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Abstract: The increasing complexity and scale of photonic and electromagnetic devices
demand efficient and accurate numerical solvers. In this work, we develop a parallel overlapping
domain decomposition method (DDM) based on the finite-difference frequency-domain (FDFD)
formulation to model the electromagnetic response of large-scale complex nanostructures. The
global computational domain is partitioned into multiple overlapping subdomains terminated
with perfectly matched layers (PMLs), enabling seamless source transfer between adjacent
subdomains. A sparse factorization is employed to accelerate the iterative solution process, while
an OpenMP-based parallel implementation ensures high scalability. Several numerical examples
are provided to validate the efficiency and accuracy of the proposed algorithm. The results
demonstrate excellent agreement with analytical and commercial COMSOL solutions. Notably,
the method achieves up to an order of magnitude reduction in computation time, highlighting its
potential as a powerful tool for large-scale photonic and electromagnetic modeling.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Recent advances in electromagnetic and photonic technologies have created a pressing demand
for numerical solvers capable of handling systems with extremely large scales and intricate
geometries. Emerging devices—including large-scale photonic integrated circuits (PICs) [1,2],
metasurface [3,4], and massive antenna arrays [5]—often involve complex geometries, multi-scale
interactions, and millions to billions of degrees of freedom (DoFs). Accurate and efficient
modeling of such systems is crucial for the development of applications ranging from high-speed
optical interconnects to next-generation wireless communications. However, traditional full-wave
solvers, such as the finite-difference time-domain (FDTD) [6] and the finite-element method
(FEM) [7], face prohibitive memory and time costs when tackling large electrical sizes, multiscale
features, and strong near-field coupling. For instance, large-scale photonic crystal slabs [8],
diffractive optical waveguides [9–11] and metasurface-based flat lenses [12–14] often require
simultaneous resolution of subwavelength features and global field distributions, leading to
extremely large sparse linear systems. The increasing computational burden is becoming a major
barrier for the rapid design and optimization of next-generation photonic and electromagnetic
devices.

To address these challenges, several efficient strategies have been proposed. Locally periodic
approximation (LPA) simplifies metasurface and metalens design by neglecting long-range
coupling [15–18]. Hybrid wave–ray strategies combine rigorous full wave solvers (e.g., FDTD,
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Fourier optics, FEM) with global ray tracing (RT) propagation, enabling scalable modeling of
diffractive waveguide arrays, multilayer diffractive optics, and large-area diffraction-coupled
systems [19–22]. This approach preserves key wave phenomena such as diffraction, coupling, and
near-field scattering, while leveraging the computational efficiency of ray methods for large-scale
propagation. Despite their efficiency, these approximations inevitably sacrifice accuracy in
strongly coupled or non-periodic scenarios.

Domain decomposition method (DDM) provides a powerful "divide-and-conquer" framework
for large-scale electromagnetic simulations, in which the computational domain is partitioned
into smaller subdomains, which can be solved independently and in parallel. Over the years,
techniques such as "cement" element method [23,24], finite-element tearing and interconnecting
(FETI) algorithm [25,26] and higher-order transmission conditions [27,28] have been successfully
applied to the analysis of massive antenna arrays, electromagnetic bandgap structures and
frequency-selective surfaces(FSS) and so on [29–32]. The Dirichlet-to-Neumann (DtN) type
DDM has been employed to efficiently analyze photonic crystal devices [33,34]. More recently,
Zhiming Chen introduced the source transfer domain decomposition method (STDDM) for
layered media [35,36], in which sources are transferred layer by layer, enabling efficient solutions
with perfectly matched layers (PML). Parallel STDDM has shown excellent performance in
solving velocity models and multilayer propagation problems [37–39], but their applications have
been limited to relatively simple geometries and excitations conditions.

In this paper, we extend the STDDM framework to the large-scale complex nanostructures
using the finite-difference frequency-domain (FDFD) formulation. Previous STDDM studies
primarily focus on mathematical convergence analysis and simple propagation models. In contrast,
our approach represents a general optical implementation that supports arbitrary geometries,
inhomogeneous materials, and diverse excitation types (e.g., scattering and mode sources), thus
substantially broadening the applicability of STDDM in realistic electromagnetic modeling.
Furthermore, unlike existing STDDM implementations that rely solely on iterative source transfer,
we integrate sparse factorization [40] into the framework. Noticing the fact that only the source
terms need to be modified during iterations, this factorization is introduced to reduce each
iteration to an efficient matrix–vector multiplication. Moreover, we implement the proposed
method with an efficient OpenMP-based parallelization strategy and systematically analyze
the impact of subdomain partitioning on parallel efficiency, offering practical guidelines for
large-scale simulations.

This paper is organized as follows: we introduce the overall framework and basic theory of
the proposed method in Section 2. In Section 3, the efficiency and superiority of the proposed
method are demonstrated through two numerical examples: the scattering of a dielectric cylinder
and a large-scale trapezoidal-shaped topological optical waveguide. Finally, the conclusion is
reached in section 4.

2. Basic theory

2.1. Finite-difference equation

The FDFD method is a well-established numerical technique for solving Maxwell’s equations in
the frequency domain. By discretizing the computational domain using a structured grid, the
partial differential equations governing electromagnetic wave propagation are transformed into
large sparse linear systems. The FDFD approach is especially attractive for modeling complex
materials and geometries, as it directly accommodates inhomogeneous and anisotropic media.

In two-dimensional transverse magnetic (TM) polarization, the wave equation of the total
electric field Et

z is given by:

∇ ·

(︃
1
µr

∇Et
z

)︃
+ k2

0εrE
t
z = 0, (1)
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where εr and µr represent the relative electric permittivity and magnetic permeability, respectively.
In this work, we assume that µr = 1. k0 =

2π
λ is the free-space wavenumber, where λ is the

wavelength.
As shown in Fig. 1(a), using the notations of Φ0 = Et

z(i, j), Φ1 = Et
z(i − 1, j), Φ2 = Et

z(i + 1, j),
Φ3 = Et

z(i, j − 1), Φ4 = Et
z(i, j + 1), the discretized FDFD forms for the wave equation Eq. (1) is

of the form [41]

−2

(︄
1
∆2
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+

1
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)︄
Φ0 + k2

0 ε̄Φ0 +
Φ1 + Φ2

∆2
x
+
Φ3 + Φ4

∆2
y
= 0, (2)

ε̄ =
ε1 + ε2 + ε3 + ε4

4
, (3)

where ∆x and ∆y are the spatial step along the x-direction and y-direction, respectively. This
finite-difference equation is enforced at each interior grid node (i, j), leading to a large sparse
linear system, which is solved for the field Et

z under proper boundary conditions and source:

Ae = b, (4)

where A is a sparse matrix with the structure of Eq. (2) on uniform grids, e is the unknown total
field vector and b represents the discrete source term.

Fig. 1. (a) The five-point stencil for the FDFD method, where Φ0 represents the central
node and Φ1 to Φ4 denote adjacent nodes. ε is the relative permittivity in the discretized
region. (b) The subcell method for material interfaces. The relative permittivity ε1 and ε2
are averaged across fine subcells to accurately resolve boundary effects.

For scattering problems, the total field Et
z is decomposed into the incident field Einc

z and the
scattered field Es

z:
Et

z = Einc
z + Es

z, (5)

The incident field Einc
z satisfies the wave equation in the background medium (assuming air):

∇2Einc
z + k2

0Einc
z = 0, (6)

Subtracting Eq. (6) from the Eq. (1) yields a differential equation for the scattered field [42]:

∇2Es
z + k2

0εrE
s
z = −k2

0(εr − 1)Einc
z . (7)

This scattered field equation can also be discretized using the same finite-difference scheme to
get the form of Eq. (4) where the right-hand side contains the equivalent source term based on
the incident field.
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For the cells intersected by material interfaces, as illustrated in Fig. 1(b), we apply a subcell
integration method to accurately compute the effective relative permittivity [6]. Each coarse grid
cell is subdivided into fine subcells and then the average dielectric properties is assigned accord
ing to the number of subcells in one medium N1 as well as in the other medium N2. Here, the
medium type of each subcell is determined by the location of its center relative to the material
interface:

εave =
ε1N1 + ε2N2

N1 + N2
, (8)

This approach significantly improves the accuracy at curved boundaries compared to standard
cell-centered assignments.

2.2. Perfectly matched layer

To simulate unbounded scattering problems using FDFD, it is essential to truncate the compu-
tational domain with an absorbing boundary condition. We employ the PML approach, which
introduces complex coordinate stretching [43] in Maxwell’s equations to absorb outgoing waves
without spurious reflection.

For 2D TM polarization, the PML is implemented via a complex coordinate transformation:

1
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∂
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1
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z
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+

1
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+ k2
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where

sr =

{︄
1 + jσ

ωε0
, within PML

1, other
, (10)

where ε0 is the permittivity of free space, and ω is the angular frequency of the incident light.
The conductivities σ(x) and σ(y) are typically chosen as a polynomial grading, given by:

σu =
σmax

∆

(︄
u − 1

2
L

)︄m

, u = 1, 2, . . . , L, (11)

σu+0.5 =
σmax

∆

(︂ u
L

)︂m
, u = 0, 1, . . . , L, (12)

where ∆ = ∆x or ∆ = ∆y for the PML layers normal to the x axis or y axis. L is the layer number
of the PML, and m is the order of the polynomial. In this work, the optimized settings are set to
L = 8, m = 2. The coefficient σmax is determined based on the theoretical reflection factor under
normal incidence R(0), typically satisfying [44]:

σmax =
(m + 1)ln[R(0)]

2ηd
, (13)

where η = 120π is the free space wave impedance, and d is the physical depth of the PML region.
This ensures that the reflection from the PML is below a specified threshold.

2.3. PML-based overlapping domain decomposition method

In large-scale FDFD simulations, solving the global sparse linear system becomes increasingly
expensive in terms of memory and computation. To overcome these issues, we develop an
overlapping domain decomposition method that leverages the existing PML structure.

The overall procedure is illustrated in Fig. 2. Initially, the simulation data of the model are
loaded. The global computational domain is then partitioned into multiple subdomains, each
extended with an overlapping PML region that intersects with adjacent subdomains. A global-
to-local mapping is constructed to manage data association. Each subdomain independently
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assembles its local FDFD matrix and performs sparse LU factorization in parallel. In the initial
step, the local system is solved using its own right-hand side as Eq. (4). In subsequent iterations,
each subdomain receives the field values from the overlapping PML regions of neighboring
subdomains, which are used to construct an updated equivalent source. The internal field is then
recalculated using the precomputed sparse factorization. The updated PML fields are passed
back to adjacent subdomains. Once convergence is reached, the global solution is assembled for
postprocessing.

Fig. 2. The overall framework of the proposed method.

As illustrated in Fig. 3, we use the example of dividing the global computational domainΩ into
two subdomains, Ω1 and Ω2, to explain the details of the proposed PML-based source transfer
approach. The interior regions of the two subdomains are non-overlapping, and their union
covers the entire interior of the global domain. However, as shown in Fig. 3(b) and (c), their
respective PML layers extend into each other’s interior regions, creating overlapping zones at the
subdomain interfaces. These overlapping PML regions are the core of our method—they serve as
the medium through which the equivalent sources are transferred between adjacent subdomains.

We illustrate the procedure using a representative case where a point source is located in
subdomain Ω1, as depicted in Fig. 4, with the interface between the two subdomains indicated by
a dashed line. In the initial step, each subdomain independently solves its local system using only
its own source and absorbs outgoing waves through its PML layer, as described by Eqs. (4) and
(9):

∇2
s E(0)

i + k2
0εr,iE

(0)
i = jωµ0Ji, in Ωi, i = 1, 2, (14)

where ∇s =
(︂

1
sx
∂x, 1

sy
∂y

)︂
denotes the anisotropic Laplacian under complex coordinate stretching.

In this example, J1 corresponds to a point source excitation, while J2 = 0. The resulting field
E(0)

1 is shown in Fig. 4(a).
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Fig. 3. Domain decomposition with two subdomains. The hatched area is the PML layer,
the overlapping area is the source transfer region. (a) The global computational domain. (b)
Subdomain Ω1 with its local PML region. (c) Subdomain Ω2 with its local PML region.

Fig. 4. The procedure of DDM using a point source modeling. (a) The field E(0)
1 of the

initial step. (b) The source of Ω2 using transfer operator T21(E
F,(0)
1 ). (c) The fields E(1)

2 of
Ω2 using the transferred source. (d) The combined global field Eg.

To facilitate source transfer, we partition the unknowns in each subdomain Ωi into two parts:

Ei =
⎛⎜⎝
EI

i

EF
i

⎞⎟⎠ , (15)

where EF
i denotes the electric field within the overlapping PML regions ofΩi, while EI

i comprises
all remaining unknowns in Ωi, including both the physical interior and non-overlapping PML
regions. For instance, the yellow area in Fig. 4(a) highlights the overlapping region associated
with EF

1 , which will later act as a transferred source to subdomain Ω2.
Based on Maxwell’s equations for the 2D TM polarization, the equivalent electric current

density of neighbor subdomain Ωp is given by:

Jeq,p =
1

jωµ0

(︂
∇2EF

i + k2
0εr,pEF

i

)︂
, in Ωp, (16)

which serves as an effective source term for updating the solution in the adjacent subdomain.
Notably, the equivalent source in Eq. (16) is defined using the standard Helmholtz operator, since
from the perspective of Ωp, EF

i resides in its physical interior. For convenience, we define a
transfer operator as:

Tpi(EF
i ) = (∇2 + k2

0εr,p)E
F
i , (17)

where the subscript pi indicates that the field EF
i from subdomain Ωi is used to compute a source

term in Ωp. Note that the transfer operator yields a non-zero result only within the overlapping
region, as visualized in Fig. 4(b).
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The iterative update scheme proceeds as follows: at the n-th step, each subdomain solves its
local equation with the transferred source term from its neighbor:

∇2
s E(n+1)

1 + k2
0εr,1E(n+1)

1 = T12(EF,(n)
2 ), in Ω1, (18)

∇2
s E(n+1)

2 + k2
0εr,2E(n+1)

2 = T21(EF,(n)
1 ), in Ω2, (19)

Figure 4(c) shows E(1)
2 , the first iteration fields in subdomain Ω2. In this simple one-way

propagation case, the field EF,(1)
2 in the overlapping region is nearly zero shown in the yellow

area of Fig. 4(c), indicating minimal energy reflection or backward coupling. This observation
suggests rapid convergence of the iterative process. The iteration is terminated when the residual
energy in the overlapping regions satisfies:∑︁

i=1,2

∥︁∥︁∥︁EF,(n)
i

∥︁∥︁∥︁<TOL (20)

where ∥·∥ denotes a suitable norm (e.g., 2-norm), and TOL is a predefined convergence threshold.
Finally, the global field solution is synthesized by summing all contributions from each

subdomain over all iterations:
Eg =

∑︁
n(E

(n)
1 + E(n)

2 ). (21)

As shown in Fig. 4(d), the resulting global solution Eg exhibits a seamless reconstruction
of the total field. Notably, in the overlapping regions, the fields are naturally composed of the
contributions from both subdomains (e.g., EF,(0)

1 + EI,(1)
2 ), yet no visible discontinuity or artifact

is observed, confirming the accuracy and smoothness of the decomposition-based computation.
This result verifies the effectiveness of the proposed source-transfer scheme using overlapping
PMLs in achieving high-fidelity domain decomposition.

To simplify the presentation and clarify the iterative mechanism, the representative example
shown in Fig. 4 only places the source in subdomain Ω1, which leads to an alternating-update
form of the iteration. However, it is important to emphasize that the proposed method is fully
applicable to general scenarios where multiple subdomains contain internal sources. More
complex examples involving multiple active subdomains will be presented in the next section to
demonstrate this capability.

2.4. Sparse factorization

In the proposed domain decomposition framework, the system matrix within each subdomain
remains fixed throughout the iterative solution process, while only the right-hand side vector
(i.e., the equivalent source) is updated in each iteration. This observation naturally leads to
the application of the sparse factorization, which efficiently reduces computational overhead
of repeated solving linear systems in the iteration by replacing direct matrix inversion with a
sequence of sparse triangular factorizations and permutations. In the numerical implementation,
the sparse factorization is a sparse direct solver that factors the system matrix A into four
components:

A = PTLUQT , (22)

where P and Q are permutation matrices to reduce fill-in, and L and U are sparse lower- and
upper-triangular matrices,respectively.

Once factorized, the system as Eq. (4) can be solved efficiently via forward and backward
substitution:

e = Q
(︂
U−1

(︂
L−1 (Pb)

)︂)︂
. (23)

This formulation converts the expensive matrix inversion into a chain of matrix-vector
multiplications, which can be efficiently executed. For a 2D FDFD discretization with N
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unknowns, direct sparse solvers (e.g., sparse LU) generally incur a computational complexity of
O(N1.5) [45]. The sparse LU factorization shares the same complexity in its initial factorization
step. However, once the matrix is factorized, each subsequent triangular solve (per iteration)
has a significantly lower cost of only O(N log N) [46], as the sparse triangular factors contain
only O(N log N) non-zero entries, reducing forward/backward substitutions to efficient sparse
matrix–vector multiplications. This efficiency gain becomes particularly advantageous in our
framework, where multiple iterations are needed to reach convergence, and the matrix remains
unchanged across iterations.

Despite its computational advantages, a well-known limitation of the sparse LU factorization
is its high memory consumption, primarily caused by the fill-in implementation during matrix
factorization—particularly in large-scale systems. Fortunately, this issue is effectively alleviated
by our domain decomposition approach. By partitioning the global domain into smaller
subdomains, the size of each local matrix Ai is considerably reduced, and the corresponding
factorization matrices can be stored with much lower memory cost. Therefore, the combination
of domain decomposition and the sparse factorization enables efficient handling of large-scale
problems with manageable memory usage, while preserving the fast convergence and numerical
accuracy.

The complete solution process combining sparse factorization and domain decomposition is
summarized in Algorithm 1.

Algorithm 1. Domain decomposition with N subdomains using sparse factorization.

3. Results and discussions

In this section, we illustrate the validity, efficiency and scalability of the proposed method
through two representative examples: the scattering of a dielectric cylinder and a large-scale
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trapezoidal-shaped topological optical device. All examples are run on our local server, equipped
with 2.60 GHz Intel Xeon Gold 6240 processor (64 cores) and 1.4 TB memory.

3.1. Scattering of a dielectric cylinder

We consider the scattering of a 2D dielectric cylinder under TM and TE polarization to verify the
accuracy of the proposed method. The cylinder has a radius r = 9λ0 and a relative permittivity
of εr = 4. The total computational domain is 60λ0 × 60λ0, surrounded by PMLs of 8 grid
cells in thickness. The overlapping regions between adjacent subdomains coincide with these
PML layers, ensuring smooth field transition and consistent source transfer across subdomain
interfaces. The incident wave frequency is 0.3 GHz, and the computational domain is discretized
uniformly with 40 points per wavelength, resulting in approximately 36 million unknowns in total.
The radar cross section (RCS) computed using the DDM with 64 equally partitioned subdomains
(black dashed line) is compared against the analytical Mie series solution [47] (red solid line), as
shown in Fig. 5(a). With the relative L2-norm errors of 3.68% for TM mode and 3.25% for TE
mode RCS, the results confirm the accuracy of the proposed method.

Fig. 5. (a) RCS of a dielectric cylinder calculated by the analytical solution and the DDM;
(b) The relative L2-norm error versus iteration number for different subdomain counts.

Figure 5(b) shows the convergence behavior of the DDM in terms of the relative L2-norm
error versus iteration number with respect to the analytical solution. Three configurations with
different numbers of subdomains are tested: N = 4, N = 16 and N = 64. The dashed horizontal
line indicates the L2-norm level of the reference FDFD solution. All cases eventually converge
to a comparable accuracy level with the full-domain FDFD result, confirming the robustness and
stability of the DDM. Moreover, increasing the number of subdomains significantly accelerates
convergence. This behavior differs from conventional finite-element–based DDMs, where the
iteration count typically grows with the number of subdomains. In the proposed method, finer
domain partitioning enhances the efficiency of field exchange across interfaces. As the number of
subdomains increases, a larger number of equivalent sources at internal boundaries are updated
independently, yielding finer angular and directional source transfer. This mechanism effectively
suppresses local field mismatches and leads to faster convergence, demonstrating the excellent
scalability of the proposed method.

Table 1 summarizes the computational performance of the DDM as the number of subdomains
increases. For reference, the conventional full-domain FDFD solution takes 958 seconds and
consumes 102 GB of memory.

With 16 subdomains, the DDM achieves a runtime of only 101 seconds, corresponding to
a speedup factor of approximately 9.5. At N = 64, the runtime further reduces to 40 seconds,
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Table 1. Computational statistics of DDM with varying number of subdomains.

Number of subdomains 2 4 8 16 32 64

Unknowns per subdomain (million) 1800 900 450 225 112 56

Iterations 32 28 24 22 20 16

Time (s) 1372 495 218 101 52 40

Memory (GB) 229 180 150 122 128 136

yielding a speedup of 24× relative to the FDFD baseline. This is primarily attributed to the
reduced problem size per subdomain and improved parallel efficiency, along with a decrease in
the number of iterations required for convergence—which aligns with the analysis in Fig. 5(b).
However, beyond 32 subdomains, the speedup approaches saturation. This is mainly due to the
growing communication overhead and synchronization costs, which offsets the benefit of finer
partitioning.

In terms of memory consumption, DDM requires slightly more memory than FDFD. However,
this slight increase is well justified by the significant reduction in computational time, making
the trade-off both acceptable and worthwhile for large-scale simulations. The increased memory
usage primarily stems from the storage of sparse factorization matrices. When the number of
subdomains is small, each local matrix remains large, leading to larger fill-in during factorization.
As the number of subdomains increases, the size of each local matrix decreases, reducing fill-in
and lowering the memory requirement. This trend results in a minimum memory usage of 122
GB at N = 16. However, when the subdomain count becomes very large (e.g., N = 64), the
memory usage slightly increases again. This is due to two factors: the increased number of
factorization matrices that must be stored simultaneously, and the additional communication
overhead. Nevertheless, the overall memory remains within a practical range and does not hinder
the scalability or efficiency of the method.

Table 2 compares the performance of the proposed DDM with a conventional Schwarz-type
DDM employing first-order Robin transmission conditions [23], under the scenario where
the subdomain size is fixed as 20λ0 × 20λ0 while the number of subdomains increases. The
proposed DDM exhibits significantly faster convergence than the conventional DDM, owing to its
wave-propagation-based source-transfer mechanism that enables more efficient inter-subdomain
coupling. As the number of subdomains increases, the total computation time of the proposed
method grows only slightly, confirming its good scalability. Due to the efficient source-transfer
process, the overall computation time of the proposed method is about an order of magnitude
shorter than that of the conventional DDM without sparse factorization, and still maintaining a
clear advantage over the factorized version.

Table 2. Comparison between the proposed DDM and the conventional Schwarz-type
DDM, with and without sparse factorization, for varying numbers of subdomains.

Number of subdomains 2 4 8 16 32 64

Proposed DDM

Iterations 18 18 20 24 25 28

Time (s) 190 194 207 218 225 244

Schwarz-type DDM

Iterations 56 60 63 68 71 80

Time (s), without sparse factorization 2064 2185 2206 2463 2586 2834

Time (s), with sparse factorization 236 243 258 270 284 305
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3.2. Trapezoidal-shaped topological photonic crystal waveguide

Topological photonic crystal (PhC) waveguides have attracted increasing attention in recent years
owning to their inherent robustness against structural imperfections and fabrication disorder.
However, their complex geometries and the demand for high numerical accuracy pose significant
challenges for large-scale electromagnetic simulations. To evaluate the performance of our
proposed DDM in such scenarios, we consider a trapezoidal-shaped topological PhC waveguide
[48] and compare the results with the commercial software COMSOL.

The geometry of the photonic crystal and the corresponding line-defect waveguide are illustrated
in the right of Fig. 6. Each unit cluster consists of six dielectric cylinders placed at the vertices
of a hexagon with a side length of R = 6 mm, and the lattice constant is set to a = 2.8R. The
cylinders have a relative permittivity εr = 11.7 and radius r = 2 mm, while the defect gap width
is g = 21 mm. The working frequency is fixed at 7.96 GHz. Reverse orbital angular momentum
(OAM) sources are applied at the upper and lower edges of the line defect, each realized by
a square excitation positioned inside a hexagon near the edge. The overall structure size is
approximately 95λ0 × 20λ0 (λ0 is the free-space wavelength), discretized with 85 grids per λ0
(considering high dielectric contrast, about 25 grids per wavelength inside the dielectric). So, the
total number of unknowns is 13,727,500. The entire computational domain is partitioned into 64
subdomains for the DDM simulation.

Fig. 6. Simulated electric field distribution and geometric structure of the topological PhC
waveguide; (a) Simulation results calculated by DDM. (b) Simulation results calculated by
COMSOL.

In Fig. 6, the distribution of the electric-field amplitude computed by the proposed DDM
is shown, along with the results simulated by COMSOL. An excellent agreement between the
two methods can be observed, indicating that our solver is capable of capturing the topological
edge-state propagation accurately. To further validate the accuracy of our solver, Fig. 7 compares
the normalized electric field amplitude along the reference plane 1 indicated in Fig. 6. The
results obtained from DDM and COMSOL almost perfectly overlap, confirming that our approach
not only reproduces the global field profile but also yields accurate field values along critical
waveguide sections.

The blue dashed lines in Fig. 6(a) represent the planes used for evaluating transmitted and
reflected power through U = 1/2

∫
l Re(E × H∗). Then, we define the backscattering ratio as

U2/(U2+U3) and it is calculated to be 7.9%, confirming the robustness of the topological channel
even in the presence of half-cell truncation and sharp bends. Furthermore, the strong confinement
of the field within the defect channel confirms that radiation leakage into the surrounding bulk
photonic crystal is effectively suppressed.
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Fig. 7. Normalized electric field alone plane 1 in Fig. 6 by the proposed algorithm and
COMSOL software.

Furthermore, Table 3 summarizes the computational performance of the different methods.
Since COMSOL software is based on FEM, the comparison is carried out under comparable
accuracy for fairness. The relative L2-norm errors of FDFD and DDM with respect to the
COMSOL reference are 2.62% and 2.87%, respectively. In terms of computation time, DDM
significantly outperforms the other two methods, completing the computation within 24 s, which
corresponds to a speedup factor of approximately 13.4 compared with COMSOL and 18.3
compared with conventional FDFD. Regarding memory consumption, DDM requires 40 GB,
which is moderately higher than COMSOL (23 GB) and FDFD (32 GB). The additional cost of
DDM mainly originates from storing sparse factorization matrices and communication overhead,
whereas COMSOL benefits from highly optimized internal memory management. Nevertheless,
considering the substantial acceleration achieved by DDM, this increase in memory demand is
acceptable and does not compromise overall efficiency. All corresponding codes are provided at
[49].

Table 3. Computational statistics of the topological PhC waveguide.

COMSOL FDFD DDM

Computation time (s) 321 440 24

Memory usage (GB) 23 32 40

Relative error – 2.62% 2.87%

4. Conclusion

In this work, we have developed a parallel overlapping DDM for accelerating the calculation
for large-scale complex nanostructures. By utilizing PML regions as overlapping zones for
source transfer, the approach ensures consistent wave behavior, preserves physical continuity of
electromagnetic fields, and enables efficient parallelization with minimal communication overhead.
The incorporation of sparse factorization and OpenMP parallelization significantly achieves
both numerical accuracy and computational efficiency. Compared with full-domain FDFD and
commercial COMSOL software in numerical examples, the proposed approach demonstrates
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substantial speedup—up to more than an order of magnitude—without compromising accuracy,
at the cost of only modestly increased memory consumption. These results highlight the method’s
potential for addressing computational challenges in next-generation photonic integrated circuits,
VR/AR devices, and other large-area electromagnetic systems. Although the present work
focuses on 2D problems, the proposed overlapping-domain strategy provides a solid foundation
for 3D extensions. Future efforts will integrate distributed-memory (MPI) parallelization and
hierarchical solvers to enable full-vector 3D simulations of large-scale nanophotonic structures.
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