A Highly Tunable Sub-Wavelength Chiral Structure for Circular Polarizer

Menglin. L. N. Chen¹, Li Jun Jiang¹, Wei E. I. Sha¹ and Tatsuo Itoh²

¹Dept. Of EEE, The University Of Hong Kong

²EE Dept., University Of California, Los Angeles

Contact: menglin@connect.hku.hk
CONTENTS

- Introduction of chiral media
- Proposed chiral structure
 - Origin of chirality
 - Tunability in polarization control
 - Chiral circular polarizer
- Conclusions
INTRODUCTION

- Chiral medium
 - composed of particles that cannot be superimposed on their mirror images

- Examples
EM PROPERTY OF CHIRAL MEDIA

- **BI-isotropic** and **BI-anisotropic** media
 - Cross coupling between the electric and magnetic fields along the same direction

Constitutive relations

\[
\mathbf{D} = \varepsilon \cdot \mathbf{E} + \xi \cdot \mathbf{H} \\
\mathbf{B} = \zeta \cdot \mathbf{E} + \mu \cdot \mathbf{H}
\]

- **Aligned** electric dipoles and magnetic dipoles appear *simultaneously* under the action of *an electric field or a magnetic field alone.*
EM WAVE SOLUTION IN CHIRAL MEDIA

- Assume isotropic, lossless and reciprocal chiral media

Constitutive relations

\[
\begin{pmatrix}
D \\
B
\end{pmatrix} = \begin{pmatrix}
\varepsilon_0 \varepsilon_r & -i\kappa/c \\
i\kappa/c & \mu_0 \mu_r
\end{pmatrix}
\begin{pmatrix}
E \\
H
\end{pmatrix}
\]

\(\kappa\), chirality that measures cross-coupling effect between electric and magnetic fields

- Two eigenvalues

\[k_{\pm} = k_0 (n \pm \kappa) \quad n = \sqrt{\varepsilon \mu}\), refraction index of the medium without chirality

- Two eigenvectors

\[E_{\pm} = \frac{1}{2} E_0 (\hat{x} \mp i\hat{y})\]

+, right circularly polarized wave; -, left circularly polarized wave
PROPERTIES OF CHIRAL MEDIA

- Negative refraction
 - Negative refraction index for one circularly polarized wave when both ε and μ are positive.

 \[k_{\pm} = k_0 (n \pm \kappa) \quad n = \sqrt{\varepsilon \mu} \]

- Optical activity
 - Rotation of the plane of polarization of linearly polarized wave

- Circular dichroism
 - Different absorption of the left and right circularly polarized wave
REVIEW OF CURRENT WORK

- Existing prototypes
 - 3D chiral structure[1]
 - Planar chiral structure[2]

- Proposed chiral structure
 - Simple 3D chiral geometry
 - Conveniently fabricated on PCB
 - Great capability to manipulate the polarization state of EM waves
 - Large tunability

ORIGIN OF CHIRALITY

- Fundamental mode of the proposed chiral structure
- Two pairs of aligned ME dipoles

(a) 3D of the chiral particle resonating at the fundamental mode

(b) Current distribution viewed from the \(x \) axis and induced ME dipole pair along the \(x \) direction

(b) Current distribution viewed from the \(y \) axis and induced ME dipole pair along the \(y \) direction
TRANSMISSION MATRIX

- Assume a plane wave propagates along the z direction

\[
E_i(r, t) = \begin{pmatrix} i_x \\ i_y \end{pmatrix} e^{i(kz-\omega t)}, \quad E_t(r, t) = \begin{pmatrix} t_x \\ t_y \end{pmatrix} e^{i(kz-\omega t)}
\]

\(i_{x,y}\) and \(t_{x,y}\) are polarization states of incident and transmitted waves.

- Chiral particle modelling

Transmission matrix

\[
\begin{pmatrix} t_x \\ t_y \end{pmatrix} = \begin{pmatrix} T_{xx} & T_{xy} \\ T_{yx} & T_{yy} \end{pmatrix} \begin{pmatrix} i_x \\ i_y \end{pmatrix} = T_{\text{lin}} \begin{pmatrix} i_x \\ i_y \end{pmatrix}
\]

Linear basis

\[
T_{\text{circ}} = \begin{pmatrix} T_{++} & T_{+-} \\ T_{-+} & T_{--} \end{pmatrix} = \frac{1}{2} \left(\begin{pmatrix} T_{xx} + T_{yy} \\ T_{xx} - T_{yy} \end{pmatrix} + i \begin{pmatrix} T_{xy} - T_{yx} \\ T_{xy} + T_{yx} \end{pmatrix} \right)
\]

Circular basis
TUNABILITY

- Chiral particle with different angle α
 - α greatly influences the direction and strength of the induced E and M dipoles, so as the chirality

- Special relationship for $\pm \alpha$

Optical activity: azimuthal rotation angle
Circular dichroism: ellipticity

\[
\theta = \frac{1}{2} [\arg(T_{++}) - \arg(T_{--})] \\
\eta = \frac{1}{2} \sin^{-1} \left(\frac{|T_{++}|^2 - |T_{--}|^2}{|T_{++}|^2 + |T_{--}|^2} \right)
\]

\[
\theta^\alpha = -\theta^{-\alpha} \\
\eta^\alpha = -\eta^{-\alpha}
\]
TUNABILITY (CONT.)

- Influence of α on the polarization control of wave
 - Since the coupling between the ME dipoles is weaken as α increases, θ and η becomes smaller for larger α

\[\theta^\alpha = -\theta^{-\alpha} \text{ and } \eta^\alpha = -\eta^{-\alpha} \]
CHIRAL CIRCULAR POLARIZER

- Convert an x polarized wave to a circularly polarized wave
 - $|T_{xx}| = |T_{yx}|$, $\arg(T_{xx}) - \arg(T_{yx}) = \pm 90^\circ$

Dielectric substrate: AD600, $\varepsilon_r = 6.15$, $h = 1.524$ mm
Geometric parameters: $a = 2.9$ mm, $b = 2.5$ mm, $w = 0.4$ mm, $p_x = 7$ mm, $p_y = 6$ mm

180° phase difference between the cross-polarized component by switching the orientations of the two arms
CHIRAL CIRCULAR POLARIZER (CONT.)

- Experiment setup

- 54 × 63 unit cells
- 378 × 378 mm²

Two horn antennas:
- linear polarized
- working frequency: 6.57 GHz ~ 9.99 GHz

Measure

Transmission matrix in linear basis

Calculate

\[T_{\text{circ}}, \theta, \eta \]
CHIRAL CIRCULAR POLARIZER (CONT.)

- Simulation and experiment results
 - Working frequency 9.2 GHz
 - Efficiency 64%
 - Compact size: unit cell size of $0.21 \lambda_0 \times 0.18 \lambda_0$
 - Conveniently implementation of both right- and left-handed circular polarizer
CONCLUSIONS

- Chiral media: symmetry breaking
- Proposed chiral structure
 - No symmetry can be found along x, y and z directions, indicating a strong chirality.
 - There are two ME dipole, and the strengths of the E (M) dipoles can be tuned by changing the angle α. Therefore, its polarization control ability can be tuned. Simulation results of the azimuthal rotation angle and ellipticity of the structures with different α have been shown.
 - Both simulated and experiment results have been shown for a right-handed circular polarizer. A left-handed circular polarizer can be easily implemented by reversing the arms.

http://dx.doi.org/10.1109/TAP.2016.2600758
THANK YOU

Acknowledgements:

Research Funds: the Research Grants Council of Hong Kong (GRF 716713, GRF 17207114, and GRF 17210815), NSFC 61271158, Hong Kong ITP/045/14LP, and Hong Kong UGC AoE/PC04/08.

Dr. Sha expresses his acknowledgement for the support from Prof. Wallace Choy.