
mm, �1 � �2 � mm, �h � 2.4 mm, WH � 0.2 mm, �c � 9.5 mm,
Wc � 5 mm, and g � 0.4 mm. Figure 4 depicts the simulated
results of the conventional three-stage PC-BPF and the proposed
filters with �2 � 0 to 3 mm. It exhibits that for the proposed filter
the growing second harmonic was significantly suppressed and the
rejection bandwidth was extended by increasing the value �2. As
the measured results in Figure 5, for interlaced length �2 � 0 mm
the second harmonic suppression was from �19 to �53 dB when
compared with the conventional PC-BPF. Moreover, its insertion
loss and return loss at center frequency are �1.5 and �19 dB,
respectively. In addition, the �20 dB rejection bandwidth was
even achieved 4.5 GHz with the interlaced length �2 � 3 mm that
stands for 40% improvement.

4. CONCLUSION

A wide rejection bandwidth bandpass filter with SIH resonator and
interlaced coupled-line has been proposed in this paper. This filter was
described significantly; it improves the performance of conventional
parallel couple-line structure. The interlaced couple-line can extend
the rejection bandwidth for 40% improvement, and the SIH resonator
can not only suppress the 2f0 spurious but also steepen the upper roll
off characteristic. Furthermore, its insertion loss and return loss can be
maintained at an acceptable level. With implementation and measure-
ment, it is verified for our design concept.
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ABSTRACT: Optimal symplectic integrators were proposed to improve
the accuracy in numerical solution of time-domain Maxwell’s equations.
The proposed symplectic scheme has almost the same stability and nu-

merical dispersion as the mostly used fourth-order symplectic scheme, but
acquires more efficiency in the calculations at the same computational cost.
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1. INTRODUCTION

Symplectic integrator schemes show substantial benefits in the
fields of physics ranging from classical mechanics, electromagne-
tism, and quantum mechanics [1–3]. In this article, we obtained the
optimal symplectic integrators based on the similar approach as
presented in Ref. 4.

First, consider the following general system of ordinary differ-
ential equations

du

dt
� � A � B�u, 0 � t � �� (1)

We can write the mapping from t � 0 to t � �t, as evolution
equations of the form

u�t� � exp��t�A � B�	u�0� (2)

where A and B are noncommuting operators, which can be solved
by approximating exp [�t (A � B)] to the nth-order in the product
form

exp��t�A � B�	 � �
p�1

m

exp��tDpB� exp��tCpA� � O���t�n�1�

(3)

via a well chosen set of factorization or decomposition coefficients
{Cp}and {Dp}, m and n (m � n) are the number of stages and the
order of scheme, respectively. Generally, Eq. (1) results in a class
of factorized symplectic integrators scheme. To determine the
coefficients Cp and Dp, we expand the left hand side and right hand
side of Eq. (3) in powers of �t. The coefficients Cp and Dp of the
nth-order scheme are determined, when we want the two expres-
sions to agree up to (�t)n. In this article, we will consider only the
symmetric factorization scheme such that Cp � Cm � 1 � p (0 

p 
 m � 1), Dp � Dm � p (0 
 p 
 m) and Dm � 0. The scheme
is exactly time reversible [1]. Here, we consider an extended
factorization scheme of the fourth-order by allowing one more
stage than the minimum stage, i.e., five-stage integrators. We
perform the similar approach as indicated in Ref. 4 based on the
minimization of the truncation error-function to find the coeffi-
cients. The coefficients are finally given in Table 1. The norm of

TABLE 1 Coefficients of the Symplectic Integrators

Two-stage
second-order4

Five-stage
Fourth-order3

Optimal five-stage
Fourth-order

C1 0.2928932188 0.17399689146541 0.1786178958
D1 0.7071067810 0.62337932451322 0.7123418311
C2 0.7071067810 �0.12038504121430 �0.0662645827
D2 0.2928932188 �0.12337932451322 �0.2123418311
C3 — 0.89277629949778 0.7752933737
D3 — D2 D2

CFLmax 0.56033 0.74394 0.72633
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the fifth-order error is 0.00061 in the optimal scheme when com-
pared with 0.0069 of the scheme in Refs. 2 and 3. Thus, the
optimal scheme is more accuracy.

2. STABILITY AND DISPERSION OF OPTIMAL SYMPLECTIC
SCHEME

Maxwell’s equations in an isotropic, lossless, and source-free
medium can be written in a matrix form as

�

�t�H
E� � �A � B��H

E� (4)

A � � �0�33 � 	�1R
�0�33 �0�33

� , B � � �0�33 �0�33


�1R �0�33
� (5)

where 	 and 
 is the permeability and permittivity, {0}3  3 is the
3  3 null matrix, R is the 3  3 matrix representing the curl
operator. As indicated in Refs. 2 and 3, we use optimal symplectic
integrators to discretizate Maxwell’s equations in the time direc-
tion and then use a fourth-order accuracy to discretizate R in the
space direction.

For the scheme to be stable, |�| � 1. The � can be written as

� � 1 � �1

2��
p�1

5

gp� 1

	

�t2��x

2 � �y
2 � �z

2�� p

(6)

gp � �
l�i1�j1
i2�j2
· · ·
ip�jp�5

Ci1Dj1Ci2Dj2· · ·CipDjp

� �
l�i1
j1�i2
j2�· · ·�ip
jp�5

Di1Cj1Di2Cj2· · ·DipCjp (7)

�x �
27�e�jkx�x/ 2 � ejkx�x/ 2� � �e�3jkx�x/ 2 � e3jkx�x/ 2�

24�x
(8)

�y �
27�e�jky�y/ 2 � ejky�y/ 2� � �e�3jky�y/ 2 � e3jky�y/ 2�

24�y
(9)

�z �
27�e�jkz�z/ 2 � ejkz�z/ 2� � �e�3jkz�z/ 2 � e3jkz�z/ 2�

24�z
(10)

kx � k sin  cos � (11)

ky � k sin  sin � (12)

kz � k cos  (13)

where k is the wave number, � and  are the wave propagating
angles with respect to x- and z-axis, respectively. In our numerical
simulations, we use space discretizatations grid �x � �y
� �z � � and defined

CFL �
�t

��
u
(14)

The stability of the scheme is determined by the maximum of CFL,
i.e., CFLmax. The numerical results for CFLmax are also shown in
Table 1. The optimal fourth-order scheme has almost the same
CFLmax as the scheme in Ref. 3, but larger than the second-order
method in Ref. 4. The numerical dispersion can be expressed as

cos ���t� � � (15)

where � is the radian frequency. Figure 1 shows the relative phase
velocity error as a function of the points per wavelength (PPW) for
a plane wave traveling at angle  � 0�, � � 45�.

Figure 2 shows the relative phase velocity error as a function of
the propagating angle  at � � 0�.

Figure 3 shows the relative phase velocity error as a function of
the propagating angle � at  � 0�.

For comparison with our optimal scheme, we also plot a two-
stage second-order symplectic scheme [4], a five-stage fourth-
order symplectic scheme [2, 3], standard finite-difference time-
domain (FDTD) and a fourth-order spatial-difference FDTD
scheme (FDTD (2, 4)) [5]. In all following simulations, we use
CFL � 0.5. We can see from the figures both fourth-order sym-
plectic integrators schemes acquire the same dispersion, and have
less dispersion than the second-order symplectic integrators

Figure 1 Dispersion curves for a plane wave traveling at  � 0°, � �
45° with respect to the grid lines versus PPW discretization

Figure 2 Dispersion curves for a plane wave traveling at � � 0° with
respect to the grid lines versus different angle  at PPW � 10
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scheme, standard FDTD, and FDTD (2, 4). Also, both fourth-order
schemes permit a coarser discretization than other schemes for a
given error bound, which, in turn, allow faster computation time
and the storage of less data.

3. CONCLUSION

The proposed symplectic scheme is more efficient in the calcula-
tions at the same computational cost than the mostly used fourth-
order symplectic scheme in Refs. 2 and 3, and provides a new
approach for solving large computational domain electrodynamics
problems.
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ABSTRACT: This paper have successfully demonstrated an all-optical
wavelength conversion scheme for all-speed return-to-zero (RZ) format
data at 10 Gbit/s rate by using a Sagnac interferometer based on semi-
conductor optical amplifier (SOA). The attractive issue of the proposed
method is that the converted signal can be obtained simultaneously with
inverted and noninverted wavelength conversion signals. © 2007 Wiley
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(XPM); all-optical signal processing

1. INTRODUCTION

All-optical wavelength converters are expected to become the one
of key components in future optical networks. SOA-Based wave-
length converters are becoming attractive because of their small
size, cascadibility, and ease of integration. Meanwhile, based on
the nonlinearities of SOAs, various simultaneously with inverted
and noninverted wavelength conversions have been demonstrated.
Schemes based on cross gain modulation (XGM) by use of two
cascaded SOAs are fit for higher-speed operation but usually
employ more than one SOA [1]. Schemes based on cross polar-
ization modulation (XPloM) usually depend on accurate polariza-
tion control and power control, which is quite impractical [2].
Schemes based on cross phase modulation (XPM) by use of
Mach-zehnder interferometer (MZI) also need two SOAs opera-
tion [3]. And to the best knowledge of the authors, schemes based
on XPM by use of Sagnac interferometers are only achieved
noninverted wavelength conversion of optical RZ signals [4] and
inverted wavelength conversion of optical nonreturn-to-zero
(NRZ) signals [5], Simultaneously all-optical inverted and nonin-
verted wavelength conversion using SOA-based Sagnac inter-
ferometer has not been reported before.

Owing to the low pulse energy, high operating speed, compact-
ness and in principle polarization independent, SOA-based Sagnac
interferometers are the one of promising candidates for all-optical
signal processing. Such as all-optical demultiplexing, optical com-
puting, switching, regenerating, etc. In this letter, the paper is first
time achieved simultaneously multifunction wavelength conver-
sion using SOA-based Sagnac interferometer at 10 Gbit/s. Thus,
this scheme may be useful in practical RZ-based high-speed wave-
length-division-multiplexing (WDM) communication networks.

2. PRICINPLE OF OPERATION

Figure 1 shows the schematic diagram of simultaneously all-
optical inverted and noninverted wavelength conversion based on
SOA-based Sagnac interferometer, its principle is similar with [6,
7]. There are four ports, A, B, C, and D, and the whole loop is
connected with the two couplers. Meanwhile, a SOA is placed at

Figure 3 Dispersion curves for a plane wave traveling at  � 0° with
respect to the grid lines versus different angle � at PPW � 10
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