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OUTLINE
 Background for Nonlinear Optics
 Maxwell-Hydrodynamic Framework
 Theoretical Results

 Charge Conservation
 Energy Conservation
 Angular Momentum Conservation
 Parity Conservation

 Conclusion
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NONLINEAR OPTICS: A QUICK REVIEW

Martti Kauranen and Anatoly V. Zayats, Nature Photonics 6: 737–748, 2012.

anti-Stokes Raman scattering second harmonic generation four wave mixing

Linear and nonlinear susceptibility:

( ) ( ) ( )1 2 3
0 : :ε χ χ χ = ⋅ + + + P E EE EEE  (1)

nonlinear response
SHG, THG, FWM, Kerr effect … 
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WHY NONLINEAR PLASMONICS?
• Support localized surface plasmon resonance 
• Strong near field enhancement
• Confine energy in a small volume 
• Amplify nonlinear processes

߱ 2߱

N. I. Zheludev, The Road Ahead for Metamaterials, Science, 328: 582–583, 2010.

Control of amplitude, phase, 
polarization, and wavefront of 
electromagnetic waves by 
nonlinear metamaterials and 
plasmonics is an emerging 
research direction, which is full 
of challenges in mathematical 
modeling and physical designs. 
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WHY SHG IS SPECIAL?

Surface SHG in plasmonic nanostructures

• sensitive to particle shape
• sensitive to environment
• sensitive to the incident beam property
• strong nonlinear polarization

→ −r r → −E E → −P P
( ) ( ) ( )2 22 2: :χ χ− = − = =P E E P

0=P
bulk 0≈P

Centrosymmetric
material

Centrosymmetry
broken at surfaces

surface 0≠P

Second-harmonic generation (SHG)
(2)

,
i ijk j k

j k
P E Eχ=

Parametric nonlinear process
• charge conservation
• energy conservation
• angular momentum conservation
• parity conservation

Selection Rules
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APPLICATIONS

All optical chip, IBM (2011)

all optical signal processing

Capasso, Science (2011)

OAM wavefront generation

ultrasensitive shape 
characterization 

Martin, Nano Lett. (2013)

Zhang, Nano Lett. (2011)

2߱
single nanoparticle 

detection 
nonlinear plasmonic 

sensing

Butet, Nano Lett.(2012) Mesch, Nano Lett. (2016)

߱
2߱

Butet, ACS Nano (2014)

߱ 2߱
Yu, Science (2012)

Bloch, Phys. Rev. Lett.(2012)

new frequency generation૛࣓
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When electromagnetic waves strongly interact with metallic structures, it can couple to free
electrons near the metal surface resulting in complex linear and nonlinear responses.
Interestingly, the complex motion of electrons within metallic structures resembles that of fluids
governed by the same hydrodynamic equation.

HYDRODYNAMIC MODEL

Maxwell

Hydrodynamic 

Continuity

The equation is solved by FDTD method with Yee grids.
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CHARGE CONSERVATION

At each point, the electron density 
fluctuates. However, the total charge 
within the sphere is conserved.
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ENERGY CONSERVATION/CONVERSION

second-harmonics third-harmonics

second-harmonics third-harmonics
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ANGULAR MOMENTUM CONSERVATION (1)

• For a metallic structure with N-fold rotational symmetry

െ߭ ൅ 2 ݈ ൅ ݏ ൌ ݊ܰ
:ݏ spin angular momentum of the incident field (1	or െ1	)݈: orbital angular momentum of the incident field߭: total angular momentum of the second-harmonic field݊ ൌ 0, 1, 2, … is an integer

The relation between the spin and orbital angular momenta of the
incident field and the total angular momenta of the second harmonic
field is given by
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ANGULAR MOMENTUM CONSERVATION (2)

• N=2 or N>3, the identity is not satisfied by any sets of ν, 	ݏ
• Second harmonic generation is forbidden or very weak.

• N=1, the identity is satisfied for any ν  .ݏ ,

• N=3, (ν, (ݏ = (+1,-1) and (-1,+1)
• Polarization state of the second-harmonic wave is

always opposite to that of the fundamental wave.

disk-shape

െ߭ ൅ ݏ2 ൌ ݊ܰ
triangle-shape

L-shape

l=0Unit cell
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K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. K.-Gonokami, Phy. Rev. Lett., 112: 135502, 2014.

experimental numerical
ANGULAR MOMENTUM CONSERVATION (3)
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PARITY CONSERVATION (1)

fundamental second-harmonic

Second-harmonic radiation from an object is 
strictly zero along the incident z direction, if the 
projection of the object onto the xoy plane is 
centrosymmetric.

phase retardationPNL

PNLPNL

PNL

cancelation

net PNL

Compact nonlinear Yagi-Uda nanoantenna
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PARITY CONSERVATION (2)
Particle-in-cavity nanoantenna 
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CONCLUSION

Energy 
Conservation

Angular 
Momentum 

Conservation
Parity 

Conservation
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