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Abstract—Space-time coding metasurfaces introduce a new
degree of freedom (DOF) in the temporal domain, enabling
advanced manipulation of electromagnetic (EM) waves, partic-
ularly in controlling waves at different harmonic frequencies.
Many applications of such metasurfaces rely on optimization
algorithms to achieve specific functionalities. However, the com-
putational cost of these algorithms becomes prohibitive when
optimizing metasurfaces with large spatial and time dimensions.
To address this challenge, we propose a quantum annealing-
inspired optimization framework designed to efficiently optimize
space-time coding metasurfaces. First, the scattering behavior
of space-time coding metasurface is mapped into the form of a
binary spin model, where the phase of each meta-atom, including
the discretization into arbitrary bits, is encoded as spins. Next, we
construct the fitness function tailored to the desired optimization
goals, and the resulting binary spin problem is then solved
using a quantum-inspired simulated bifurcation (SB) algorithm.
Finally, we demonstrate the effectiveness of our approach through
several representative examples, including single-beam steering,
multibeam steering, and waveform design at arbitrary harmonic
frequencies. The proposed method significantly enhances the
optimization efficiency, delivering high-quality solutions while
substantially reducing computational time compared to genetic
algorithms (GAs), quantum-inspired GAs (QGAs), and simulated
annealing (SA). This advancement enables the practical opti-
mization of large-scale space-time coding metasurfaces, paving
the way for their broader application in advanced EM wave
manipulation.

Index Terms—Beamforming, quantum-inspired optimization,
simulated bifurcation, space-time coding metasurface.

I. INTRODUCTION

ETASURFACES, composed of subwavelength unit
elements, have revolutionized the control of electro-
magnetic (EM) waves by enabling precise manipulation of
amplitude, phase, and polarization [1]. These versatile struc-
tures can introduce phase differences at the subwavelength
scale, facilitating numerous applications such as beamforming,
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filtering, and wavefront shaping [1]. The integration of both
passive and active metasurfaces has demonstrated significant
potential in advancing next-generation wireless communica-
tions [2]. Recently, time-modulated systems have garnered
considerable attention for their ability to overcome existing
limitations and enable unprecedented wave manipulation [3],
[4], [5], [6]. In particular, recent developments in metasur-
faces have introduced the concept of space-time coding, or
time-modulated metasurfaces, which expand the capabilities
of conventional metasurfaces through temporal modulation
[71, [8], [9], [10], [11]. This additional degree of freedom
(DOF), inspired by time-modulated antenna arrays [12], [13],
[14], opens up unprecedented opportunities for dynamic and
frequency-agile EM wave manipulation [15], [16], [17], [18].

Many designs of space—time coding metasurfaces rely on
optimization algorithms to achieve specific functionalities [7],
[81, [9], [10], [11], [15], [16]. As a discrete combinatorial
optimization problem, the optimization of space-time cod-
ing metasurfaces poses significant challenges for traditional
approaches such as genetic algorithms (GAs) and simu-
lated annealing (SA). The inclusion of a time dimension
exponentially increases the computational complexity, render-
ing the optimization process prohibitively slow. Alternative
approaches, such as retrieving equivalent amplitude and phase
[10], machine learning-based techniques [19], and space—time
coding sequence optimization [9], have shown potential in
addressing large-scale problems. However, these methods
often involve extensive preprocessing, which is inherently
time-consuming and typically requires further integration with
optimization algorithms to achieve complex functionalities.
As a result, achieving end-to-end optimizations under such
constraints remains a substantial challenge in practical appli-
cations. This underscores the urgent need for the development
of fast optimization approaches, or even real-time optimization
techniques, to support the applications of space—time coding
metasurfaces.

To tackle these challenges, we propose using the simu-
lated bifurcation (SB) technique, a quantum annealing-inspired
algorithm rooted in quantum physics. This method has proven
to be significantly more effective than traditional algorithms
in solving complex combinatorial optimization problems [20],
[21], [22], [23]. Recent advancements in quantum electro-
magnetics and optimization techniques [24], [25], [26], [27]
encompass areas such as quantum electrodynamics (QED)
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simulations [28], [29], [30], quantum annealing-type algo-
rithms [22], [23], [31], [32], [33], [34], quantum-inspired GAs
(QGAs) [35], [36], and algorithms based on quantum circuits,
such as variational quantum algorithms (VQAs) [37], [38]
and quantum linear algebra [39], [40], all of which demon-
strate substantial potential for a wide range of applications.
Quantum annealing-type algorithms, in particular, have been
investigated for practical beamforming problems in multi-input
multi-output (MIMO) systems and metasurfaces [22], [23],
[32], as well as for solving complex optimization problems
in physics [24], [41] and wireless communications [42], [43].
Unlike quantum annealing executed on a quantum machine,
which is constrained by the limited scale of problems due to
the physical limitations of quantum components [25], quan-
tum annealing-inspired optimization methods, such as the SB
algorithm [20], [21], operate on classical computers. These
methods offer significant advantages, including suitability for
large-scale problems and parallel acceleration. Although it is
a classical algorithm, it partially simulates the behavior of
quantum systems and demonstrates performance comparable
to algorithms executed on quantum machines for certain
problems. However, the application of this method to the
optimization challenges associated with space-time coding
metasurfaces remains relatively underexplored, especially in
key areas such as problem mapping, fitness function design,
and validation through practical case studies.

This work introduces a novel quantum annealing-inspired
algorithm tailored for the optimization of space—time coding
metasurfaces. The key contributions of this research are as
follows.

1) Reformulating the scattering problem of space-time
coding metasurfaces into a binary spin model. In
this mapping, arbitrarily discretized phase states are
encoded as spins, while spin-spin interactions capture
the space—time synthesis of the metasurface elements.

2) Developing fitness functions tailored to desired scatter-
ing patterns, which enables arbitrary angular spectrum
control at harmonic frequencies. These functions encap-
sulate the specific optimization objectives and are
efficiently solved using the accelerated quantum-inspired
SB solver. Comparisons with GA, QGA, and SA high-
light the advantages of the proposed method.

3) Presenting several representative numerical examples,
including single-beam steering, multibeam steering, and
waveform design at arbitrary harmonic frequencies.
These examples demonstrate the feasibility and effi-
ciency of the proposed method.

The proposed approach overcomes the limitations of tra-
ditional methods by providing high-quality solutions with
significantly reduced computational effort. This advancement
not only enables rapid beam manipulation for space—time
coding metasurfaces but also broadens their applicability in
dynamic communication systems. Furthermore, the methodol-
ogy can serve as an inspiration for applying quantum-inspired
annealing techniques to a wider range of time-varying electro-
magnetic problems, including time-modulated antenna arrays
and photonic time crystals.
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Fig. 1. Energy function, i.e., Hamiltonian, of the binary spin model

varies throughout the optimization process, transitioning from an initial spin
configuration (A) to a local minimum (B), and ultimately to the global
minimum (C).

The remainder of this article is organized as follows:
Section II introduces the principles of the proposed method,
including the binary spin model, the mapping from the
scattering of space-time coding metasurface to binary spin
model, and the fitness function construction. Section III details
the quantum-inspired SB algorithm for solving binary spin
model, and evaluates its performance. Section IV showcases
several representative applications of the space—time coding
metasurface using the proposed method, such as beam steering
and waveform design. Finally, Section V concludes this article
with a summary and implications.

II. PRINCIPLES
A. Binary Spin Model

The binary spin model, inspired by the Ising model which
was originally developed in statistical mechanics to describe
ferromagnetism in materials [44], has found extensive applica-
tions in combinatorial optimization problems. The binary spin
model can be expressed as

H=-

M=
M=

Jijsis; (D

i

1l
—_
~.

I
—_

where s; is the binary spins that represent the state of the
system (spin up or spin down in Fig. 1), J; represents
the coupling or interaction between spins s; and s;, H is
the Hamiltonian, or energy function, of the system, and N here
denotes the total number of spins. The objective of solving
a binary spin model is to minimize the Hamiltonian, which
corresponds to finding the configuration of spins s; that leads
to the lowest (ground) energy state. This optimization can
be formulated as a quadratic unconstrained binary optimiza-
tion (QUBO) problem, where minimizing the Hamiltonian
corresponds to solving combinatorial tasks (e.g., maximizing
an objective function). For higher order unconstrained binary
optimization (HUBO), a generalized higher order Hamiltonian
extends the framework, enabling solutions to more complex
optimization problems [45]. Since the binary spin model can
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Fig. 2. Scattering of a space—time coding metasurface, controlled by an
FPGA, allows the excitation of each meta-atom to vary over time, enabling
precise control of waves at different harmonic frequencies.

be efficiently solved using quantum annealing machines or
quantum-inspired algorithms, the beamforming problem can
be reformulated into this model for rapid solutions, as first
demonstrated in [32] and [34]. This process involves mapping
the variables (phases) to spin states and carefully designing
the objective function.

An intuitive example is provided in Fig. 1, showing the
evolution of energy, i.e., Hamiltonian, during the optimization
process. Spin configurations A, B, and C represent the states of
the spins at the beginning, middle, and end of the optimization,
respectively. Starting with Hy and configuration A, a local
optimum corresponding to configuration B is reached midway
through the optimization. Ultimately, the best configuration,
C, is achieved, yielding the lowest energy and representing
the global optimal solution.

B. Scattering of Space-Time Coding Metasurface

For the scattering of a space-time coding metasurface
controlled by a field-programmable gate array (FPGA), the
excitation of each meta-atom varies over time, enabling beam
control at different harmonic frequencies, as indicated by the
Fourier transform [8]. For instance, as illustrated in Fig. 2,
with a perpendicularly incident wave at central frequency f,
it is possible to generate an anomalously reflected wave at f;, a
perpendicularly reflected wave at harmonic frequency f. + fo,
and even a complex waveform at harmonic frequency f. — f.

Without loss of generality, under the perpendicular inci-
dence of a plane wave with a time-harmonic dependence
e/ the time-dependent scattering pattern of a xQy-plane
placed space—time coding metasurface can be expressed as

(8]

N M
[0.0.0= 3 Y Enn(0. )T ()bt 2)
n=1 m=1
where E,,(0, ¢) represents the far-field pattern of the (m, n)th
element at the central frequency f., and j is the imaginary
unit. The parameter d represents the element spacing along
the x- and y-directions, k, and k, are the wave numbers along
the x- and y-axes, and I',,,(¢) is the time-modulated reflection
coefficient of the (m, n)th element. I',,,(¢) is assumed to be a
periodic function of time and is defined over one period as a
linear combination of shifted pulse functions

mn(o—zr’ Ub,(0) 3)
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where U’ (t) is a periodic pulse function with a modulation

period Ty. Within each period, U' (¢) is defined as

mn

; I, (-Dr<t<lt

(1) = 0, otherwise . @)
Here, 7 = Ty/L denotes the pulsewidth of Uf,m(t), where L is
the length of the time-coding sequence, and I',, represents the
reflection coefficient of the (m, n)th coding element during the
interval [(I — 1)7,I7] at the central frequency. By applying a
Fourier transform to U, (f), we obtain

,{,m(t) — Z C}’;llnejZIThﬂ)l (5)

h=—co

where fy = 1/Ty, h is the index for harmonic frequency, and
the coefficients ¢!, are given by

Ty
/ Ul (e /gy, (6)
0

Thus, the Fourier series coefficients a”
tion I',,,,(f) can be written as

Z F hl / —jZnhfordt
] (-Dr
. h —jrh(2l-1)
= Z sinc{ — Jexp| —— | . (7)
= L L L

Finally, the far-field scattering field of the space—time coding
metasurface at the hth harmonic frequency f. + hfp is given
by

o= L
mn
Ty

of the periodic func-

F0,¢) = Z Z Zr ./ Lsinc ( h) Epn(6, ¢)

n=1 m=1 I=1
X ej[kxmd+kynd—7rh(21—1)/L]‘ (8)

In this work, the far-field scattering field of a single meta-
atom, E,,,(6, ¢), is assumed to have a cosine shape, similar to
that of a dipole antenna with a reflecting board, and is denoted
as E(6,¢). In addition, pure phase modulation is considered
for beamforming, i.e., |F£nn| =1.

C. Mapping the Scattering Problem Into Binary Spin Model

To map the scattering of a space—time coding metasurface
into the binary spin model, the power pattern must be consid-
ered. The power pattern of the reflected wave is given by

P"0,¢) = |E(0, 9)* Z Z Z Z Z 0l /L
=1 m=1 [=

v=1l u=1 i=1
(ﬂ_) j[k (m—n)d~+ky(u—v)d—2nh(l- l)/L]
L

X sinc?

N M L N M L
=222 ) Tl 9)
n=1 m=1 [=1 v=1 u=1 i=1

where

. nh
Aﬁilmm |E(9, ‘,47)|2/Lzsll'lc2 (I)
w ellktm=—m)d+ky(u=v)d=2mh(I=i)/L] (10)
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For conciseness, the harmonic index # is not explicitly indi-
cated on the symbol of A" here, but is embedded within its
expression. Now, we can recognize that this formulation aligns
with the structure of the binary spin model. The spin-spin
interactions not only account for interactions between antennas
at different spatial positions but also incorporate temporal
dimensions, forming an equivalent M x N x L array. More
explicitly, as a comprehensive example, for power focusing at
a specific angle (6y, o) at harmonic frequency % and a basic

1-bit problem, we have

Ny Ny
Hgp = =P"(6p.00) = = Y _ Y T, T Al
p=1 g¢=1

NA N.S
== § : E :SquJpq

p=1 g=1

Y

where the N; represents the equivalent total number of anten-
nas, defined as Ny = MxN x L. The number of indices p
and q is equal to the number of spins and can be transformed
into the previous indices as p = (m — 1)NL + (n — 1)L + [
and ¢ = (u — 1)NL + (v — 1)L + i in this 1-bit case. Terms
related to angles are embedded in &, and k,. The mapping for
the 1-bit case is straightforward because I',, which represents
the phase of the meta-atom, directly corresponds to the spin-
down or spin-up state s,, with values of 1 or —1. Therefore,
the J,, in the binary spin model is simply equal to Aﬁq. The
negative sign before P"(6y, ¢y) indicates power maximization,
while power minimization can be achieved similarly, as the
binary spin model inherently seeks the minimum energy
configuration.

D. Phase Coding Method for Arbitrary Bits

For higher bit problems, I\ | is no longer limited to values

of 1 or —1, making direct coding impractical. To address this,
a coding matrix can be introduced to map the phases into
spins [22]. In general, for each atom with ny bits, at least ny;,
spins are required to describe its phase. Consequently, a total
of MXNXL X ny spins are needed to describe the scattering
of an nyy space—time coding metasurface.

For example, in a 2-bit problem, the phase of a single meta-
atom can take values from the set {—j,—1, j, 1}. To represent
this, two spins are used to encode the phase of a single atom.
The phase of the first atom can be denoted as I'y = ¢;s1 +
c2814n,, Where ¢; = ((1 + j)/2) and ¢; = ((1 - j)/2). For a
certain beamforming angle (6y, ¢o), the Hamiltonian for 2-bit
case becomes

Ny N,
Hgr = —P" (0, o) = —c1¢* s,5,A"
BF = 0, $0) = —C1€y PS5 pg
p=1 g=1
2N, N, N5 2N
* h * h
—C165 E E SpSqApg — €2€) E E SpSqApg
p=N;+1 g=1 p=1 g=N;+1
2N 2N, 2Ns 2N

— 65 Z Z SPS‘IAZq:ZZSPSqJM (12)

p=N;+1g=N;+1 p=1 g=1
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*

where * is the conjugate operator. J,, consists of four parts
and can be written as

Tpg = CaCpAl,, @B e{1,2}

p € [(@—1DN;+ 1, aNy]
q¢€ [(B_ 1)NY + 1, ﬁNv] .

In total, there are 2N, spins and 2N; X 2N spin-spin inter-
actions Jp, in the 2-bit case. However, for higher bit cases,
the mapping from phase to spin and the corresponding coeffi-
cients become less explicit, necessitating the use of advanced
encoding techniques.

For arbitrary bits, the problem can be generalized using
a matrix representation [22]. For example, in the 2-bit case,
the encoding can be expressed as Sc = p, represented in the
following matrix form:

13)

n

11 B

_ 1 -1 |l a _ T
s=| ., 1| c—[cz]p— 3 (14)

-1 -1 2

2r

where S is the coding matrix, ¢ is the coding coefficient vector
to be determined, and p represents the discretized phase. It can
be observed that the lower half of S is simply the negative of
its upper half, and similarly, the lower half of the p vector
is also the negative of its upper half (in exponential form).
Therefore, the matrix can be reduced to

o[ 3] e[ [3]

This approach ensures that S is a full-rank matrix, allowing
¢ to be uniquely solved using matrix inversion. However, for
higher bit cases, such as the 3-bit problem, S is not a full-rank
matrix but a 4 x 3 matrix. To address this, it is necessary to
add a fourth column to make S full-rank for solving ¢. For
the 3-bit problem, we use the product of three spins to fill the
fourth column. Thus, we have

5)

0

11 1 1 c T

s_ |1 1 -1 -l e | 4
I T S T T A PO I 3
1 -1 -1 1 cs i

4

(16)

where cy, ¢, c3 correspond to si, s, 53, and ¢4 corresponds
to s15253. The spin-spin interactions consist of 16 parts, with
each part containing N; X N terms. For first-order interactions
(involving c1, ¢y, ¢3), there are a total of 9 parts. For third-order
interactions (involving combinations of ¢, ¢;, c3 with c4), there
are 6 parts. Finally, there is 1 part involving ¢4 with itself. The
detailed expression is given as

3N, 3N, N, 3N 3q+2
_ 0
Hor =) ) Jpaspsa+ )0 Iasr [ 50
p=1 g=1 p=1 g=1 q'=3q
3N, N 3p+2 N, N, 3p+2 3q+2
2 E : 0 s
+ JapSa 1_[ Sp + ZZ‘]M H Spr 1_[ Sq
g=1 p=1 p'=3p p=1 g=1 p'=3p  q'=3q
(17)
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where

Tpg = capA", . €{1,2,3)

pell@—DNs+1,aN,], qe[B—1N;+1,8Ns] (18)

and

0 _ * Ah
J5g = CaClA”,

S 2 Al
Jpq = —|C4| A",

ae€{l,2,3}, pel(@a—1)N;+ 1,aN;]
19)

For an arbitrary ny; bits, we aim to use npy spins to represent
the phase of each meta-atom. To achieve this, the matrix S
must be made full-rank by adding the product of ny; spins as
additional spins. For an ny; problem, we need to fill 2! —
npir columns. For example, in a 4-bit case, we need to fill 4
columns, and we can directly use the combination of three
spins, which is Cﬁ = 4, making the matrix an 8 x 8 full-
rank matrix. For a 5-bit case, we need to fill 2* — 5 = 11
columns, so we require all three-spin combinations, four-spin
combinations, and a five-spin combination, as Cg + Cg + Cg =
11. Thus, for any number of bits, we can construct the phase
encoding in this manner, and the high-order binary spin model
can be solved using a corresponding order-reduction method
[45].

E. Fitness Function Construction

Once the scattering at a single angle for arbitrary bits is
mapped to the form of the binary spin model, any desired
fitness function for far-field manipulation can be constructed
using a simple angular integral. This approach enables the
design of angular ranges with varying power intensities, such
as strong scattering in certain directions and weak scattering
in others, at arbitrary harmonic frequencies. More generally,
this concept can be expressed as a solid angle integral for
each harmonic function. To implement this, we just need to
replace A” in the previous equations with A” as shown below

for harmonic A
Al = h / AldQ
([,

n

(20)

where Q" denotes the nth solid angle range with harmonic
index h, and w" is the corresponding weight. For all harmonic
manipulation, we can replace Ah by

A=) Ar=>">"wh (/QhAth).
h h n n

By assigning positive or negative signs to w,, we can control
whether beamforming or beam suppression occurs within the
target angular range. The amplitude of w, determines the
extent of the effect. Thus, using this fitness function, we can
manipulate the power pattern of any harmonic over any far-
field angular range through the proposed method, depending
on the desired objective.

It should be noted that weight tuning becomes increas-
ingly critical for intricate problems, as the Hamiltonian can
be highly sensitive to changes in spin configurations. This
sensitivity—particularly evident in complex tasks—is linked to
the susceptibility of the SB algorithm to errors, as discussed in

2L
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[41]. In this context, complex tasks primarily refer to advanced
functionalities such as multibeam beamforming or sophisti-
cated radiation pattern synthesis, where small variations in
weights or configuration parameters can cause significant
fluctuations in the objective function.

III. QUANTUM-INSPIRED OPTIMIZATION ALGORITHM
A. SB Optimizer

For the binary spin problem, a novel quantum adiabatic
optimization method [46] utilizing a network of Kerr-nonlinear
parametric oscillators (KPOs) has recently been proposed [20],
[21]. The quantum Hamiltonian in this approach is expressed
as

(22)

where % is the reduced Planck constant, &IT and a; are the
creation and annihilation operators, respectively, for the ith
oscillator, and T denotes the Hermitian operator. In this context:
K 1is the positive Kerr coefficient, p(?) is the time-dependent
parametric two-photon pumping amplitude, A; is the positive
detuning frequency between the resonance frequency of the
ith oscillator and half the pumping frequency, and & is a
positive constant with the dimension of frequency. The term
Jij represents the spin-spin interaction obtained from antenna
synthesis, as discussed earlier. Initially, the state of each
KPO is set to the vacuum state, and the pumping amplitude
p(t) is gradually increased from zero to a sufficiently large
value. The constant & is chosen to be sufficiently small
so that the vacuum state serves as the ground state of the
initial Hamiltonian. Through a quantum adiabatic bifurcation
process, each KPO ultimately transitions into a coherent state
with either a positive or negative amplitude. The sign of the
final amplitude for the ith KPO determines the ith spin of
the ground state of the binary spin model, as ensured by the
quantum adiabatic theorem.

The corresponding classical Hamiltonian system is obtained
through a classical approximation, where the expectation value
of a; is expressed as a complex amplitude, x; + iy; (with i
representing the imaginary unit). In this framework, the real
part x; and the imaginary part y; serve as a pair of canonical
conjugate variables, analogous to position and momentum, for
the ith KPO. The classical mechanical Hamiltonian, along
with the equations of motion governing this system, can be
expressed as

H.(x,y,1)
N.

N K2 o2 PO s o A, s

= 2 [4 (xF +57) > (xf =) + > (x; +yl‘)}
+%HBF (23)

where Hpp is the designed Hamiltonian for beamforming
problems. In order to realize a fast numerical solution, some
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small values are discarded [20], [21],
simplified as

and the equation is

N, N,
_N A ~[K 4 A-p®) ,
_Zzyf+,2[4x"+ 2
(24)

According to the property of canonical conjugate variables,
the time derivatives of x; and y; are

H.
5= 28 _ g, (25)
0y
. O0Hsg ’ &o OHpr
.= — =—[Kx? - Alxi— = . 26
3 o (Kt = p() + Al xi =3 ™ (26)

It can be observed that x; and y; are separated, so we can
solve the equation with a four-order Runge—Kutta method [47].
Defining

«0) = [x(0, (0] 27)

and

& 3H3Fi| 28)

2 0

then we can calculate the slopes and update the z. This algo-
rithm is inherently suitable for parallel computing, allowing
the optimum & to be effectively found in single run [22].

Recent studies have demonstrated the potential for hardware
acceleration of quantum-inspired algorithms, particularly the
SB algorithm. In [21], the SB algorithm was successfully
implemented on an FPGA, achieving substantial speedup com-
pared to conventional CPU-based simulations. The inherent
parallelism and deterministic dynamics of the SB method
make it highly compatible with digital hardware platforms
such as FPGAs and application-specific integrated circuits
(ASICs), enabling fast and energy-efficient optimization.
Building on this, we envision embedding the SB algorithm
directly into the hardware of a space-time coding metasurface.
By integrating the SB solver with the metasurface’s real-time
control circuitry, the system can autonomously evolve toward
optimal beamforming solutions with minimal latency. More-
over, the proposed model for space—time coding metasurfaces
is also compatible with quantum annealing machines [25] and
optical Ising machines [48], offering additional platforms for
accelerated optimization.

ft,2) = [Ayi, — (Kx} = p(t) + A) xi =

B. Performance Evaluation

To demonstrate the feasibility of the SB algorithm, we con-
sider a typical application of space—time coding metasurface:
beamforming at a specific frequency while simultaneously
suppressing side lobes at that frequency and minimizing the
energy at other harmonic frequencies. This requires increasing
the energy at the beamforming angle (—H;), suppressing the
energy of side lobes at the central frequency (H>), and sup-
pressing the energy of all harmonic frequencies (H3). During
the simulated quantum annealing process, we monitor the
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Fig. 3. Performance evaluation of the SB algorithm. (a) Bifurcation phe-
nomenon observed during time evolution. (b) Decrease of energy across
optimization steps, where —H/, H», and H3 correspond to the beamforming
energy at the central frequency, the sidelobe energy at the central frequency,
and the energy of beams at all harmonic frequencies, respectively.

bifurcation phenomenon and the energy changes for these
three components, as shown in Fig. 3. The bifurcation phe-
nomenon is illustrated using the first ten spins in Fig. 3(a),
demonstrating the algorithm’s effectiveness. It can be observed
that the energy of all three components gradually decreases
in Fig. 3(b), indicating successful beamforming at the tar-
get angle and target frequency while suppressing energy
elsewhere. It should be noted that the x values and the
corresponding energy may appear to fluctuate, giving the
impression that the optimization has not converged. How-
ever, only the sign of x is used to determine the final spin
state—positive values correspond to “spin-up” (+1), and neg-
ative values to “spin-down” (—1). The algorithm is considered
to have effectively converged once a bifurcation occurs in the
x values, at which point each variable has clearly committed
to a binary state. Therefore, the optimization can be safely
terminated upon detecting this bifurcation, enabling faster
computation without compromising accuracy.

We then evaluate the SB algorithm in comparison with
GA, QGA, and SA. Specifically, we consider the standard
10 x 24 2-bit array beamforming problem with upper sidelobe
suppression [22], which typically serves as a benchmark
case for assessing optimization algorithm performance. To
characterize and compare the efficiency of the algorithms, we
adopt two metrics: single-run time and time-to-target (TTT)
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TABLE 1
COMPARISON OF OPTIMIZATION ALGORITHMS

Metric SB GA QGA SA
Time-to-Target (s) 15 60,904 50,063 3,275
Single-Run Time (s) 15 662 653 91
[49]. The TTT here is defined as
In(1-Py)
=— Xt 29
In(l-P,) 29

where P, is the desired success probability (set as 0.99), P; is
the success probability of finding a target solution in a single
run, and ¢ is the time for a single run. This metric captures
the practical efficiency of an algorithm: even if a single run
is fast, the TTT can still be large if the algorithm fails to
reliably reach the target. Therefore, reporting both single-run
time and TTT provides a more comprehensive benchmark for
algorithm performance. In this study, the target solution is set
as achieving at a 2.5 dB suppression in the upper sidelobe level
(SLL) compared to the result obtained using only conventional
beamforming phases.

The comparative results are summarized in Table 1. As
observed, the SB algorithm achieves nearly 40x faster single-
run execution compared to GA and QGA, and approximately
6x faster than SA. More importantly, SB consistently reaches
the target solution in a single run with 7 = ¢, whereas GA,
QGA, and SA exhibit significantly lower success rates. As a
result, when evaluated in terms of TTT, SB demonstrates a
remarkable advantage—achieving speedups of approximately
4000x over GA, 3300x over QGA, and 200x over SA. In
this setting, SA shows a higher success rate in locating the
target solution compared to GA. However, it also exhibits
greater performance variability, with a tendency to produce
suboptimal results and larger variance across runs. QGA is
a quantum-inspired algorithm that integrates principles such
as qubit representation and superposition-like behavior into
a classical GA framework [36]. It has shown performance
improvements in small-scale problems involving fewer than
32 binary variables [35]. However, in the context of the
beamforming problem considered here, which involves more
than 480 binary variables, QGA performs similar to the
traditional GA and offers only marginal improvements. These
observations are expected to generalize to other beamforming
problems of similar scale and structure.

To further evaluate the solving time and scalability of
the proposed method, we analyze the relationship between
the number of spins (i.e., determined by the metasurface
size and bit resolution) and the required optimization time.
Fig. 4(a) illustrates the solving time as a function of the
spin count, providing a practical reference for estimating
computational requirements across different problem scales.
To quantify scalability, the data are analyzed on a log-log
scale in Fig. 4(b), and a power-law model is fit to estimate
the empirical computational complexity. The resulting fit is
given by 2.26 x 107*N/!82 where N denotes the number
of binary spins. The fit exponent of 1.82, which is close to
quadratic scaling, indicates polynomial growth in complexity,
demonstrating favorable computational scalability of the SB
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Fig. 4. Solving time of the binary spin model using SB algorithm. M, N, L,
and nyis denote the antenna number along x-direction, antenna number along
y-direction, number of time slots, and number of bits for phase discretization,
respectively. (a) Time versus spin number. (b) Log-log scale of the same data,
with a power-law fit applied to estimate the computational complexity.

algorithm. This model provides a predictive tool for estimating
the solving time in larger metasurface configurations. While
the algorithm imposes no fundamental limit on problem size,
practical constraints such as computation time and memory
usage become increasingly relevant as the number of spin
grows. To address these challenges, future work will explore
GPU acceleration and parallel computing strategies, which
hold promise for significantly reducing optimization time.

IV. NUMERICAL RESULTS
A. Single Beam Steering

Time modulation can be treated as an additional DOF for
phase tuning, akin to higher bit discretization, offering sig-
nificant advantages in sidelobe suppression for beam steering
problems [10]. We provide two examples as a demonstration:
one focusing on beam steering at the central frequency and
the other at a harmonic frequency.

1) Beam Steering at Central Frequency: In this scenario,
our objective is to steer the beam toward a specific angle
at the central frequency, while suppressing side lobes at
the central frequency and minimizing energy at all other
harmonic frequencies. As previously discussed, the fitness
function incorporates three weighted components correspond-
ing to beamforming, sidelobe suppression, and harmonic
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Fig. 5. Optimized excitation phases for the 2-bit 8 X8 x 8 space—time coding
metasurface, which are designed to achieve single beam steering at 6 = —14.5°
at the central frequency.

energy suppression. For beamforming at the central frequency,
we assign a weight w? = 10 (the Ist angular range at the
frequency order 0) and define the corresponding angular range
as QY = {—17° < 6 < —12°}. For sidelobe suppression at the
central frequency, we set w) = —0.4 and define the angular
range as Qg = {-90° < @ < 90°} \ QY, operator \ denotes
excluding the beamforming region Q(f. To suppress energy at
all harmonic frequencies other than the central frequency, we
assign weights w4 = —0.3 and define the angular range as
Qh = {-90° < 0 < 90°}, where h € {-3,-2,-1,1,2,3} (i.e.,
h # 0).

Here, we consider a 2-bit §x8 x 8 space-time coding
metasurface with translation invariance along the y-dimension
as a benchmark, the same as the configuration in [8]. This
reduces the total number of binary variables to 1x8x8 x 2.
The optimized phases of the elements at different time slots
are depicted in Fig. 5, while the optimized patterns at different
harmonic frequencies are shown in Fig. 6(a). The results
clearly demonstrate the effectiveness of the optimization,
exhibiting SLL smaller than —14 dB and low sideband energy.
A comparison between the far-field patterns with and with-
out time modulation in Fig. 6(b) highlights the benefits of
incorporating time modulation, as the results with the time
modulation feature lower side lobes due to the equivalent
effect of higher bit discretization. In many cases, achieving
higher bit discretization—such as 2-bit or 3-bit RIS—is neces-
sary to meet performance targets. However, from a hardware
perspective, this is quite challenging, as it would require a
large number of p-i-n diodes to implement these higher bit
configurations, thereby increasing the hardware complexity
and cost. Although time modulation introduces some addi-
tional computational complexity, it ultimately offers a more
practical and cost-effective solution, especially in scenarios
where implementing high-bit RIS is prohibitively expensive.

Furthermore, a sensitivity analysis is conducted to inves-
tigate the impact of weighting parameters on optimization
performance. The primary beamforming weight was fixed at
w(l) = 10 to ensure a strong emphasis on the main objective.
The secondary weights wg and wé’ were varied systematically,
and their effects on the SLL at the central frequency and the
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Fig. 6. Single beam steering pattern at the central frequency for the 2-bit
88 x 8 space—time coding metasurface. (a) Central and harmonic far-field
patterns. (b) Comparison between the far-field patterns with and without time
modulation at central frequency.

maximum sideband lobe level were evaluated, as illustrated in
Fig. 7. The results indicate that the optimization performance
is jointly governed by w9 and w’. The SLL exhibits high
sensitivity to w9, particularly when w4 > 0.3, whereas the max-
imum sideband lobe level is more sensitive when wg is large
and wé’ is small. This asymmetry highlights the importance of
weight balancing in multiobjective formulations. To identify
suitable weight combinations, a combination of empirical
tuning and a dichotomous search strategy was employed. This
hybrid approach leverages problem-specific insights while
maintaining computational efficiency, as each optimization run
completes rapidly. As a future direction, we plan to inte-
grate automated weight selection methods—such as Bayesian
meta-optimization or nested evolutionary strategies—to enable
adaptive and task-aware tuning in real-time.

For this problem, another common approach is to retrieve
the equivalent phase and amplitude of the meta-atoms [8],
[10]. These methods are also very effective, but the pro-
cess of searching for equivalent amplitude and phase could
be time-consuming and often needs to be combined with
optimization algorithms for complex tasks. In addition, this
retrieval procedure may need to be repeated for each different
array size, topology, and time sequence, further increasing
the complexity. The proposed end-to-end optimization method
can directly solve the beamforming problem and achieve
comparable results, making it particularly advantageous for
dynamic and large-scale problems.
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Fig. 7. Sensitivity analysis of the weights wg and wé’, where the beamforming
weight w(l) is fixed as 10. (a) Effect of different weights on SLL at central
frequency. (b) Effect of different weights on maximum sideband lobe.

2) Beam Steering at a Harmonic Frequency: Similar to
beam steering at the central frequency, beam steering at
an arbitrary harmonic frequency can also be achieved by
modifying the fitness function. Still considering the same 2-bit
8x 8 x 8 space-time coding metasurface, we focus the beam at
28° for the harmonic frequency & = —1. We assign a weight
wi! = 10 and define the angular range as Q! = {25.5° <
6 < 30.5°}). For sidelobe suppression at h = —1, we set
wy! = —0.3 and define the angular range as Q;' = {-90° <
6 < 90°} \ Q;!, excluding the beamforming region Q;'. To
suppress energy at all harmonic frequencies other than 7 = —1,
we assign weights w4 = —0.2 and define the angular range
as Q4 = {-90° < 6 < 90°}, where h € {-3,-2,0,1,2,3}. The
optimized patterns at different harmonic frequencies are shown
in Fig. 8(a). A comparison of beam patterns with and without
time modulation is provided in Fig. 8(b), demonstrating good
performance similar to beam steering at the central frequency.

B. Multiple Beam Steering

In addition to suppressing sideband beams and treating
them as interference, it is also possible to harness them for
beamforming—referred to as harmonic beamforming [14].
This enables the generation of beams in different directions,
or in the same direction at different harmonic frequencies. In
such scenarios, weight configurations from simpler cases, such
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Fig. 8. Single beam steering pattern at the harmonic frequency 4 = —1 for the
2-bit 8x8 x 8 space—time coding metasurface. (a) Central and harmonic far-
field patterns. (b) Comparison between the far-field patterns with and without
time modulation at harmonic frequency i = —1.

as the initial single-beam example, often serve as practical
starting points for more complex tasks. This experience-driven
strategy helps streamline the weight selection process. Several
examples demonstrating these capabilities using the proposed
method are presented below.

1) 2-Bit Beam Steering at Different Angles: In this scenario,
we focus multiple beams along different directions correspond-
ing to harmonic orders h = {-2,-1,0, 1,2}, with the beams
directed at angles {—30°,—-15°,0°,15°,30°}, respectively. Still
using the 2-bit §x8 x 8 space-time coding metasurface, we
assign weights w! = 10 and define the angular range as
Q= {-25° + hx15° < 6 < 2.5° + h x 15°}, where
h € {-2,-1,0,1,2}. The results, presented in Fig. 9(a),
demonstrate good performance in harmonic beamforming at
different angles.

2) 2-Bit Beam Steering at the Same Angle: Next, using the
same metasurface configuration as above, we focus the beams
at different harmonic frequencies along the same direction. For
this case, we assign weights w! = 10 and define the angular
range as Q' = {-2.5° < 6 < 2.5°}, where h € {-2,-1,0,1,2}.
The results of harmonic beamforming at the same angle are
depicted in Fig. 9(b), showing the wanted functionality.

3) 3-Bit Beam Steering at Different Angles: Then, we
consider a 3-bit 8x8 x 8 space-time coding metasurface,
where the phases of all the meta-atoms can be tuned indepen-
dently, resulting in a total of 3x8x8 x 8 binary variables. A
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Fig. 9. Multiple beam steering patterns for the 2-bit 8x8 x 8 space-time
coding metasurface. (a) Generating steering beams along different directions at
different frequencies. (b) Generating steering beams along the same direction
at different frequencies.
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Fig. 10. Optimized excitation phases for the 3-bit 8 x8 x 8 space—time coding
metasurface, which are designed to achieve beam steering at (—30°,0°) when
h =1, and at (0°,30°) when h = 2.

two-beam steering example is presented here, where the beam
at the harmonic frequency & = 1 is focused at (-30°,0°),
and the beam at the harmonic frequency h = 2 is focused
at (0°,30°). For this case, we assign weights w} = 10 and
QF ={-32.5° < 0 < =27.5°,-2.5° < ¢ < 2.5°}, while wi = 10
and Q} = {-2.5° < 0 < 25°,275° < ¢ < 32.5°). The
optimized excitation phases of the 3-bit space-time coding
metasurface are shown in Fig. 10, varying across different
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Fig. 12. 1-D multiple beam steering patterns at different frequencies for the
3-bit 8x 8 x 8 space—time coding metasurface. (a) Far-field pattern for 4 = 1.
(b) Far-field pattern for h = 2.

positions and times. The corresponding 2-D and 1-D far-
field scattering patterns at different frequencies are depicted in
Figs. 11 and 12, respectively, demonstrating the effectiveness
of the proposed method.

C. Waveform Design

Finally, we investigate the proposed method for waveform
design using a space—time coding metasurface. Specifically,
we design a square waveform for 7 = 2 and a beamforming
pattern for i1 = —1. For this example, we use a 2-bit 15x15x 8
array, resulting in a total of 2 x 1800 binary variables for
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Fig. 14. 1-D waveform design patterns at different frequencies for the 2-bit
15x15 x 8 space-time coding metasurface. (a) 1-D far-field pattern at
6 = -30°. (b) 1-D far-field pattern at 6 = —10°.

optimization. This scale of the problem presents significant
challenges for algorithms such as GA, which typically require

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 73, NO. 9, SEPTEMBER 2025

substantial computational time. Moreover, generating a square
waveform pattern cannot be directly achieved using certain
analytical methods, as they often rely on continuous amplitude
and phase control [50], which are not available in the con-
sidered discretized systems. For this case, we assign weights
wil = 10 and Q7' = {-32.5° < 0 < -27.5°,-32.5° <
¢ < —27.5°}, while w3 = 8 and Q = {-20° < 6 <
20°,-20° < ¢ < 20°}. As demonstrated in Fig. 13(a) and (b),
high-quality beamforming and square waveform patterns are
generated at 7 = —1 and & = 2, respectively. For comparison,
the square beam pattern generated by a passive metasurface
without time modulation is shown in Fig. 13(c), using the same
objective function with the temporal modulation component
disabled. As observed, the resulting pattern is more irregular
and exhibits noticeable distortions even within the target
angular range—unlike the more uniform and accurate pattern
achieved when time modulation is applied. This demonstrates
that, in the absence of time modulation, beam generation is
not only restricted to the central frequency, but the overall
beamforming performance also degrades due to insufficient
discretizations. The 1-D waveform patterns at different fre-
quencies at 6 = —30° and 6 = —10° are also plotted in
Fig. 14, where the unwanted energy is suppressed, showcasing
the effectiveness of the optimization algorithm. Penalty terms
can be incorporated to further enhance the uniformity of
the square pattern, achieving an approximation of a flat-
top pattern. This example demonstrates the flexibility of the
proposed method and its ability to effectively tackle large-
scale, complex problems.

V. CONCLUSION

A quantum annealing-inspired algorithm is utilized to opti-
mize space-time coding metasurfaces, effectively addressing
the challenge of prolonged optimization times resulting from
the increased number of variables introduced by the time
dimension. The scattering behavior of the space—time coding
metasurface is translated into a binary spin model, which
is then optimized using an SB algorithm equipped with a
carefully designed fitness function. The proposed optimization
algorithm generally demonstrates strong performance across
a range of beamforming targets, as shown in the presented
examples. For more complex tasks, careful calibration of
weights and penalty terms is essential. Future work will focus
on further accelerating the algorithm, extending its application
to more complex tasks such as upper sidelobe suppression,
and conducting experimental validation using a fabricated
space—-time coding metasurface for real-time beamforming
applications.

REFERENCE

[1] H.-T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: Physics
and applications,” Rep. Prog. Phys., vol. 79, no. 7, Jul. 2016, Art. no.
076401.

[2] M. Di Renzo et al., “Smart radio environments empowered by reconfig-
urable intelligent surfaces: How it works, state of research, and the road
ahead,” IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2450-2525,
Nov. 2020.

[3] M. M. Asgari, P. Garg, X. Wang, M. S. Mirmoosa, C. Rockstuhl,
and V. Asadchy, “Theory and applications of photonic time crystals:
A tutorial,” Adv. Opt. Photon., vol. 16, no. 4, p. 958, 2024.

Authorized licensed use limited to: Zhejiang University. Downloaded on September 12,2025 at 04:54:37 UTC from IEEE Xplore. Restrictions apply.



YUAN et al.: QUANTUM ANNEALING-INSPIRED OPTIMIZATION FOR SPACE-TIME CODING METASURFACE

(4]

(5]

(6]

(71

(8]
[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

[28]

H. Li, A. Mekawy, and A. Ali, “Beyond Chu’s limit with floquet
impedance matching,” Phys. Rev. Lett., vol. 123, no. 16, Oct. 2019, Art.
no. 164102.

M. H. Mostafa, N. Ha-Van, P. Jayathurathnage, X. Wang, G. Ptitcyn,
and S. A. Tretyakov, “Antenna bandwidth engineering through time-
varying resistance,” Appl. Phys. Lett., vol. 122, no. 17, Apr. 2023, Art.
no. 171703.

Z. Hayran and F. Monticone, “Using time-varying systems to challenge
fundamental limitations in electromagnetics: Overview and summary of
applications,” IEEE Antennas Propag. Mag., vol. 65, no. 4, pp. 29-38,
Apr. 2023.

M. Nadi, A. Cheldavi, and S. Hassan Sedighy, “Beam steering toward
multibeam radiation by time-coding metasurface antennas,” IEEE Trans.
Antennas Propag., vol. 72, no. 6, pp. 4829-4838, Jun. 2024.
L. Zhang et al., “Space-time-coding digital metasurfaces,
Commun., vol. 9, no. 1, p. 4334, Oct. 2018.

J. Y. Dai et al., “Arbitrary manipulations of dual harmonics and their
wave behaviors based on space—time-coding digital metasurface,” Appl.
Phys. Rev., vol. 7, no. 4, Dec. 2020, Art. no. 041408.

L. Zhang et al., “Dynamically realizing arbitrary multi-bit programmable
phases using a 2-Bit time-domain coding metasurface,” IEEE Trans.
Antennas Propag., vol. 68, no. 4, pp. 2984-2992, Apr. 2020.

X. Fang et al., “Accurate direction—of—arrival estimation method based
on space—time modulated metasurface,” IEEE Trans. Antennas Propag.,
vol. 70, no. 11, pp. 10951-10964, Nov. 2022.

G. Li, S. Yang, Y. Chen, and Z.-P. Nie, “A novel electronic beam steering
technique in time modulated antenna array,” Prog. Electromagn. Res.,
vol. 97, pp. 391405, 2009.

H. Li, Y. Chen, and S. Yang, “Harmonic beamforming in antenna
array with time-modulated amplitude-phase weighting technique,” IEEE
Trans. Antennas Propag., vol. 67, no. 10, pp. 6461-6472, Oct. 2019.
L. Poli, P. Rocca, G. Oliveri, and A. Massa, “Harmonic beamforming in
time-modulated linear arrays,” IEEE Trans. Antennas Propag., vol. 59,
no. 7, pp. 2538-2545, Jul. 2011.

S. Taravati and G. V. Eleftheriades, “Microwave space—time-modulated
metasurfaces,” ACS Photon., vol. 9, no. 2, pp. 305-318, Jan. 2022.

D. Ramaccia, D. L. Sounas, A. Ald, A. Toscano, and F. Bilotti,
“Phase-induced frequency conversion and Doppler effect with time-
modulated metasurfaces,” IEEE Trans. Antennas Propag., vol. 68, no. 3,
pp. 1607-1617, Mar. 2020.

S. A. Stewart, Tom. J. Smy, and S. Gupta, “Finite-difference time-
domain modeling of space—time-modulated metasurfaces,” IEEE Trans.
Antennas Propag., vol. 66, no. 1, pp. 281-292, Jan. 2018.

Z. Wu, C. Scarborough, and A. Grbic, “Space-time-modulated meta-
surfaces with spatial discretization: Free-space n -Path systems,” Phys.
Rev. Appl., vol. 14, no. 6, Dec. 2020, Art. no. 064060.

M. Rossi et al., “Machine-learning-enabled multi-frequency synthesis
of space—time-coding digital metasurfaces,” Adv. Funct. Mater., vol. 34,
no. 40, Oct. 2024, Art. no. 2403577.

H. Goto, K. Tatsumura, and A. R. Dixon, “Combinatorial optimization
by simulating adiabatic bifurcations in nonlinear Hamiltonian systems,”
Sci. Adv., vol. 5, no. 4, p. 2372, Apr. 2019.

H. Goto et al., “High-performance combinatorial optimization based on
classical mechanics,” Sci. Adv., vol. 7, no. 6, p. 7953, Feb. 2021.

Y. Jiang et al., “Quantum-inspired beamforming optimization for quan-
tized phase-only massive MIMO arrays,” 2024, arXiv:2409.19938.

Q. J. Lim and Z. Peng, “Antenna array synthesis and optimization using
simulated bifurcations of nonlinear oscillators,” Techrxiv, Jul. 2024, doi:
10.36227/techrxiv.172175354.47227215/v1.

F. Hu et al., “Quantum computing cryptography: Finding cryptographic
Boolean functions with quantum annealing by a 2000 qubit D-wave
quantum computer,” Phys. Lett. A, vol. 384, no. 10, Apr. 2020, Art. no.
126214.

N. Elsokkary, F. S. Khan, D. La Torre, T. Humble, and J. Gottlieb,
“Financial portfolio management using D-wave quantum optimizer: The
case of abu dhabi securities exchange,” Oak Ridge Nat. Lab. (ORNL),
Oak Ridge, TN, USA, Tech. Rep., 2017.

D. Pastorello and E. Blanzieri, “Quantum annealing learning search
for solving QUBO problems,” Quantum Inf. Process., vol. 18, no. 10,
p. 303, Oct. 2019.

M. D. Migliore, “Quantum computing for antennas and propagation
problems: A gentle introduction,” IEEE Antennas Propag. Mag., vol. 67,
no. 1, pp. 10-18, Feb. 2025.

W. E. I. Sha, A. Y. Liu, and W. C. Chew, “Dissipative quantum
electromagnetics,” IEEE J. Multiscale Multiphys. Comput. Techn.,
vol. 3, pp. 198-213, 2018.

”»

Nature

[29]

(30]

(31]

[32]

(33]

[34]

[35]

[36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
(48]

[49]

[50]

6523

W. C. Chew, A. Y. Liu, C. Salazar-Lazaro, and W. E. 1. Sha, “Quantum
electromagnetics: A new Look—Part I1,” IEEE J. Multiscale Multiphys.
Comput. Techn., vol. 1, pp. 85-97, 2016.

T. E. Roth, R. Ma, and W. C. Chew, “The transmon qubit for electro-
magnetics engineers: An introduction,” IEEE Antennas Propag. Mag.,
vol. 65, no. 2, pp. 8-20, Apr. 2023.

S. Lee et al., “Quantum annealing for electromagnetic engineers—Part
I: A computational method to solve various types of optimization
problems,” IEEE Antennas Propag. Mag., early access, Dec. 13, 2024,
doi: 10.1109/MAP.2024.3498695.

C. Ross, G. Gradoni, Q. J. Lim, and Z. Peng, “Engineering reflec-
tive metasurfaces with ising Hamiltonian and quantum annealing,”
IEEE Trans. Antennas Propag., vol. 70, no. 4, pp. 2841-2854,
Apr. 2022.

S. Lee, S. Han, W. Song, K.-J. Lee, and S. Kim, “Discrete source
optimization for microwave hyperthermia using quantum annealing,”
IEEE Antennas Wireless Propag. Lett., vol. 23, pp. 1095-1099,
2024.

Q. J. Lim, C. Ross, A. Ghosh, F. W. Vook, G. Gradoni, and Z. Peng,
“Quantum-assisted combinatorial optimization for reconfigurable intel-
ligent surfaces in smart electromagnetic environments,” IEEE Trans.
Antennas Propag., vol. 72, no. 1, pp. 147-159, Jan. 2024.

Z. Xu, W. Shang, S. Kim, A. Bobbitt, E. Lee, and T. Luo,
“Quantum-inspired genetic algorithm for designing planar multi-
layer photonic structure,” npj Comput. Mater., vol. 10, no. 1, p. 257,
Nov. 2024.

R. Lahoz-Beltra, “Quantum genetic algorithms for computer scientists,”
Computers, vol. 5, no. 4, p. 24, Oct. 2016.

E. Colella, S. Beloin, L. Bastianelli, V. M. Primiani, F. Moglie, and
G. Gradoni, “Variational quantum shot-based simulations for waveg-
uide modes,” IEEE Trans. Microw. Theory Techn., vol. 72, no. 4,
pp- 2084-2094, Apr. 2024.

E. Colella, L. Bastianelli, V. M. Primiani, Z. Peng, F. Moglie,
and G. Gradoni, “Quantum optimization of reconfigurable intelli-
gent surfaces for mitigating multipath fading in wireless networks,”
IEEE J. Multiscale Multiphys. Comput. Techn., vol. 9, pp. 403—414,
2024.

L. Tosi, P. Rocca, N. Anselmi, and A. Massa, “Array-antenna power-
pattern analysis through quantum computing,” IEEE Trans. Antennas
Propag., vol. 71, no. 4, pp. 3251-3259, Apr. 2023.

J. Zhang, F. Feng, and Q.-J. Zhang, “Quantum computing method for
solving electromagnetic problems based on the finite element method,”
IEEE Trans. Microw. Theory Techn., vol. 72, no. 2, pp. 948-965, Feb.
2024.

Q.-G. Zeng, X.-P. Cui, B. Liu, Y. Wang, P. Mosharev, and M.-H. Yung,
“Performance of quantum annealing inspired algorithms for combinato-
rial optimization problems,” Commun. Phys., vol. 7, no. 1, p. 249, Jul.
2024.

T. Q. Dinh, S. H. Dau, E. Lagunas, S. Chatzinotas, D. N. Nguyen,
and D. T. Hoang, “Quantum annealing for complex optimization in
satellite communication systems,” [EEE Internet Things J., vol. 12,
no. 4, pp. 3771-3784, Feb. 2025.

M. Kim, D. Venturelli, and K. Jamieson, “Leveraging quantum annealing
for large MIMO processing in centralized radio access networks,”
in Proc. ACM Special Interest Group Data Commun., Aug. 2019,
pp. 241-255.

T. D. Schultz, D. C. Mattis, and E. H. Lieb, “Two-dimensional ising
model as a soluble problem of many fermions,” Rev. Modern Phys.,
vol. 36, no. 3, pp. 856871, Jul. 1964.

B.-Y. Wang, X. Cui, Q. Zeng, Y. Zhan, M.-H. Yung, and Y. Shi,
“Speedup of high-order unconstrained binary optimization using quan-
tum Z2 lattice gauge theory,” 2024, arXiv:2406.05958.

A. M. Childs, E. Farhi, and J. Preskill, “Robustness of adiabatic quantum
computation,” Phys. Rev. A, Gen. Phys., vol. 65, no. 1, Dec. 2001, Art.
no. 012322.

J. H. E. Cartwright and O. Piro, “The dynamics of Runge—Kutta
methods,” Int. J. Bifurc. Chaos, vol. 2, no. 3, pp. 427-449, Sep. 1992.
QBoson. (2025). Qboson Official Website. [Online]. Available: https://
www.gboson.com/

J. King, S. Yarkoni, M. M. Nevisi, J. P. Hilton, and C. C. McGeoch,
“Benchmarking a quantum annealing processor with the time-to-target
metric,” 2015, arXiv:1508.05087.

A. Aghasi, H. Amindavar, E. L. Miller, and J. Rashed-Mohassel,
“Flat-top footprint pattern synthesis through the design of arbitrary
planar-shaped apertures,” IEEE Trans. Antennas Propag., vol. 58, no. 8,
pp. 2539-2552, 2010.

Authorized licensed use limited to: Zhejiang University. Downloaded on September 12,2025 at 04:54:37 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.36227/techrxiv.172175354.47227215/v1
http://dx.doi.org/10.1109/MAP.2024.3498695

6524

Shuai S. A. Yuan (Graduate Student Member,
IEEE) received the B.Eng. degree from Nanjing Uni-
versity of Aeronautics and Astronautics, Nanjing,
China, in 2019, and the Ph.D. degree in electronic
science and technology from Zhejiang University,
Hangzhou, China, in 2024.

From March 2023 to March 2024, he was a
Visiting Ph.D. Student at ELEDIA Research Center,
University of Trento, Trento, Italy. His research
interests include electromagnetic information theory,
antenna and metasurface designs inspired by electro-
magnetic information theory, and quantum-inspired optimization.

Yutong Jiang (Graduate Student Member, IEEE)
received the B.Sc. degree in electronic science and
technology from Zhejiang University, Hangzhou,
China, in 2023, where she is currently pursuing the
M.Sc. degree in electronic science and technology.

Her research interests include antenna array opti-
mization, machine learning, quantum-inspired algo-
rithms, electromagnetic beamforming for MIMO,
coupling modeling, and electromagnetic channel
modeling.

Ms. Jiang was a recipient of the Best Student
Paper Award (Top Prize) at IEEE ACES-China in 2024.

Ziyi Zhang (Student Member, IEEE) was born in
Jiangsu, China, in 2003. He is currently pursuing
the B.E. degree in electronic and information engi-
neering from Sichuan University, Chengdu, China.

His research interests include programmable
metasurfaces and applications of deep learning in
microwave component design.

Jia Nan Zhang (Member, IEEE) received the
B.Eng. degree from Tianjin University, Tianjin,
China, in 2013, and the joint Ph.D. degree from the
School of Microelectronics, Tianjin University, and
the Department of Electronics, Carleton University,
Ottawa, ON, Canada, in 2020.

From 2020 to 2022, he was a Post-Doctoral
Research Associate with the Department of Elec-

tronics, Carleton University. In January 2022, he

joined the State Key Laboratory of Millimeter

Waves, Southeast University, Nanjing, China, where
he is currently a Professor. He has authored/co-authored over 80 publica-
tions in prestigious microwave journals/conferences. He contributed to the
Encyclopedia of Surrogate Modeling for High-Frequency Design: Recent
Advances (World Scientific, 2021) and the Uncertainty Quantification of
Electromagnetic Devices, Circuits, and Systems (IET, 2021). His research
interests include intelligent EM computation, machine-learning approaches
to metasurface inverse design, and quantum computing with applications to
EM problems.

Dr. Zhang is a member of the IEEE Microwave Theory and Techniques
Society (IEEE MTT-S) and the IEEE Antennas and Propagation Society
(IEEE AP-S). He served as the General Chair for the 2022 IEEE MTT-S
Young Professionals Workshop on Electromagnetic Modeling and Optimiza-
tion (EMO 2022). He is a reviewer of a number of renowned microwave
journals, including IEEE TRANSACTIONS ON MICROWAVE THEORY AND
TECHNIQUES, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REG-
ULAR PAPERS, IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS,
and IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS.

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 73, NO. 9, SEPTEMBER 2025

Feng Liu received the bachelor’s degree from Yantai
University, Yantai, China, in 2008, the master’s
degree from the University of Sheffield, Sheffield,
UK., in 2019, and the Ph.D. degree from the
Technical University Dortmund (TU Dortmund),
Dortmund, Germany, in 2013.
He was a Post-Doctoral Researcher at the Uni-
versity of Sheffield and RWTH Aachen University,
\ Aachen, Germany, from 2013 to 2019. In 2019,
\“ \ he joined the College of Information Science
and Electronic Engineering, Zhejiang University,
Hangzhou, China, where he is currently a tenured Associate Professor. His
research focuses on quantum light sources based on III-V quantum dots,
cavity/waveguide-QED, and integrated quantum optical circuits.

Jian Wei You (Senior Member, IEEE) received the
B.Sc. degree in electrical engineering from Xidian
University, Xi’an, China, in 2010, and the Ph.D.
degree in electromagnetic field and microwave tech-
niques from Southeast University, Nanjing, China,
in 2016.

From 2016 to 2021, he was a Research Associate
with the Department of Electronic and Electrical
Engineering, University College London, London,
U.K. In 2021, he joined Southeast University, as a
Full Professor. His research interests include com-
putational electromagnetics, metamaterials, microwave and millimeter-wave
devices, multiphysics and multiscale simulations, topological metasurfaces,
and quantum information.

Wei E. I. Sha (Senior Member, IEEE) received
the B.S. and Ph.D. degrees in electronic engineering
from Anhui University, Hefei, China, in 2003 and
2008, respectively.

From July 2008 to July 2017, he was a Post-
Doctoral Research Fellow and later a Research
Assistant Professor with the Department of Elec-
trical and Electronic Engineering, University of
Hong Kong, Hong Kong. Between March 2018 and
March 2019, he held a Marie Sklodowska-Curie
Individual Fellowship at University College London,
London, U.K. In October 2017, he joined the College of Information Science
and Electronic Engineering, Zhejiang University, Hangzhou, China, where he
is currently a tenured Associate Professor. His research focuses on theoretical
and computational electromagnetics, including computational and applied
electromagnetics, nonlinear and quantum electromagnetics, micro- and nano-
optics, and multiphysics modeling. He has authored or co-authored over 200
peer-reviewed journal articles, 180 conference papers, 12 book chapters, and
two books. His work has been cited over 11700 times on Google Scholar,
with an H-index of 58.

Dr. Sha is a Life Member of OSA. He received multiple awards, including
the ACES-China Electromagnetics Education Ambassador Award in 2024,
the ACES Technical Achievement Award in 2022, and the PIERS Young
Scientist Award in 2021. Nine of his students have won Best Student Paper
Awards. He has reviewed more than 60 technical journals and served on
the Technical Program Committees of over ten IEEE conferences. He is an
Associate Editor for IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS
COMPUTATIONAL TECHNIQUES, IEEE OPEN JOURNAL OF ANTENNAS AND
PROPAGATION, IEEE ACCESS, and Electromagnetic Science.

Authorized licensed use limited to: Zhejiang University. Downloaded on September 12,2025 at 04:54:37 UTC from IEEE Xplore. Restrictions apply.



