorization.
Normally, it is not the entire eigenspectrum that is of interest.
The desired spectral portion, i.e., small eigenvalues, corre-
sponds to efficient radiating modes that dominate the induced
current excited by an arbitrary source [4], [11]. This portion
can be iteratively solved for using Krylov subspace methods
such as Lanczos or Arnoldi algorithms [12]–[14]. A number of
matrix vector products (MVPs) are performed in such meth-
ods, each of which has a computational complexity of O(N2).
Even so, this O(N2) complexity hinders large-scale CMA in
the aforementioned applications.

It is well known that fast multipole algorithms (FMAs) can
be used to accelerate MVPs in large-scale EM scattering prob-
lems, among which the multilevel version based on translation,
interpolation, anterpolation, and a grid-tree structure greatly
reduces both computational and memory costs of MVPs to
O(N logN) [15]–[19]. In this paper, we address large-scale
CMA by embedding FMAs into iterative eigensolvers such
as the implicitly restarted Arnoldi method (IRAM) [12], [13]
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and/or the Jacobi–Davidson QZ (JDQZ) method [14]. To ana-
lyze a large closed platform, a combined-field integral equation
(CFIE)-based TCM is employed to remove the spurious internal
resonance corruption. Multilevel FMA (MLFMA) is modified
to accelerate the required MVPs. On the other hand, to rem-
edy the difficulty in multiscale modeling of small complex
geometries, we reformulate TCM on the top of an augmented
electric field integral equation (A-EFIE) [10], and accelerate
the required MVPs with a low-frequency (LF-) FMA [20].
Numerical examples are presented to validate and demonstrate
the performance of the proposed schemes. This work paves the
way of CMA for large-scale and complicated 3-D objects with
limited computational resources.

II. TCM BASED ON EFIE

As suggested by Harrington and Mautz [3], the characteris-
tic mode theory for an arbitrarily shaped perfectly conducting
surface S is formulated on top of EFIE as

XE(r, r
′) · Jn(r

′) = λnRE(r, r
′) · Jn(r

′) r ∈ S (1)

where λn and Jn correspond to the characteristic values and
currents, respectively. Note that integration is implied over
repeated variables in this paper. The real and imaginary parts
of the EFIE impedance operator ZE are denoted by RE and
XE , respectively. The impedance operator applies to a surface
current as

ZE(r, r
′) · J(r′) = −It · ikη

∫
S

dr′G(r, r′) · J(r′) (2)

where k is the wavenumber, η =
√

μ/ε is the characteristic
impedance of free space, and It = I− n̂n̂ extracts the tangen-
tial components of the field with I denoting a unit dyad, n̂ the
unit normal of the surface. In the above, and Green’s dyad is

G(r, r′) =
[
I− ∇∇′

k2

]
g(r, r′) (3)

with

g(r, r′) =
eikR

R
R = |r− r′|. (4)

Approximating the surface current J(r) with Rao–Wilton–
Glisson (RWG) basis functions fj(r), we obtain the matrix
representation of ZE as

[ZE ]ij = −ikη

∫
s

dr fi(r) ·
∫
s

G(r, r′) · fj(r′) dr′ (5)

with Galerkin’s procedure where testing functions are chosen
to be the same as basis functions. Equation (1), therefore, leads
to a generalized eigenvalue problem as

XE · Jn = λnRE · Jn (6)

where the resistance and reactance matrices RE and XE corre-
spond to the real and imaginary parts of the impedance matrix
ZE , respectively.

Usually, one can obtain good approximations to the eigen-
values with large magnitudes using Krylov subspace iterations
[13]. It is hence straightforward, as suggested in the ARnoldi
PACKage (ARPACK) [13], or implemented in the commer-
cial suite FEKO [11], to convert (6) to a standard eigenvalue
problem as

X
−1

E ·RE · Jn = λ−1
n Jn (7)

for fast convergence to desired eigenspectra (small eigenval-
ues), which correspond to efficient radiating modes. A number

of MVPs in the form of X
−1

E · u have to be computed, where

u are the arbitrary vectors. If X
−1

E · u is solved iteratively, it is
favored to solve an equivalent eigenvalue problem given by

Z
−1

E ·RE · Jn = (1 + iλn)
−1Jn (8)

since efficient preconditioners exist for expediting iterative

convergence to EFIE solutions Z
−1

E · u.

III. TCM BASED ON CFIE

Conventional EFIE-based TCM can hardly be used to solve
for characteristic modes of large closed platforms, where ZE

are ill-conditioned due to spurious internal resonances. In a
recent paper, we formulated a CFIE-based TCM as [9], [21]

[αZE(r, r
′) + (1− α)ηZH(r, r′)] · Jn(r

′)
= (1 + iλn) [αRE(r, r

′) + (1− α)iηXH(r, r′)] · Jn(r
′)
(9)

where r ∈ S, α is the CFIE combination coefficient, and XH is
the imaginary part of the magnetic field integral operator ZH ,
which is given by

ZH(r, r′) · J(r′) =2πIt · J(r)− It · n̂
× P.V.

∫
S

dr′∇g(r, r′)× J(r′). (10)

After discretizing (9), one can obtain the matrix eigenvalue
equation as

ZC · Jn = (1 + iλn)MC · Jn (11)

where

ZC = αZE + (1− α)ηZH (12a)

MC = αRE + (1− α)iηXH . (12b)

In the above, ZE and RE have the same definition as before,
while ZH and XH are the matrix representations of operators
ZH and XH , respectively. For simplicity, RWG functions are
adopted herein to discretize the magnetic field integral operator,
such that

[ZH ]ij = 2π

∫
s

dr fi(r) · fj(r)

−
∫
s

dr fi(r) · n̂×∇×
∫
s

g(r, r′)fj(r′) dr′. (13)
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Otherwise, Buffa–Christiansen (BC) or Chen–Wilton
(CW) basis functions can be used as the testing functions for a
better discretization accuracy [22]–[24]. Since ZC is full rank
even at frequencies of internal resonances, we convert (11) to a
standard eigenvalue equation as

Z
−1

C ·MC · Jn = (1 + iλn)
−1Jn (14)

which can be easily solved using iterative methods.

IV. TCM BASED ON A-EFIE

In multiscale modeling, an electrically small object may
result in a large number of unknowns due to the dense dis-
cretization on its fine subwavelength parts. This renders ZE

ill-conditioned, and hinders solving Z
−1

E · u iteratively. In exci-
tation problems, this difficulty has been remedied with an
augmented EFIE (A-EFIE) [10].

In light of the following decomposition:

ZE = ikηV +
η

ik
D

T ·P ·D (15)

with definitions of matrices V, P, and D provided in [10], the
EFIE-based TCM can be reformulated on top of A-EFIE as

ZA ·
[
ikJn

cρn

]
= (i− λn)XA ·

[
ikJn

cρn

]
(16)

or

RA ·
[
ikJn

cρn

]
= −λnXA ·

[
ikJn

cρn

]
(17)

where c−1 =
√
με, and Jn and ρn are the characteristic cur-

rents and charges, respectively. By explicitly enforcing the
charge neutrality condition, we have

ZA =

[
V D

T ·P ·B
F ·D k2I

]
(18)

where F and B are forward and backward mapping matrices
between full and reduced charge vectors, respectively, and I
is an identity matrix of reduced dimension, as defined in [10].
Besides, XA and RA are the imaginary and real parts of ZA,
respectively.

Again, it is convenient to transform (16) into a standard
eigenvalue problem as

Z
−1

A ·XA ·
[
ikJn

cρn

]
= (i− λn)

−1

[
ikJn

cρn

]
(19)

where the A-EFIE solution Z
−1

A · u can be computed iteratively
with a constraint preconditioning scheme. The same process is
also applicable to (17).

V. FMA FOR CMA

In large-scale applications, characteristic modes of inter-
est are normally solved for iteratively. ARPACK, based on

the IRAM or the Lanczos variant for symmetric matrices, is
appropriate for calculating a few eigenpairs of large sparse or
structured matrices, where an MVP requires only O(N) float-
ing point operations [12]. However, when ARPACK is applied
to dense eigenvalue problems, MVPs are challenged by the
O(N2) complexity and storage requirement.

From (8), (14), and (19), the first type of required MVPs for
constructing Arnoldi vectors are of forms RE · u, MC · u, and
XA · u for EFIE-, CFIE-, and A-EFIE-based TCMs, respec-
tively. The simplest approach to perform such MVPs is given
by the following direct extraction.

Regarding an arbitrary vector u, one can efficiently com-
pute Z · u with the conventional FMA, where Z = R+ iX is
taken to be ZE , ZH , or ZA. It is well known that midfrequency
MLFMA reduces the computational complexity and memory
cost of Z · u to O(N logN), and the LF-FMA enables MVPs
with an O(N) complexity [18]–[20]. Hence, for an arbitrary
complex vector u = u′ + iu′′, providing that R and X, u′, and
u′′ are all real, the required MVPs can be computed with a
simple algebraic approach as

R · u = R · u′ + iR · u′′

= �e [Z · u′]+ i�e [Z · u′′] (20)

and

X · u = X · u′ + iX · u′′

= �m [
Z · u′]+ i�m [

Z · u′′] (21)

where �e[ · ] and �m[ · ] take the real and imaginary parts of the
argument in the parentheses, respectively. Moreover, regarding
the CFIE-based theory, MC · u is computed as

MC · u =
[
αRE + (1− α)iηXH

] · (u′ + iu′′)

= α�e [ZE · u′]+ iα�e [ZE · u′′]
+ (1−α)iη�m [

ZH · u′]+(α−1)η�m [
ZH · u′′] .

(22)

A more involved approach to compute MC · u adapts the
plane-wave decomposition. Consider a spatial vector from the
source point rj in group m′ to the observation point ri in group
m such that

rij = ri − rj = ri − rm + rm − rm′ + rm′ − rj

= rim + rmm′ + rm′j
(23)

where rm and rm′ represent the centers of groups m and m′.
We can derive the following plane-wave decomposition:

sin(krij)

rij
=

∫
d2k̂ eik·(rim+rm′j) αR

mm′ (k, rmm′) (24)

where

αR
mm′ (k, rmm′) =

k

4π

L∑
l=0

il(2l + 1)jl(krmm′)Pl

(
k̂ · r̂mm′

)
(25)
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with L as the truncation number of an infinite series, jl(·) as the
spherical Bessel function of order l, and Pl(·) as the Legendre
polynomial of degree l.

As there is no violation of addition theorem for (24), the
FMM calculation may involve both the nearby and non-nearby
groups of group m (except for itself), and the required MVPs
in terms of a two-level algorithm are obtained as

N∑
j=1

[MC ]ijuj =
∑

j∈Gm

[MC ]ijuj + kη

∫
d2k̂Vfim(k̂)

·
∑

m′ �=m

αR
mm′(k, rmm′)

·
∑

j∈Gm′

Vsm′j(k̂)uj , i ∈ Gm (26)

where

Vsm′j(k̂) =

∫
s

dr
(
I− k̂k̂

)
· fj(rm′j)e

ik·rm′j (27)

and

Vfim(k̂) = α

∫
s

dr
(
I− k̂k̂

)
· fi(rim)eik·rim

+ (1− α)k̂ ×
∫
s

dr n̂× fi(rim)eik·rim . (28)

Regarding the multilevel algorithm, the standard MLFMA
bookkeeping can still be employed for convenience [19].
However, a more efficient implementation conducts translation
between nearby groups that belong to the same parent group
at each level. Besides, the coarsest level is taken to be level-1
rather than level-2.

In addition, if MVPs such as XE · u and RH · u are to
be computed, the following plane-wave decomposition can be
used on condition that m and m′ are not nearby groups or
|rim + rm′j | < |rmm′ |:

cos(krij)

rij
=

∫
d2k̂ eik·(rim+rm′j) αS

mm′ (k, rmm′) (29)

where

αS
mm′ (k, rmm′) =

−k

4π

L∑
l=0

il(2l + 1)yl(krmm′)Pl

(
k̂ · r̂mm′

)
(30)

with the spherical Neumann function yl(·) of order l.

Accordingly, the second type of required MVPs are Z
−1

E · u,

Z
−1

C · u, and Z
−1

A · u, which are the solutions of EFIE, CFIE,
and A-EFIE under arbitrary excitation vectors u, respectively.

As EFIE solutions Z
−1

E · u are susceptible to the aforemen-
tioned difficulties, the conventional TCM has limited appli-
cations. However, we remedy the internal resonance problem

with a CFIE-based TCM, where Z
−1

C · u can be iteratively
solved with Krylov subspace methods such as generalized
minimal residual (GMRES) method and biconjugate gradient
(BiCG) method. Sparse approximate inverse (SAI), incomplete

Fig. 1. Point positions.

LU preconditioning, and even Calderoén multiplicative precon-
ditioning schemes can be employed to expedite the convergence
of CFIE solutions [25]–[27]. If the computational time is taken
prior to other factors, it is promising to decompose ZC before-
hand by leveraging fast direct methods with adequate memory
provided [28], [29]. On the other hand, we circumvent diffi-
culties in multiscale modeling of small complex objects with

the A-EFIE-based TCM. If Z
−1

A · u is iteratively solved with
a constraint preconditioning scheme, MVPs can be efficiently
computed with the LF-FMA [10].

VI. JDQZ FOR EFIE-BASED TCM

It is of interest to point out that for EFIE-based TCM, when
(7) is used to compute characteristic modes, IRAM may be a
less appropriate choice if the decomposition of XE is not avail-

able. This is due to the lack of efficiency in solving X
−1

E · u
with conventional preconditioners, such as SAI. However, the
generalized eigenvalue problem (6) can be solved with the
Jacobi–Davidson QZ (JDQZ) method [14]. Without converting
(6) to (7), the correction vector t can be obtained by approxi-
mately solving the Jacobi–Davidson correction equation(

I−RE · u · u∗) (XE − σRE

) (
I− u · u∗ ·RE

)
t

= − (
XE − σRE

)
u, t∗ ·RE · u = 0 (31)

where
(
σ,u = Vs

)
is a solution of

V
∗ ·XE ·V · s = σV

∗ ·RE ·V · s = σs (32)

with the search space V containing several orthogonal basis
with regard to RE . The key is that even when (31) is solved
with low accuracy, JDQZ still gives rise to correct solutions of
(6). However, JDQZ becomes fairly slow in this case. Hence,
it is also beneficial if efficient preconditioners are designed to
accelerate the solutions of (31).

VII. NUMERICAL RESULTS

Numerical tests are first performed to validate the pro-
posed plane-wave decompositions (24) and (29). We consider
two cases as shown in Fig. 1, where the box size is a. In
both cases, the source point j and source group center m′

are located at (0.9999a, 1.0a, 0.0) and (0.5a, 0.5a, 0.5a),
respectively. The observation point i and its group center m
in Case 1 (dashed arrows) are located at (2.9999a, 0.0, 1.0a)
and (2.5a, 0.5a, 0.5a), respectively, such that |rim + rm′j | <
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Fig. 2. Relative error of plane-wave decomposition for the real and imaginary
parts of Green’s function with respect to a/λ.

|rmm′ |. The relative errors between left and right hand sides of
(24) and (29) are calculated with respect to a/λ, where λ is the
wavelength. The truncation number L is chosen to be

L ≈ kd+ 1.8d
2/3
0 (kd)1/3 (33)

where the number of digits of accuracy d0 is set to 3, and
d =

√
3a in this test. As shown in Fig. 2, excellent agree-

ment is observed except for (29) or cos(·) at lower frequencies
(a < 0.5λ), which can be resolved with LF-FMA [20]. We
then place the observation point i and its group center m at
(1.0001a, 0.0, 0.0) and (1.5a, ; 0.5a, 0.5a), respectively, in
Case 2 (solid arrows) such that |rim + rm′j | > |rmm′ |. As
expected, (29) is no longer valid due to the violation of addition
theorem. However, the regular part of the Green’s function, i.e.,
sin(·) can be computed with excellent accuracy (Fig. 2). This
holds even when i and j are very close to each other. Although
the results computed by (24) and (29) are not purely real, the
imaginary parts are negligible as they are normally 1010 times
smaller than the real parts.

The rest of numerical examples are computed with a non-
parallel mixed-form FMA program on an Intel Core i5-2400
CPU with 3.10-GHz clock rate. Mixed-form FMA represents
the field by multipoles for leafy levels in the quasi-static regime,
and by plane waves for higher levels in the wave regime [10],
[30]. In the rest of the examples, we use the plane-wave decom-
position approach for the computation of MC · u, and the direct
algebraic approach for XA · u. The open-source ARPACK
package is employed as the iterative eigensolver unless spec-
ified otherwise. In this study, iterations in IRAM or JDQZ are
referred to as outer iterations, and those in GMRES as inner
iterations. Again, the free-space wavelength is denoted by λ.

A. Cuboid

We validate CFIE- and A-EFIE-based TCMs by computing
characteristic modes of a perfectly conducting cuboid with a
dimension of 1 m × 0.9 m × 0.3 m at 350 and 100 MHz,
respectively. At 350 MHz, the triangular mesh comprises 1
280 patches and 1 920 edges, where the average edge length
is around 0.08λ. A few small characteristic values (CVs) are

TABLE I
CHARACTERISTIC VALUES (CVS) OF CUBOID COMPUTED BY EFIE AND

CFIE AT 350 MHZ

Fig. 3. Current patterns of mode J1 at 350 MHz computed by (a) EFIE and
(b) CFIE (0.9) + FMA.

Fig. 4. Far-field pattern of cuboid mode J1 at 350 MHz.

computed with EFIE- and CFIE-based TCMs, namely (8) and
(14), respectively, while FMA is only applied to CFIE of which
the combination coefficient α is set to 0.9. The comparison
is given in Table I, where good agreement is observed. Note
that real parts of CVs resulted from CFIE are slightly different
from 1. This is because, MFIE is not implemented to generate
as accurate solutions as EFIE in this validation. On the other
hand, EFIE- and CFIE-based TCMs yield the same character-
istic modes. As an example, we plot in Fig. 3(a) and (b), the
current patterns of J1 obtained by the two methods, respec-
tively. A comparison of normalized far field patterns of this
current is given in Fig. 4, where good agreement is observed.
When the error tolerance of GMRES iterations is set to 10−4,
the average numbers of inner iterations in each outer one are
around 600 and 70 for EFIE and CFIE, respectively, as a simple
near-neighbor preconditioner is used.

To validate the A-EFIE-based TCM that addresses densely
meshed objects that are not electrically large, we bring down the
operating frequency to 100 MHz. To generate a reference, the
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TABLE II
CHARACTERISTIC VALUES (CVS) OF CUBOID COMPUTED BY EFIE AND

A-EFIE AT 100 MHZ

Fig. 5. Current patterns of mode J1 at 100 MHz computed by (a) EFIE and
(b) A-EFIE + FMA.

Fig. 6. Far-field pattern of cuboid mode J1 at 100 MHz.

original mesh is used with the EFIE-based formula (8) with an
average edge length of 0.023λ. A finer mesh containing 4 210
triangular patches and 6 315 inner edges is used with (19) based
on A-EFIE, where the average edge length becomes 0.015λ.
As shown in Table II, characteristic values (CVs) obtained by
EFIE agree well with those computed with A-EFIE and LF-
FMA. We also find that characteristic currents generated by the
two methods are consistent. For example, current patterns of
J1 computed by EFIE and A-EFIE are plotted in Fig. 5(a) and
(b), respectively. Their normalized far-field patterns are demon-
strated in Fig. 6. A good agreement can be observed in both the
current and far-field plots.

This example is also adopted to demonstrate the performance
of JDQZ. In JDQZ, one can obtain correct characteristic val-
ues even with a small number of inner iterations (dimension
of search space in GMRES), which indicates that (31) is only
solved with poor accuracy each time. JDQZ and the original
mesh are used to solve for five characteristic modes of the same

Fig. 7. Number of JDQZ iterations with respect to the dimension of GMRES
searchspace.

Fig. 8. Characteristic currents of a NASA almond. (a) J1. (b) J2. (c) J3.
(d) J4. Their characteristic values are −0.0271, 0.0644, 0.0680, and 0.0768,
respectively.

cuboid at 350 and 100 MHz, respectively. The convergence tol-
erance in JDQZ is set to 10−4, which guarantees to generate
correct characteristic modes. Fig. 7 shows the required num-
ber of outer (JDQZ) iterations with respect to the search space
dimension of GMRES. Although a small search space reduces
the computational time of each outer iteration, the tradeoff is
that it increases the total number of outer iterations.

B. NASA Almond

We then consider a NASA almond that has a dimension of
5.05λ× 1.95λ× 0.65λ at 60 MHz. The mesh contains 36 090
triangular patches and 54 135 inner edges, and the average edge
length is 0.0326λ. To solve the CFIE-based eigenvalue prob-
lem (14), the CFIE combination coefficient is set to 0.5, and the
GMRES error tolerance is set to 10−4. The first four character-
istic modes are computed by a six-level MLFMA using about
730-MB RAM, and their current patterns are plotted in Fig. 8.

A typical convergence history of computing MVPs Z
−1

E · u
and Z

−1

C · u with GMRES and near-neighbor preconditioning
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Fig. 9. Typical convergence history of inner (GMRES) iterations with EFIE
and CFIE.

in an outer iteration is shown in Fig. 9, which clearly demon-
strates the advantage of the proposed CMA. In [11], where a
few modes of a vehicle (0.5λ× 0.23λ× 0.25λ) with 9 706
unknowns are computed with the EFIE-based formula (7), the
memory usage is 3.54 and 2.8 GB for QZ factorization and
IRAM, respectively. It is obvious that our scheme enables CMA
of larger scale applications on a small computer.

Note that we herein are not considering extremely electri-
cally large applications, because a great number of modes are
needed for mode expansion, which renders CMA less useful.
However, our method reserves the capability to address such
challenging problems, provided that the direct decomposition
of the full-rank matrix ZC is available.

C. Spiral Antenna

The next example is a spiral antenna with a dimension of
0.4λ× 0.4λ× 0.08λ at 1.64 GHz, where a dense mesh con-
taining 60 552 triangular patches and 82 524 inner edges is
used. The minimum, maximum, and average edge lengths are
0.169× 10−3 λ, 0.733× 10−2 λ, and 0.154× 10−2 λ, respec-
tively. The A-EFIE-based scheme is performed with a six-level
LF-FMA, where the average number of GMRES iterations is
98 for the error tolerance of 1× 10−4 with the usage of a
constraint preconditioner. In this simulation, roughly 810-MB
RAM is used to find five lowest modes. The current and radia-
tion power patterns of a dipole mode, e.g., J3, and a quadrupole
mode, e.g., J4, are plotted in Fig. 10(a)–(d), respectively. For
comparison, we perform an EFIE-based CMA of the same
antenna using a coarse mesh with 7 324 inner edges, where
both matrices RE and XE are explicitly stored. When (7) is
solved with the built-in MATLAB function eigs which imple-
ments IRAM, the memory usage is around 3.48 GB. A good
agreement is observed between the characteristic values and
normalized power patterns obtained by these two schemes, as
shown in Table III and Fig. 11, respectively.

D. Package Board

In the last example, we consider a densely meshed model
that is cut out of a realistic package board that contains two
interconnect pairs. The triangular mesh has 79 480 patches
and 114 240 inner edges, which leads to 193 719 unknowns

Fig. 10. Characteristic modes of a spiral antenna. (a) J3. (b) J4. (c) Power
pattern of J3. (d) Power pattern of J4.

Fig. 11. Normalized power patterns of spiral antenna modes J3 and J4 com-
puted by EFIE and A-EFIE at: (a) xy-plane (θ = 90◦) and (b) xz-plane
(φ = 0◦).

TABLE III
CHARACTERISTIC VALUES OF SPIRAL ANTENNA COMPUTED BY EFIE

AND A-EFIE AT 1.64 GHZ

in this simulation. The entire structure is around 0.2λ along
the largest dimension at 3 GHz. The minimum, maximum,
and average edge lengths are 0.454× 10−5 λ, 0.368× 10−2 λ,
and 0.744× 10−3 λ, respectively. The GMRES error tolerance
is set to 0.15× 10−4, and on average, each outer iteration
takes about 105 inner iterations for GMRES to converge as
a constraint preconditioner is used. Totally, 120 (more than
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Fig. 12. Characteristic currents of a package board part. (a) J1. (b) J2.
(c) J3. (d) J4. Their characteristic values are 19.5, 73.0, −121.0, and 1960.3,
respectively.

enough) Arnoldi vectors are generated to compute four dom-
inant characteristic modes. Their current patterns are illustrated
in Fig. 12, where the characteristic values are also provided.
The direct residuals of such eigensolutions are less than 10−3.
With the usage of a seven-level LF-FMA, the memory cost
in this computation is less than 1 GB, and the CPU time is
about 6 h.

VIII. CONCLUSION

In this article, we address large-scale CMA with FMAs. As
the EFIE-based TCM is susceptible to the corruption of spuri-
ous internal resonances, we incorporate multilevel (ML-) FMA
with a CFIE-based TCM to compute the modes of large closed
conducting surfaces. The standard MLFMA program can be
easily modified to perform the required matrix–vector multi-
plication operations in the iterative eigensolvers. On the other
hand, an A-EFIE-based TCM is also developed for analyz-
ing multiscale structures. By incorporating LF-FMA, it enables
one to perform CMA for densely meshed objects that are not
electrically large but contain fine components. Several numer-
ical examples are provided to demonstrate the validity and
efficiency of the proposed schemes. In even larger scale simula-
tions, FMA can be implemented in parallel on many processors
for better performance.
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