

# A Highly Tunable Sub-Wavelength Chiral Structure for Circular Polarizer

Menglin. L. N. Chen<sup>1</sup>, Li Jun Jiang<sup>1</sup>, Wei E. I. Sha<sup>1</sup> and Tatsuo Itoh<sup>2</sup>

<sup>1</sup>Dept. Of EEE, The University Of Hong Kong





#### CONTENTS

- Introduction of chiral media
- Proposed chiral structure
  - Origin of chirality
  - Tunability in polarization control
  - Chiral circular polarizer
- Conclusions



#### INTRODUCTION

- Chiral medium
  - composed of particles that <u>cannot be superimposed on their mirror images</u>
- Examples





## **EM PROPERTY OF CHIRAL MEDIA**

- **<u>BI</u>**-isotropic and <u>**BI**</u>-anisotropic media
  - **Cross coupling between the electric and magnetic fields along the same** direction

Constitutive relations

 $\mathcal{D} = \epsilon \cdot \mathcal{E} + \xi \cdot \mathcal{H}$  $\mathcal{B} = \zeta \cdot \mathcal{E} + \mu \cdot \mathcal{H}$ 



**<u>Aligned</u>** electric dipoles and magnetic dipoles appear <u>simultaneously</u> under the action of an electric field or a magnetic field alone.



### **EM WAVE SOLUTION IN CHIRAL MEDIA**

Assume isotropic, lossless and reciprocal chiral media

Constitutive relations

 $\begin{pmatrix} D \\ B \end{pmatrix} = \begin{pmatrix} \varepsilon_0 \varepsilon_r & -i\kappa/c \\ i\kappa/c & \mu_0 \mu_r \end{pmatrix} \begin{pmatrix} E \\ H \end{pmatrix}$ 

 $\kappa$ , chirality that measures cross-coupling effect between electric and magnetic fields

Two eigenvalues

 $k_{\pm} = k_0 (n \pm \kappa)$   $n = \sqrt{\epsilon \mu}$ , refraction index of the medium without chirality

Two eigenvectors

$$E_{\pm} = \frac{1}{2}E_0(\vec{x} \mp i\vec{y})$$

+, right circularly polarized wave; -, left circularly polarized wave



## **PROPERTIES OF CHIRAL MEDIA**

- Negative refraction
  - Negative refraction index for <u>one circularly polarized wave when both ε and</u> <u>μ are positive.</u>

$$k_{\pm} = k_0 (n \pm \kappa) \quad n = \sqrt{\varepsilon \mu}$$

- Optical activity
  - Rotation of the plane of polarization of <u>linearly polarized wave</u>



- Circular dichroism
  - Different absorption of the left and right <u>circularly polarized wave</u>



## **REVIEW OF CURRENT WORK**

Existing prototypes

3D chiral structure<sup>[1]</sup>



- Proposed chiral structure
  - Simple <u>3D</u> chiral geometry
  - Conveniently fabricated on <u>PCB</u>
  - Great capability to <u>manipulate the</u> <u>polarization state</u> of EM waves
  - Large <u>tunability</u>

Planar chiral structure<sup>[2]</sup>





[1] B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, "Nonplanar chiral metamaterials with negative index," *Appl. Phys. Lett.*, vol. 94, no. 15 p. 151112, Apr. 2009.

[2] E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," *Phys. Rev. B*, vol. 79, no. 3, p. 035407, Jan. 2009.



## **ORIGIN OF CHIRALITY**

- Fundamental mode of the proposed chiral structure
- <u>Two</u> pairs of <u>aligned</u> ME dipoles





(b) Current distribution viewed from the *x* axis and induced ME dipole pair along the *x* direction



(b) Current distribution viewed from the y axis and induced ME dipole pair along the y direction



### TRANSMISSION MATRIX

Assume a plane wave propagates along the z direction

$$\mathbf{E}_{i}(\mathbf{r},t) = \begin{pmatrix} i_{x} \\ i_{y} \end{pmatrix} e^{i(kz-\omega t)}, \quad \mathbf{E}_{t}(\mathbf{r},t) = \begin{pmatrix} t_{x} \\ t_{y} \end{pmatrix} e^{i(kz-\omega t)}$$

 $i_{x,y}$  and  $t_{x,y}$  are polarization states of incident and transmitted waves.

Chiral particle modelling

Transmission matrix

$$\begin{pmatrix} t_x \\ t_y \end{pmatrix} = \begin{pmatrix} T_{xx} & T_{xy} \\ T_{yx} & T_{yy} \end{pmatrix} \begin{pmatrix} i_x \\ i_y \end{pmatrix} = T_{lin} \begin{pmatrix} i_x \\ i_y \end{pmatrix} \quad \text{Linear basis}$$

$$T_{circ} = \begin{pmatrix} T_{++} & T_{+-} \\ T_{-+} & T_{--} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} (T_{xx} + T_{yy}) + i(T_{xy} - T_{yx}) & (T_{xx} - T_{yy}) - i(T_{xy} + T_{yx}) \\ (T_{xx} - T_{yy}) + i(T_{xy} + T_{yx}) & (T_{xx} + T_{yy}) - i(T_{xy} - T_{yx}) \end{pmatrix}$$

Circular basis



## TUNABILITY

- Chiral particle with different angle α
  - α greatly influences the <u>direction and strength</u> of the induced E and M dipoles, so as the chirality





• Special relationship for  $\pm \alpha$ 



**Electromagnetics and Optics Research Lab** 





## **TUNABILITY (CONT.)**

- Influence of α on the polarization control of wave
  - Since the coupling between the ME dipoles is weaken as α increases, θ and η becomes smaller for larger α

 $\theta^{\alpha} = -\theta^{-\alpha}$  and  $\eta^{\alpha} = -\eta^{-\alpha}$ 



# CHIRAL CIRCULAR POLARIZER

- Convert an x polarized wave to a circularly polarized wave
  - |Txx| = |Tyx|,  $arg(Txx) arg(Tyx) = \pm 90^{\circ}$



Dielectric substrate: AD600,  $\varepsilon_r = 6.15$ , h = 1.524 mm Geometric parameters: a = 2.9 mm, b = 2.5 mm, w = 0.4 mm, p<sub>x</sub> = 7 mm, p<sub>y</sub> = 6 mm

$$T_{lin}^{\alpha} = \begin{pmatrix} T_{xx} & T_{xy} \\ T_{yx} & T_{yy} \end{pmatrix}, T_{lin}^{-\alpha} = \begin{pmatrix} T_{xx} & -T_{xy} \\ -T_{yx} & T_{yy} \end{pmatrix}$$

<u>180° phase difference</u> between the crosspolarized component by switching the orientations of the two arms



### CHIRAL CIRCULAR POLARIZER (CONT.)

Experiment setup



54 × 63 unit cells 378 × 378 mm<sup>2</sup>



Two horn antennas:

- linear polarized
- working frequency: 6.57 GHz ~ 9.99 GHz

Measure

Transmission matrix in linear basis

Calculate

 $T_{circ}, \theta, \eta$ 

**Electromagnetics and Optics Research Lab** 



## CHIRAL CIRCULAR POLARIZER (CONT.)

- Simulation and experiment results
  - Working frequency 9.2 GHz
  - Efficiency 64%
  - Compact size: unit cell size of 0.21  $\lambda_0 \times 0.18 \lambda_0$
  - Conveniently implementation of both right- and left-handed circular polarizer





## CONCLUSIONS

- Chiral media: symmetry breaking
- Proposed chiral structure



- <u>No symmetry</u> can be found along x, y and z directions, indicating a strong chirality.
- There are two ME dipole, and the strengths of the E (M) dipoles can be tuned by changing the <u>angle α</u>. Therefore, its polarization control ability can be tuned. Simulation results of the azimuthal rotation angle and ellipticity of the structures with different αhave been shown.
- Both simulated and experiment results have been shown for a righthanded <u>circular polarizer</u>. A left-handed circular polarizer can be easily implemented by reversing the arms.

Reference: Menglin L. N. Chen, Li Jun Jiang, <u>Wei E. I. Sha</u>, Wallace C. H. Choy and Tatsuo Itoh, "Polarization Control by Using Anisotropic 3D Chiral Structures," IEEE Xplore, *IEEE Transactions on Antennas and Propagation*, 2016, Accepted for Publication. <u>http://dx.doi.org/10.1109/TAP.2016.2600758</u>



### THANK YOU

Acknowledgements:

Research Funds: the Research Grants Council of Hong Kong (GRF 716713, GRF 17207114, and GRF 17210815), NSFC 61271158, Hong Kong ITP/045/14LP, and Hong Kong UGC AoE/PC04/08.

Dr. Sha expresses his acknowledgement for the support from Prof. Wallace

Choy.