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W. C. Chew, A. Y. Liu, C. Salazar-Lazaro, and W. E. I. Sha

(Invited Paper)

Abstract—Quantization of the electromagnetic field has been
a fascinating and important subject since its inception. This
subject topic will be discussed in its simplest terms so that it
can be easily understood by a larger community of researchers.
A new way of motivating Hamiltonian mechanics is presented
together with a novel way of deriving the quantum equations of
motion for electromagnetics. All equations of motion here are
derived using the generalized Lorenz gauge with vector and scalar
potential formulation. It is well known that the vector potential
manifests itself in the Aharonov—Bohm effect. By advocating this
formulation, it is expected that more quantum effects can be easily
incorporated in electromagnetic calculations. Using a similar
approach, the quantization of electromagnetic fields in reciprocal,
anisotropic, inhomogeneous media is presented. Finally, the
Green’s function technique is described when the quantum system
is linear time invariant. These quantum equations of motion for
Maxwell’s equations portend well for a better understanding of
quantum effects in many technologies.

Index Terms—Anisotropic inhomogeneous media, Maxwell’s
equations, quantum mechanics, vector and scalar potentials.

1. INTRODUCTION

LECTROMAGNETIC theory as completed by Maxwell
E in 1865 [1] is just over 150 years old now. Putatively, the
equations were difficult to understand [2]; distillation and clean-
ing of the equations were done by Oliver Heaviside and Heinrich
Hertz [3]; experimental confirmations of these equations were
not done until some 20 years later in 1888 by Hertz [4].

As is the case with the emergence of new knowledge, it is
often confusing at times, and inaccessible to many. Numerous
developments of electromagnetic theory have ensued since
Maxwell’s time; we shall discuss them in the next section.
In this paper, we will reinterpret this relatively new body of
knowledge on quantum electromagnetics (or quantum effects
in electromagnetics, or quantization of electromagnetic fields)
so as to render it more accessible to a larger community,
and thereby popularizing this important field. This name is
appropriate as it is expected that these effects will be felt across
the electromagnetic spectrum in addition to optics. The rise
of the importance of quantum electromagnetics is spurred by
technologies for single-photon sources and measurements [5],
[6], the validation of Bell’s theorem [7], and the leaps and
bounds progress in nanofabrication technologies.
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The validation of Bell’s theorem in favor of the Copenhagen
school of interpretation opens up new possibilities for quantum
information, computing, cryptography, and communication [8].
Nanofabrication techniques further allow the construction of ar-
tificial atoms such as quantum dots that are microscopic in scale.
Moreover, potentials for using such artificial atoms to manip-
ulate quantum information abound. In this case, semiclassical
calculations where the fields are treated classically and the atom
treated quantum mechanically [9], [10] do not suffice to support
many of the emerging technologies, when the number of pho-
tons is limited, such as single-photon-based devices and high-
sensitivity photodetectors. Another interesting example is the
circuit quantum electrodynamics (QED) at microwave frequen-
cies where a superconducting-quantum-interference-device-
based artificial atom is entangled with coplanar waveguide mi-
crowave resonators [11]. For these situations, fully quantum
field—artificial-atom calculations need to be undertaken [12].

The recent progress in nanofabrication technology under-
scores the importance of quantum effects at nanoscale, first
on electron transport [13] and now on the importance of
photon—artificial-atom interaction at nanoscale. Moreover,
nanofabrication emphasizes the importance of photons and the
accompanying quantum effects in heat transfer. While phonons
require material media for heat transfer, photons can account for
near-field heat transfer through vacuum, where classical heat
conduction equation and Kirchhoff’s law of thermal radiation
are invalid. Furthermore, the confirmation of Casimir force in
1997 [14] revives itself as an interesting research topic. Several
experiments confirmed that Casimir force is, in fact, real and
entirely quantum in origin: it can be only explained by using the
quantum theory of electromagnetic field in its quantized form
[15], [16]. Also, Casimir force cannot be explained by classic
electromagnetics theory that assumes null electromagnetic field
in vacuum.

More importantly, the use of the ubiquitous Green’s func-
tion is still present in many quantum calculations [17]-[19].
Hence, the knowledge and effort in computational electromag-
netics (CEM) for computing Green’s functions of complicated
systems have not gone obsolete or in vain [20]-[23]. There-
fore, the development of CEM, which has been important for
decades for the development of many classical electromagnet-
ics technologies all across the electromagnetic spectrum, will
be equally important in the development of quantum technolo-
gies. The beginning of this paper is mainly pedagogical in order
to make this knowledge more accessible to the general elec-
tromagnetics community. Hopefully with this paper, a bridge
can be built between the electromagnetics community and the
physics community to foster cross pollination and collabora-
tive research for new knowledge discovery. The novelty in this
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paper is the presentation of a simplified derivation for classi-
cal Hamilton equations, as well as quantum Hamilton equations
(47) with striking similarities to their classical counterparts. The
process of quantization of scalar potential, vector potential, and
electromagnetic fields is also novel.

In Part I of this work, a novel way to quantize electromagnetic
fields in the coordinate (r, ¢) space will be presented. This allows
the derivation of the quantum equations of motion for scalar and
vector potentials, as well as electromagnetic fields.

II. IMPORTANCE OF ELECTROMAGNETIC THEORY

Since the advent of Maxwell’s equations in 1865, the enduring
legacy of these equations have been pervasive in many fields. As
aforementioned, it was not until 1888 that Hertz [4] experimen-
tally demonstrated that remote induction effect was possible.
And in 1893, Tesla [24] demonstrated the possibility of radio;
in 1897, Marconi [25] demonstrated wireless transmission, fol-
lowed by transatlantic transmission in 1901. Maxwell did not
know the importance of the equations that he had completed.
Many advanced understanding of electromagnetic theory in its
modern form did not emerge until many years after his death: It
will be interesting to recount these facts.

1) Since Maxwell’s equations unify the theories of electro-
magnetism and optics, it is valid over a vast length scale.
Electromagnetic theory is valid for subatomic particle in-
teraction, as well as being responsible for the propagation
of light wave and radio wave across the galaxies.

2) With the theory of special relativity developed by Einstein
in 1905 [26], these equations were known to be relativis-
tically invariant. In other words, Maxwell’s equations re-
main the same in a spaceship irrespective of how fast it
is moving. Electrostatic theory in one spaceship becomes
electrodynamic theory in a moving spaceship relative to
the first one.

3) The development of QED by Dirac in 1927 [27] indicates
that Maxwell’s equations are valid in the quantum regime
as well. Initially, QED was studied by Dyson, Feynman,
Schwinger, and Tomonaga, mainly to understand the inter-
particle interactions in the context of quantum field theory
to determine fine structure constants and their anomalies
due to quantum electromagnetic fluctuations [28]. How-
ever, the recent rise of quantum information has spurred
QED’s application in optics giving rise to the field of
quantum optics [29]-[35].

4) Later, with the development of differential forms by
Cartan in 1945 [36], [37], it is found that electromagnetic
theory is intimately related to differential geometry.
Electromagnetic theory inspired Yang—Mills theory,
which was developed in 1954 [38], [39]; it is regarded as
a generalized electromagnetic theory. If fact, as quoted by
Misner et al., it is said that “Differential forms illuminate
electromagnetic theory, and electromagnetic theory
illuminates differential forms” [40], [41].

5) In 1985, Feynman wrote that QED (a superset of
electromagnetic theory) had been validated to be one of
the most accurate equations to a few parts in a billion
[42]. This is equivalent to an error of a few human hair

widths compared to the distance from New York to Los
Angeles. More recently, Styer wrote in 2012 [43] that
the accuracy had been improved to a few parts in a
trillion [44]: such an error is equivalent to a few human
hair widths in the distance from the Earth to the Moon.

6) More importantly, since Maxwell’s equations have

been around for over 150 years, they have pervasively
influenced the development of a large number of scientific
technologies. This impact is particularly profound in
electrical engineering, ranging from rotating machinery,
oil-gas exploration, magnetic resonance imaging, to
optics, wireless and optical communications, computers,
remote sensing, bioelectromagnetics, etc.

Despite the cleaning up of Maxwell’s equations by Oliver
Heaviside, he has great admiration for Maxwell as seen from
his following statement [3], “A part of us lives after us, diffused
through all humanity—more or less—and through all nature.
This is the immortality of the soul. There are large souls and
small souls. The immoral soul of the “Scienticulists” is a small
affair, scarcely visible. Indeed its existence has been doubted.
That of a Shakespeare or Newton is stupendously big. Such men
live the bigger part of their lives after they are dead. Maxwell is
one of these men. His soul will live and grow for long to come,
and hundreds of years hence will shine as one of the bright stars
of the past, whose light takes ages to reach us.”

III. LONE SIMPLE HARMONIC OSCILLATOR

Electromagnetic fields and waves can be thought of as a
consequence of the coupling of simple harmonic oscillators.
Hence, it is prudent first to study the physics of a lone harmonic
oscillator, followed by analyzing a set of coupled harmonic
oscillators. A lone harmonic oscillator can be formed by
two masses connected by a spring, two molecules connected
to each other by molecular forces, an electron trapped in a
parabolic potential well, an electrical LC tank circuit, or even an
electron—positron (e-p) pair bound to each other. The simplest
description of the harmonic oscillator is via classical physics
and Newton’s law. The inertial force of a mass is given by mass
times acceleration, while the restoring force of the mass can be
described by Hooke’s law. Hence, the equation of motion of a
classical simple harmonic oscillator is

d2
mﬁq(t) = —rq(t) ()
where m is the mass of the particle, ¢ denotes the position of the
particle,! and « is the spring constant. In the above, %q(t) isthe
acceleration of the particle. The general solution to the above is

q(t) = by cos(Qt) + by sin(Qxt) = beos(U +6)  (2)
where Q) = \/r/m is the resonant frequency of the oscillator,

and b and 6 are arbitrary constants. It has only one char-

acteristic resonant frequency. The momentum is defined as

p(t) = m4q(t) and, hence, is

p(t) = —mQby sin(Qt) + mby cos(§2)
= —mQbsin(Qt + 0). 3)

1q is used to denote position here, as z is reserved for later use.
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IV. LONE QUANTUM SIMPLE HARMONIC OSCILLATOR

In the microscopic regime, a simple harmonic oscillator dis-
plays quantum phenomena [8], [9], [48]-[53], [55]. Hence, the
classical picture of the state of the particle being described by its
position ¢ and momentum p is insufficient. Therefore, in quan-
tum mechanics, the state of the particle has to be more richly
endowed by a wave function (g, t). The motion of the wave
function is then governed by the Schrodinger equation.

Quantum mechanics cannot be derived: it was postulated, and
the corresponding equation postulated by Schrodinger is [56]

hQ 82 3 3
(Qmw N v<q>> Vg =ihou(at) @

where V(q) = %mQ2 q? for the harmonic oscillator. The above
is a parabolic wave equation (for a classification of equations,
see [23, p. 527]) describing the trapping of a wave function
(or a particle) by a parabolic potential well of the harmonic
oscillator. The state of the particle is described by the wave
function (g, t). Once the wave function is obtained by solving
the above partial differential equation, then the position of the
particle is obtain by

0
@O = [ dadva0Pa=wids)
where the angular brackets have been used to denote the ex-
pectation value of a random variable as in probability. The last
equality follows from the use of Dirac notation [27] (also see
Appendix in Part IT). The wave function is normalized such that

o0
| dalvta.0f = 1. ©)
—00

Therefore, |¢(g,t)|> = P(q,t) can be thought of as a proba-
bility distribution function for the random variable q. And (5)
can be thought of as the expectation value of ¢, which is time
varying because the wave function (g, t) is time varying.

The above is the recipé for determining the motion of a par-
ticle in quantum mechanics and is an important attribute of
the probabilistic interpretation of quantum mechanics. Further-
more, the quantum interpretation implies that the position of the
particle is indeterminate until after a measurement is made (see
[8] for more discussion on quantum interpretation). Further-
more, the probabilistic interpretation implies that the position
q and momentum p are not deterministic quantities. They have
a spread or standard deviation commensurate with their prob-
abilistic description. This spread is known as the Heisenberg
uncertainty principle [8], [9].

To simplify the solution of the Schrodinger equation, one can
first solve for its eigenmodes or assumes that the modal solution
is time harmonic such that

0
Zh&wn ((L t) - En wn (qv t) (7)
In other words, by the separation of variables
wn (Qa t) = "/)n (Q)e_iw" ! ¥

such that fiw, = E,; the eigenvalues have to be real for en-
ergy conservation or probability density conservation. Then, (4)

75

can be converted to a time-independent ordinary differential
equation
R d? 1 5,

<_2mdq2 + §mQ q ) VYo (q) = Enthn(q) ©
where E), is its eigenvalue. These time-independent solutions
are known as stationary states because |1, (¢,t)|* = P, (q,t) =
|4, (q)|? is time independent. The above equation has infinitely
many closed-form eigensolutions dealt with more richly in many
text books (e.g., in [29]-[35]). It is important to note that the
eigenvalues are given by

E, = hQ) (n + ;) = hw, (10)

1
’n:Q 5 )
Wwp, <n—|—2>

It is to be noted that €2 is the natural resonant frequency of the
harmonic oscillator, whereas w,, is the frequency of the station-
ary state. Hence, in quantum theory, the harmonic oscillator can
assume only discrete energy levels, E,,, and its energy can only
change by discrete amount of A£2. This quantum of energy A}
is ascribed to that of a single photon. For instance, a quantum
harmonic oscillator can change its energy level by absorbing
energy from its environment populated with photons, each car-
rying a packet of energy of A2, or conversely, by the emission
of a photon. Even when n = 0, implying the absence of pho-
tons (or zero field in the classical sense), £, is not zero, giving
rise to a fluctuating field which is the vacuum fluctuation of
the field. Since this topic is extensively discussed in many text
books [29]-[35], it will not be elaborated here.

with

(11)

A. Hamiltonian Mechanics Made Simple

Since quantum mechanics is motivated by Hamiltonian me-
chanics, the classical Hamiltonian mechanics will be first re-
viewed. This mechanics is introduced in most textbooks by first
introducing Lagrangian mechanics. Then, the Hamiltonian is
derived from the Lagrangian by a Legendre transform [45]. In
this paper, a simple way to arrive at the Hamilton equations of
motion will be given.

The Hamiltonian represents the total energy of the system,
expressed in terms of the momentum p and the position g of a
particle. For the lone harmonic oscillator, this Hamiltonian is
given by
Pt 1

2
~ k(D).
5 +2f<:q()

H=T+V= (12)

Here, p(t) = m-q(t) is the momentum of the particle. The

first term, 7' = L éfp , represents the kinetic energy of the parti-
cle, while the second term, V' = %nqg (t), is the potential energy
of the particle: it is the energy stored in the spring as expressed
by Hooke’s law. In the above, p(t) and ¢(t) are independent
variables. The Hamiltonian, representing total energy, is a con-
stant of motion for an energy-conserving system, viz., the total
energy of such a system cannot vary with time. Hence, p(t)

and ¢(t) should vary with time ¢ to reflect energy conservation.
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Taking the first variation of the Hamiltonian with respect to time
leads to

OH Op OH 0q
0H = ——=6t+ ——=6t=0. 13
ap ot " Bg ot (13
In order for 0 H to be zero, one possibility is that
dqg OH Op OH
== —=—-— 14
ot dp Ot dq (14

The above equations are the Hamilton equations of motion.?
But the above equations are only determined to within a mul-
tiplicative constant, as  H is still zero when we multiply the
right-hand side of both equations by a constant. This ambiguity
follows from that a Hamiltonian which is multiplied by a con-
stant is still a constant of motion. However, the constant can be
chosen so that Newtonian mechanics is reproduced.
Applying the Hamilton equations of motion yields

9 _p 9p_
o m ot
The above can be combined to yield (1). These equations of
motion imply that if p and ¢ are known at a given time, then
time-stepping the above equations in the manner of the finite-
difference time-domain method [46], [47], their values at a later
time can be obtained.
The momentum and position can be normalized to yield a
Hamiltonian of the form

H= % [P2(t) + Q*(t)] (16)
where P(t) = p(t)/+/m, and Q(t) = \/kq(t). With the use of
(2) and (3), it can be shown that kinetic and potential energies
are time varying, but the sum of them is a constant implying
energy conservation.

An alternative representation is to factorize the above into

S P () + Q)

—Kq. (15)

H =

_ %W%ﬂ+@@ﬂ}ﬂ%ﬂ+@@ﬂ

= B()B*(t) = % (B(t)B*(t) + B*(t)B(t)) (17)
where B(t) = iP(t) + Q(t). If P(t) and Q(t) represent sinu-
soidal functions in quadrature phase, as seen in (2) and (3), then
B(t) is now a complex rotating wave with a time dependence
of e~¥¥ Clearly, B(t) B*(t) is independent of time, indicating
that the Hamiltonian is a constant of motion.

V. SCHRODINGER EQUATION IN OPERATOR NOTATION

The Schrodinger equation in (4) can be formally written as
[9], [55]

H|Y) = ihdy|) (18)

where H is an operator in the Hilbert space (an infinite-
dimensional vector space where the vectors have finite energy

2We could have used total derivatives for % and g—i’, but these conjugate

variables will later become functions of space as well as time.

or norm, and the matrix operators that act on these vectors are
also infinite dimensional). Here, |)) is a vector in Hilbert space
that H acts on. Furthermore,

H=T+V (19)
where 7 is the kinetic energy operator, while V is the poten-
tial energy operator. In order to conserve energy, the Hamilton
operator H and the operators T and V have to be Hermitian
so that their eigenvalues are real. The eigenvalues of H have
to be real so that I, in the previous section is real for energy
conservation.

For a general Schrodinger equation
o2

A p A R
T=— V=V(Q. 20
5 (4) (20)
To find the coordinate matrix representation of the above opera-
tor equation, one first defines a set of orthonormal vectors with

the property that their inner product is
(alg’) = d(q—q').
Furthermore, {g|t)) = 1(q), namely, that the conjugate trans-
pose vector (g| has the sifting property that its inner product
with the vector |¢) yields a number that represents the value of
the function 1) in the coordinate location ¢. One further uses the

definition of an identity operator [9], [S5] (see also Appendix B
in Part IT)

ey

I= /dqlq><q|

where |q) is a set of orthonormal vectors. The above is a rather
sloppy notation because ¢ is used as an index of the vector |q)
as well as a position variable. And by the same token, |¢){q| is
an outer product of two vectors.

By inserting the identity operator between H and |1y in (18),
and testing the resulting equation with (¢’|, (18) becomes

(22)

[dad\mia o) = ogr). @
Consequently, the coordinate matrix representation [9], [55],
[23, p. 281] (see Appendix B of Part II) of the Hamiltonian
operator is

(d[Hla) = (d|Ta) + (d'|V]a)-

Here, one assumes that the vector |¢), indexed by the variable g,
forms a complete orthonormal set, and the matrix representation
is the projection of the operator into the space spanned by the
set of vectors |g).

The coordinate matrix representations of these operators are
(more discussions will be found in the Appendix in Part IT)
n o? ~
o A (dV]g) = é(g =)WV (q).

(25)

They are distribution functions, but they are often sloppily writ-
ten as

(24)

2 2
VL S
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These are often sloppily called the coordinate representations
of these operators.

If such representations of these operators are assumed, and
identify that ¥)(q) = (g|v), by inserting (25) into (23), then the
equation postulated by Schrodinger in (4) is obtained. For a
quantum harmonic oscillator, V= %mQ%jQ. In general,

V=V(q) 27
where ¢ is the position operator. In the above, a function of an
operator has meaning only when it is written as a power series
or a Taylor expansion and then acts on an eigenvector of the
position operator §. For instance, f(§) has meaning only if it
acts on an eigenvector of §, namely, |¢). On that account

dla) =dla) §"la) = q"la)
or that
F@la) = lao + a1G + as@® + a3g® +---1|q)
= (ap + a1q+ azq” +asq® + -+ )|q)
= f(@le) =19)f(a)
Then

V(@)la) = V(g)la). (28)

It is clear from the above that functions of operators are them-
selves operators.

The postulate for Schrodinger is also motivated by earlier
proposition by de Broglie [57] that the momentum of a particle
is given by

2
p=hk=h=. (29)
A
Hence, for a plane wave function ¥(q) with exp(ikq) depen-

dence representing the state of the particle, the momentum is
expressible as

pe’™t = hke™ = —ih0,e"" = —ihd,b(q).  (30)

Therefore, the momentum operator in coordinate representation
is

p= _ind —ihd),. 31)

dq

But the general momentum operator p should be more appro-
priately written as

. L0

p = —ih 9
The above derivative with respect to an operator has meaning
only if it acts on a vector that is a function of the operator ¢. Such
a vector can be constructed by |¢1) = f(§)|¢). We can expand
|t)) in terms of the orthonormal basis |¢) or simply let |¢)) =
lg), since the operator f(§) has meaning only if it acts on the
eigenvector of the operator ¢, namely, 9; f(§)|q) = 0, f(q)|¢) =
|9)0, f(¢). As a final note, the Schrddinger equation was also
motivated by the findings of Planck [58] and the photoelectric
effect [59], [60], which suggest that £/ = K}, where FE is the
energy of a photon.

—ihd;. (32)
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VI. SCHRODINGER PICTURE VERSUS HEISENBERG PICTURE

Atthis juncture, it is prudent to discuss the difference between
the Schrodinger picture versus the Heisenberg picture of quan-
tum mechanics [9], [48], [49], [51], [52]. In the Schrodinger
picture, the time dependence is in the wavefunction or the state
vector [1)) = |1)(t)), whereas in the Heisenberg picture, the time
dependence is in the operator that represents an observable,
which is a measurable quantity. As shall be seen, the Heisen-
berg picture is closer to the classical picture.

The formal solution to the Schrodinger equation (18) in op-
erator form can be written as

[(t)) = e 7" |abo) (33)
where [tp) = [1)(0)) is the state vector at t = 0, which is inde-
pendent of time, and H in (19) is time independent. The expec-
tation value of an operator O, which represents an observable
or a measurable quantity, is

(O) = (W(1)[Of(t))
= Wo\e%mé @_%m|¢o>
(¥0]On (t) o). (34)

In the above, O is time independent in the Schrodinger picture,
but Oy (t) is time dependent in the Heisenberg picture. Hence, in
general, the relationship between an operator in the Schrodinger
picture and in the Heisenberg picture is given by

OH(t) _ 6%]?1,0567%[91, (35)

where the subscripts “H” and “S” mean the Heisenberg pic-
ture and the Schrodinger picture, respectively. Clearly, Og =
Op (t = 0). It can be shown easily that

dOy i

dt  h

where [H,Oy] = HOy — Oy H is a commutator as defined
by the above equation. This is the Heisenberg equation of mo-
tion for quantum operators. The commutator plays an important
role in quantum mechanics: when two operators do not com-
mute, or that their commutator is nonzero, then they cannot be

determined precisely simultaneously. More discussions can be
found in standard quantum mechanics books [9], [55].

(0w — Oy it) = ﬁ [7.00] o)

A. Quantum Hamiltonian Mechanics

We can derive the quantum version of Hamiltonian mechan-
ics. In the Heisenberg picture, the operators that represent ob-
servables are functions of time, and the equations of motion for
the observable operators in Heisenberg picture evolve as

oG i, A dp i 4
i G I e (O B
The basic commutation relation is
[G.5] = Gp — pg = ihl. (38)

Equation (38) above can be easily verified in the Schrodinger
picture because the coordinate representations of p and ¢ are

R . L0
p = —ihd, = —zha—q qg=q. (39)
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Hence, (38) can be easily verified by substituting the above into
it. In other words, they follow from de Broglie and Schrodinger
postulates, which are the fundamental postulates leading to
quantum mechanics. In contrast, some schools assume that the
commutation relation [, p] = ihI as the fundamental quantum
postulate, and that de Broglie and Schrodinger postulates be-
ing derivable from it [8], [53]. Some authors refer to this as
canonical quantization, where the classical variables p and ¢
as canonical variables that are elevated to be quantum opera-
tors, and the commutation relation between them as canonical
commutation [52]. The two views are largely equivalent, but we
favor the historical development over the formal commutation
relation.

Having verified (38) in the Schrodinger picture, it can be
easily verified in the Heisenberg picture as well, namely,

[q(t), p(t)] = ihd.

The above is also known as the equal time commutator.
It can be shown by the repeated application of the commutator
in (38) that [52]

(40)

bi qn] _ —in(jn_lh.

Note that the above is derived without applying calculus, but
only using (40). Nevertheless, we can borrow the calculus nota-
tion and rewrite the above as

A A — . 9 ATV
[p.4"] = —ing" 1h=—zh(aAq )

As mentioned earlier below (32), the derivative with respect
to an operator has no meaning unless the operator acts on its
eigenvector. Consequently, the above can be rewritten as

b d"la) =

= —ing" " hla)

(41)

(42)

—ing" "' hlq)

(43)

In the above, |¢) is the eigenvector of the position operator §
with eigenvalue ¢, namely, that |q) = ¢|q). It is to be noted that
the 0; operator above acts only on ¢", and nothing beyond to

its right.
One can expand?
H(ﬁv qA) = Hﬂ(ﬁa O) + Hl (ZA); O)Q + HQ(ﬁ, 0)42
+ Hy(p,0)q" + - . (44)
Then, it is clear that
- 0
A,H}:—'h H(p, ). 45
[ i H (b, d) (45)
Similarly, one can show that
- 0
5, H} —inZH 46
[0 H] = i H (. d). (46)

3This expansion may not exist, but for a Hamiltonian that is quadratic in p
and ¢, it exists.

Classical Hamiltonian Quantum Hamiltonian

H(pj,q;
(pl, ‘1‘/) H(pJ,q, [q],p;.] — lhéjkl
y Ay, d5)1¥) = ihoL )
Classical Equations of Motion 7

dq; OH  Op; OH

ot = ?7; T ()(l: Quantum Equations of Motion
o4 _ OH 0y _ _0H

ot — ap; at  0g;

Fig. 1. (Left) Classical Hamiltonian and the classical equations of motion.
(Right) Quantum Hamiltonian and the quantum equations of motion. The quan-
tum Hamiltonian is obtained from the classical Hamiltonian by elevating the
conjugate variables p; and ¢; to become quantum operator and endowing them
with a commutation relation. The commutator induces derivative operator, mak-
ing the quantum equations of motion strikingly similar to the classical ones.
Unlike previous presentations, no mode decomposition is needed to obtain the
quantum equations of motion.

Hence, (37) can then be rewritten as

9 _0H(p.9) 9 _ OH(p,q) )
ot op ot oG

The above are just the Hamilton equations for a quantum system:
they bear striking similarities to the classical Hamilton equations
of motion. It is clear from (44) that functions of operators are
themselves operators. Hence, we neglect to put the above the H
in H(p, §), since they are obviously operators. It is to be noted
that (47) does not involve h, but A surfaces in the coordinate
representation of the operator p in (39). In addition, one needs
to take the expectation value of (47) to arrive at their classical
analog.

Therefore, the procedure for obtaining the quantum equations
of motion is clear. First, the classical Hamiltonian for the system
is derived. Then, the conjugate variables, in this case, position q
and momentum p, are elevated to become quantum operators ¢
and p. In turn, the Hamiltonian becomes a quantum operator as
well. Then, the quantum equations of motion have the same al-
gebra as the classical equations of motion as in (47). A summary
of this quantization procedure is given in Fig. 1. This procedure
and its modification are used mainly in this work.

Very similar to (15), which eventually leads to (1)—(3), it can
be shown that for a quantum harmonic oscillator (see Appendix
C in Part II for details)

G(t) = by cos(Qt) + by sin(Q1),

P(t) = —mSQby sin(Qt) + mQby cos(Qt). (48)

Since ¢ and p are operators representing observables in the
Heisenberg picture, they are time dependent and Hermitian.
However, b1 and b2 are also Hermitian but time independent and
not necessary commuting. It is to be reminded these operators
act on a state vector |¢y) defined in (33). Hence, ¢(t)|1o) rep-
resents a new state vector of infinite dimension. With quantum
interpretation, this indicates that the observable g is probabilistic
with infinite possible values [8]. But its average value is given

by (¥0]q(t)|v0)-
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Fig. 2.
infinitely many modes.

VII. COUPLED HARMONIC OSCILLATORS

A lone harmonic oscillator can only have one resonant fre-
quency. With two coupled harmonic oscillators, two resonant
frequencies are possible, corresponding to odd and even cou-
plings between the two oscillators. With a cluster of N coupled
harmonic oscillators, N resonant frequencies are possible. With
infinitely many harmonic oscillators, infinitely many resonant
frequencies are possible. One can use a simple LC tank circuit
and then a cluster of LC tank circuits to convince oneself of this
fact [61] (see Fig. 2).

Assuming that vacuum is filled with harmonic oscillators
formed by e-p pairs, then Maxwell’s equations provide the cou-
pling between these harmonic oscillators. For instance, in a
lossless electromagnetic cavity, there are infinitely many possi-
ble resonant modes with different resonant frequencies, which
are discretely spaced on the real frequency line. As the size of
the cavity enlarges, the spacings between these discrete modes
become smaller, and eventually, they become a continuum of
modes on the real frequency line. Since this problem of coupled
harmonic oscillator is complicated, it is more easily studied with
Hamiltonian mechanics. Also, the Hamiltonian description of
these coupled harmonic oscillators is needed to connect them
to quantum mechanics. For simplicity, the free-space case for
homogeneous isotropic medium case will be presented first.

A. Decoupled Potential Equations

The Lorenz gauge treats space and time on the same footing,
which is more in line with special relativity [64]. For free-space

homogeneous media, it is
V-A=-0,® (49)

where 0; = 0/0t, and for simplicity, © = € = 1 has been as-
sumed. Then, Maxwell’s equations reduce to two decoupled
potential equations

Vi - 020 = —p
VXxVXxA+IA-V(V-A) =T

(50)
(SD

The Coulomb gauge is rather popular in many works, and hence,
the use of Lorenz gauge makes this work quite different. But

(a) Lumped masses coupled by springs to form coupled harmonic oscillators. (b) Lumped element circuit has N modes, but a transmission line has

Coulomb gauge can be thought of as a special case of the Lorenz
gauge: 1) when the system is slowly time varying compared to its
spatial variation, namely, 0; ~ 0, or 2) when ® = 0. The latter
is also called the ® = 0 gauge and is possible when V - J = 0,
orJ = 0sothat p = 0, and there is no source at infinity to excite
a @ field. In the following, the source-free case will be assumed.

B. Hamiltonian for the Scalar Potential

Before embarking on the vector potential wave equation, it is
prudent to discuss the derivation of the Hamiltonian for the
scalar potential wave equation as described by (50) for the
source-free case, namely, p = 0. The wave system is due to
oscillations traveling through space coupled by infinitely many
harmonic oscillators. Then, the Hamiltonian that will yield the
equation of motion in (50) (without the source term) is the
functional

Hy = %/dr [(&,(I)(r, )2 4+ (VO(r, 1))’ (52)
There is no clear rhyme or reason that the above is the correct
Hamiltonian. But it actually is the Hamiltonian for an infinite
set of coupled harmonic oscillators in the continuum world. The
Hamiltonian for a lone harmonic oscillator has been derived
before as the total energy of the oscillator and, likewise, for the
coupled harmonic oscillators. To see the physics and analogy
more clearly, the Hamiltonian for the discrete coupled harmonic
oscillators will be presented next [12], [62].

1) Discrete Coupled Harmonic Oscillators: The discrete
analog of the above Hamiltonian is

= 55 L0 + Y e o001 )

i

(53)

The matrix Kj; is equivalent to the stiffness matrix in mechanics,
which is usually symmetric. And the above discrete form can be
derived from the continuum form using finite-difference approx-
imations, for example. Here, Kj; usually is sparse nondiagonal,
because it involves only near-neighbor interactions or coupling.
(There is a AV term that follows from dr that is ignored for sim-
plicity.) To connect with the case of the lone harmonic oscillator,
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the Hamiltonian for such a system is suggestively written as

H<I> = %Z { + Z C]; qul } (54)

where now ¢; (t) = ®(r;,t), and p,;( ) = 0, ®(r;, t) variables to
remind the reader of the lone harmonic oscillator case. But there
are many coupled harmonic oscillators here, each at position r;
described by the momentum p; (¢) and displacement ¢; ().

In this discrete picture, where it is connected back to the lone
harmonic oscillator case, the physical meanings of the terms are
clear: The first term in the square bracket represents the kinetic
energy of the particles, each at position r; or ¢, and the second
term represents the potential energy of the particles due to self-
term and the mutual coupling between them, in the sense of a
generalized Hooke’s law.

In the above Hamiltonian, p; (t) and ¢; (t) for different ¢’s are
to be regarded as independent variables, just as the lone har-
monic oscillator case. However, they are constrained to vary as
a function of time so as to conserve energy, giving rise to the
Hamilton equations of motion. Perturbing each particle inde-
pendently of each other yields that

8(]5 - OH 8pi - OH
Only two degrees of freedom, momentum p; and position g;,
are given per particle to retain this as a scalar problem.

Taking the first variation of the above with respect to dp; (¢)
and dg; (t) yields

0Hp = {pi(ﬂépi(t) + Z [q; (t) K36 (t)] } (56)

i

(55)

Dividing the above by dp;» and d¢;/(t), respectively, and letting
these variations tend to zero, then

OH. Op; dq;

ap.% - Z {pi () aﬁ., + Z {%‘ (t)Kn(f%Dq_/] } (57)
0H.

5qf :Z{pi( 90 +Zj: [q, } } (58)

It is clear that due to the independence of ¢; and p;, and that
these are independent particles [62],
Op; _ 0q; dq;  Op;

= 6Z'Z~/ _— = = O
Opir gy Opyr gy

where ¢;; is the Kronecker delta function. Upon applying the
sifting property of the Kronecker delta function, and the Hamil-
ton equations of motion, one has

W) it

(59)

apz

(60)

ZKu%

where Kj; is a symmetric matrix. The above are the equations of
motion of the discrete coupled harmonic oscillators. Combining
the above yields the equation of motion

a QI Z KIJ QJ

8t2

(61)

which bears similarity to (50).

2) Continuum Case: Now, for the continuum case, func-
tional derivatives are involved. Since 9;®(r,t) is independent
of ®(r, t), just as ¢; and p; in the discrete case, one gives it a new
name I, (r, ) = 0;P(r, t) known as the conjugate momentum,
because this part is equivalent to p; (¢) in the discrete case, which
represents momentum. The Hamiltonian then becomes [62]

— %/dr {(Hs (ri,1)* + (vcb(r,t))ﬂ '

The first variation due to a perturbation in the field of the Hamil-
tonian defined in (62) is

Hy (62)

dHgy = /dr (I (r, t)6IL (x, t) + VO(r,t) - VOd(r,1)].
(63)
Upon using integration by parts, it becomes
0Hy = /dr [TL, (r, )61, (x, ) — VQCI)(I'J)(S(I)(r,t)] . (64)

From the above, the functional derivatives [12], [62], [63] are
introduced to give

SHy ST (e ), 50 (x, 1)
5o / dr [HS(”) oy Y o 6<I>(r’,t)(]65)
5Hq> SIL(rt) o, 5 (r, 1)
5= o e O T )

(66)

From the analog of the discrete case, one can make use of the
following properties of functional derivatives to simplify the
above. They are

5@(1‘, t) . 61—-[9 (I‘, t)

Bt M,y OC T
O®(r,t)  Oll(r,t)
L) ot ©7)

These are the continuum analog of (59) in the discrete case. In
other words, the Kronecker delta function in (59) becomes the
Dirac delta function in the continuum case. Finally, using the
above functional derivatives (67) in (65) and (66) gives rise to

0Hg

_ 2 /
0Hg
Ly e 69

The Hamilton equations of motion analogous to the discrete
case expounded in (55) are

6@(1‘, t) - (SHq) 81'15 (I‘, t) _ 5Hq> (70)
ot Ol (r,t) o 60(r,t)’
Applying the above then gives
o®(r,t) olly(r,t)
5 I, (v, t) 5 =V ®(r,t). (71)

Combining the above together yields the wave equation as the
equation of motion for the scalar potential, namely,

0?®(r,t) — V*0(r,t) = 0. (72)
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This is the continuum analog of (61).

C. Hamiltonian for Vector Potential

Now that one is armed with the necessary tools, the Hamil-
tonian can be derived for the vector potential field. The com-
plication here is that vector fields will be involved. Assuming
the source-free case again, the Hamiltonian that will yield the
equation of motion in (51) is

1
Hy =5 [dr [ 0) + (7% A1) + (V- Aw0)’)
(73)
where II(r,t) = 0;A(r,t) is the conjugate momentum. To

show this, the first variation of the above is taken with respect
to field perturbations 6II(r, ¢) and 6 A(r,t), to give

0H4 = /dr [II(r,t) - 0XII(r,t) + (V x A(r,t))

(V x8A(r,t) + (V- A(r,t)) (V- 5A(r,1))].
(74)

Using integration by parts on the second and third terms, the
above becomes

SHy = /dr [TI(r,¢) - STI(r, £) + [V x V x A(r,1) = VV

- A(r,t)] - 5A(r,1)].
(75)

Now, taking the functional derivative of the above functional
with respect to the vector functions IT and A gives

(mégjtw = /dr [H(r,t) : (m +(V xV x A(r,t)
— VV-A(r,t)- g‘lj‘[‘gm (76)

(mé(% = /dr {H(r,t) : m + (VX VX A(r,t)
— VV-A(r,t))- m} .an

It is worth taking a break to ponder the meaning of a func-
tional derivative with respect to say a vector function A (r,t)
[63]. Since vector function consists of three scalar functions
A;i(r,t),i = 1,2, 3, a functional of a vector function is, in ac-
tual fact, a functional of three independent scalar functions. The
functional derivative with respect to a vector function then im-
plies that it is taken with respect to three scalar functions, hence
generating a three-vector (three-component vector). Hence, the
left-hand side of the above should be three-vectors. And the
functional derivative of a vector function with respect to another
vector function should produce a 3 x 3 tensor. Consequently, it

81

can be quite easily shown that

6A(r,t)  OIM(r,t) <. =,
SA(.n) omiw,p) o)
OA(,t) _ oLt o5

STI(r',t)  6A(r, 1)

The above are the vector analog of (67) for the continuum case,
and (59) for the discrete case. Therefore, the above functional
derivatives in (76) and (77) finally become

OHy ,

P I )
0H 4 o/ / ’ R vAvd /

saw g~V Y X A(X,t) — V'V - A(r,t).  (80)

The Hamilton equations of motion in this case, analogous to
(55) and (70), are

6A(I‘,t) - 5HA 8H(r,t) o (5HA (81)

ot §T(r,t) ot SA(r,t)
Consequently, the above becomes

OA(r,t)

el SRR § |
ot (x,2)

II(r,t
% =-VXxVxA(r,t)+VV-A(,t). (82)

Combining the above yields the vector wave equation as the
equation of motion for the vector potential, namely,

OPA(r,t) +V xV x A(r,t) —VV-A(r,t) =0. (83)

D. Total Hamiltonian for Free Space

The total Hamiltonian in Lorenz gauge is the Hamiltonian
due to the vector potential minus the Hamiltonian due to the
scalar potential. In other words,

H=H,— Hp. (84)

The minus sign is necessary because the above can be easily
manipulated, by invoking Lorenz gauge and integration by parts,
to the form so that

H= %/dr [E*(r,t) + B?(r,1)] . (85)
The above integrand is always positive definite as it represents
the total energy stored in the electromagnetic field. The minus
sign in (84) also means that the energy stored in the vector
potential part is in excess of the total electromagnetic energy,
and hence, the energy stored in the scalar potential part needs
to be removed. The above will be generalized to the anisotropic
inhomogeneous medium case in a later section in Part II. This
excess energy shall be explained in terms of longitudinal modes
later in the mode decomposition section in Part II. Also, it is de
rigueur, as otherwise, one cannot derive (85) from (84).

VIII. COUPLED QUANTUM HARMONIC OSCILLATORS

The algebra derived in Section VI-A is clear for a lone quan-
tum harmonic oscillator. But for wave phenomenon, the quan-
tum harmonic oscillators are coupled. The commutator of the
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quantum operators induces an algebra for quantum harmonic os-
cillators that is very similar to the classical Hamiltonian in (47).
Hence, using the equations of motion that have been derived
for the quantum case, namely, (47), the algebra for deriving the
equations of motion is surprisingly similar to that of the clas-
sical case. The discrete coupled quantum harmonic oscillator
case will be treated first, followed by the continuum cases. In
the continuum cases, the scalar potential case as well as the
vector potential case will be studied.

A. Discrete Coupled Quantum Harmonic Oscillators

First, the classical Hamiltonian for this system is elevated to
quantum Hamiltonian by elevating the conjugate variables, p; (¢)
and ¢, (), to become quantum operators. Then, the quantum
Hamiltonian for such a system from (54) is

+Zq7 Kidi(t } (86)

Next, for the case of discrete coupled quantum harmonic oscil-
lators, the commutator between the conjugate operators is

[G:(t),p; (t)] = ihId;.
The above equal-time commutator induces similar algebra as in
the lone quantum harmonic oscillator case, but with the presence
of the Kronecker delta function d;; implying further that the

oscillators ¢ and j are independent of each other. Similar to the
lone harmonic oscillator case, it can be shown that

87)

[pi, '] = —ind;id! 'R

- ,h%q ~ [pr 11a]

0 4
—ih
' 3qz

ihatpi/(t)

[Qi’vﬁ?] = ’LTL(S“/le 1h

— {@'HFI@}

(88)

= ih——p)
8pi'p
8
H
8191 ?
== ’Lhatqu(t)

(89)

The above yields the same algebra as the classical Hamiltonian
case, yielding equations of motion very similar to (55), but with
the conjugate variables replaced by operators. Going through
the same algebra similar to the classical case, the equations of
motion of the discrete coupled quantum harmonic oscillators
become

dq; (t)
ot

é’pL

= pi(t) (90)

ZKl]qj

where Kj; is a symmetric matrix. Comblnlng the above yields

a Qz Z KIJ q]

8t2

oD

The above treatment is mainly for pedagogy. To treat a true
Maxwellian system, both the scalar and vector potentials need
to be quantized and treated as quantum operators. But the algebra
will be similar. More important, the algebra is also similar to
that for classical Hamiltonian.

B. Scalar Potential Case

In the scalar potential case, the Hamiltonian from (62) is
first elevated to be quantum operators by elevating the conju-
gate variables, I, (r,¢) and ®(r,t), in it to become quantum
operators, namely,

Hy = %/dr {ﬁf(r,t) + (Vi)(r,t))Q] .

Then, the commutator, analogous to the discrete harmonic os-
cillator case as in (87), becomes

92)

[ﬂs(r, 1), b, t)] — iho(r — ') 93)
where the Kronecker delta function becomes a Dirac delta func-
tion in the continuum case. With this commutation relation,
similar to the discrete case in (88) and (89), it is quite easy to
show that

I, (v, 1), " (r,t)} — —ilo(r — ' )nd" L (r,1)

_ et [n (r',t),ﬁ@}
0 (r/,t)
. 6Hy
SD(r )
= ihO L, (', 1)

d(r/, 1), 11" (r, t)} = ihd(r — t)nll" L (x, t)

(94)

- (‘;FI[(()) - [@(r’,t)ﬁ@}

= ihd, ®(r', 1) (95)

where the functional derivatives of operators have meaning only
when they act on the eigenvectors of these operators. Further-
more, by noting that

O I1, (r,t) = (ms(r’t))atﬂs(r’,t)

A =4§(r — o1l
Ol (', ¢ (e =r)0

s(r',t)
(96)
the Hamilton equations very similar to the classical case (70)
are obtained, except for the replacements of variables with oper-
ators. Then, by going through similar algebra as in the classical

case, one gets

Od(r,t

ot

= V2d(r,t). 97)
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The above together yield the wave equation as the equation of
motion for the operator ®(r, t), namely,

PRd(r,t) — V20(r,t) = 0.
The above operator acts on a state vector |t (¢ = 0)) that de-

scribes the initial state of the quantum system representing the
coupled harmonic oscillators.

(98)

C. Vector Potential Case
The commutation relation for the vector potential case is
[1T:(x, ), 4; (7, )| = iho(r = x')oy; 1 (99)

where ¢ and j now represent components of the three-vectors
as in index notation. The above can also be written more
succinctly as

[ﬂ(r, £), A(r, t)} — iho(r — )L (100)

With this commutation relation, it is quite easy to show, similar
to the scalar case, that

{ﬁi(r',t),/l’; (r,t)} — —ihd(r —t')SmAN " (x, 1)

(5A”( t)

Ai (I',, t)

= —ih — [ﬂ(r',t),f{A]

6H 4
SA(r' 1)
= Zhat fI(I'/, t)

= —ih

(101)
[Aj (', ), 117 (r, £)] = ihd(x — v')8nI1" " (x, )

STI7 (x, 1)
ST (17, 1)
6H 4
STI(r', t)

= ih@ﬂ&(rﬂ t)

= —ih

(102)

In other words, the commutator acts like a derivative operator
with respect to each other just like the lone harmonic oscillator
case. The Kronecker delta functions above imply that different
components of a vector are independent. Moreover, the Hamil-
ton equations of motion very similar to (81) can be obtained,
except that variables are replaced by operators. The correspond-
ing quantum Hamiltonian for vector potential is

/dr [ r, t (V X A(r,t))Q + (V . A(r,t))Q]

(103)
where II(r, ) = 9, A(r, t). Consequently, the above becomes

OA(r,t) -
o II(r,t)
% = -V XVxA(,t)+VV-Ar,t). (104
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The above yields the quantum wave equation as the equation of
motion, namely,

—0?A(r,t) =V x VX A(r,t) + VV - A(r,t) = 0. (105)

The above quantum operator acts on a state vector [i4) that
describes the state of the quantum system representing the vector
potential coupled harmonic oscillators.

The scalar potential and the vector potential are related to each
other by the Lorenz gauge. The above exercise can be repeated
with p # € # 1. From the above equations of motion for the
scalar and vector potential operators, the equations of motion in
terms of the E(r, ¢) and B(r, t) can be derived, namely,

t) = —8;B(r,t) V xB(r,t)
= 9,E(r,t)

V-B(r,t)=0 V-D(r,?)

=0.

V x E(n

(106)

The above quantum operator equations have also been derived
by [29] albeit using a rather different approach. These quantum
operators operate on a state vector |¢)(¢ = 0)) that describes the
initial state of the quantum system. The state vector evolves with
time according to the Schrodinger equation

H|y) = ihdy|v)

where H = H 4 — Hq) ,and |1)) is a state vector that represents
the state of this aggregate quantum system.

(107)

IX. CONCLUSION

In Part I of this work, the importance of electromagnetic the-
ory and its enduring legacy have been emphasized. The emerg-
ing interest in quantum effects in electromagnetics will permeate
many areas. A comprehensive way to understand quantum elec-
tromagnetics has been presented. Hopefully, this knowledge is
made more accessible to the electromagnetics community. The
important quantum Hamilton equations of motion for quantum
systems have been derived. From them, the quantum equations
of motion for scalar and vector potentials, as well as the elec-
tromagnetic fields, can be easily arrived at.

In Part II, the generalization of quantization to the anisotropic
inhomogeneous medium case will be presented. Moreover, the
connection to the quantization via mode decomposition will be
given. The quantization for the case when an impressed source
is present and the role of Green’s function will also be discussed.
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