AoE/P-04/08

Manipulating Nonlinear Plasmonics by Fundamental Conservation Laws

W. E. I. Sha¹, X. Y. Z. Xiong¹, L. J. Jiang¹, M. Fang², Z. Huang², A. Al-Jarror³, N. C. Panoiu³, W. C. Chew¹ ¹Department of EEE, The University of Hong Kong, Hong Kong ²Key Laboratory of Intelligent Computing & Signal Processing, Anhui University, China ³Department of EEE, University College London

Introduction

Unique combination of surface-sensitive second harmonic (SH) generation and strong field enhancement in plasmonic structures opening up new possibilities in Centrosymmetry

- ▶ Ultrasensitive shape characterization
- Nonlinear plasmonic sensing
- > All optical signal processing
- High-sensitivity detectors

et. al., Nano Lett. (2013)

Mesch, et. al., Nano Lett. (2016)

All optical chip, IBM (2011

roken at surface

Motivation

Weak nonlinear SH process requires strong field enhancement and efficient radiation mechanisms; however, this is full of challenges:

- > Conventional plasmonic enhancement rules breakdown
- > Difficult to control the radiation of SH wave: multipole emission nature
- > Complicated relation between particle shape and resonance

Zero SH field inside the ga

Parametric nonlinear process governed by fundamental conservation laws Charge • Energy • Parity • Angular Momentum

Method

 Coupled-wave Equations for SHG (1) $\left[\nabla \times \nabla \times \mathbf{E}^{(\omega)} - \mu_0 \varepsilon_0 \omega^2 \left(1 + \chi^{(1)}(\omega)\right) \mathbf{E}^{(\omega)} = i \mu_0 \omega \mathbf{J}^{(\omega)} + \varepsilon_0 \mu_0 \omega^2 \chi^{(2)} : \mathbf{E}^{(\Omega)} \mathbf{E}^{(\omega)*}\right]$ (2) $\left[\nabla \times \nabla \times \mathbf{E}^{(\Omega)} - \mu_0 \varepsilon_0 \Omega^2 \left(1 + \chi^{(1)}(\Omega)\right) \mathbf{E}^{(\Omega)} = \varepsilon_0 \mu_0 \Omega^2 \chi^{(2)} : \mathbf{E}^{(\omega)} \mathbf{E}^{(\omega)}\right] = \mathbf{0}$ Undepleted-pump Approximation • Self-consistent Boundary Element Method (BEM) Initially set $P_{s}^{(\omega)}$ to be zero, Iteratively solve (1) and (2) to capture mutual coupling. $\begin{cases} \boldsymbol{\pi}_{0}^{(\omega,e)} = -\mathbf{n} \times \mathbf{H}_{0}^{(\omega,inc)} & \{ \boldsymbol{\pi}_{0}^{(\Omega,e)} = -i\Omega P_{t}^{S} \\ \boldsymbol{\pi}_{0}^{(\omega,m)} = \mathbf{n} \times \mathbf{E}_{0}^{(\omega,inc)} & \boldsymbol{\pi}_{0}^{(\Omega,m)} = \frac{1}{\varepsilon_{0}} \mathbf{n} \times \nabla_{S} P_{n}^{S} \end{cases}$ $\mathbf{E}_{2}^{(axtot)}$ Nonlinear Source Love's Equivalent Principle Linear Source with $\mathbf{P}_{s}^{(\Omega)} = \varepsilon_{0} \left[\chi_{\perp \perp \perp}^{(2)} \mathbf{n} \mathbf{n} \mathbf{n} + \chi_{\perp \parallel \parallel}^{(2)} \left(\mathbf{n} \mathbf{t}_{1} \mathbf{t}_{1} + \mathbf{n} \mathbf{t}_{2} \mathbf{t}_{2} \right) + \chi_{\parallel \perp \parallel}^{(2)} \left(\mathbf{t}_{1} \mathbf{n} \mathbf{t}_{1} + \mathbf{t}_{2} \mathbf{n} \mathbf{t}_{2} \right) \right] : \mathbf{E}_{2}^{(\omega)} \mathbf{E}_{2}^{(\omega)}$

 $\frac{\partial n}{\partial t} = -\nabla \cdot \mathbf{(n\mathbf{v})}$ Two systems are coupled through the polarization term $= -en\mathbf{v}.$

