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Abstract—In this work, quantization of electromagnetic fields in
a general anisotropic inhomogeneous media is considered. First,
the classical Hamiltonian is derived. Once the Hamiltonian is de-
rived, with it the classical equations of motion follow. Next, the
fields are elevated to become quantum operators, for which con-
jugate pairs are endowed with commutators. Since as previously
shown, such commutators induce functional derivatives, the quan-
tum equations of motion can be easily derived. Next, the mode
decomposition of the fields is demonstrated. Upon substitution
into the classical Hamiltonian, each mode then behaves like a sim-
ple harmonic oscillator. These oscillators can then be elevated to
become quantum harmonic oscillators. Both the traveling wave
modes and the standing wave modes are discussed. Furthermore,
the longitudinal modes are described. Finally, the case of impressed
sources are considered, with the corresponding Hamiltonian and
field quantization. The Green’s functions for the linear system are
presented. Finally, the quantum Maxwell’s equations are derived.
A short discussion on field-atom interaction is given.

Index Terms—Anisotropic inhomogeneous media, Maxwell’s
equations, quantum mechanics, vector and scalar potentials.

I. INTRODUCTION

IN PART II, quantum electromagnetics (QEM) (quantization
of electromagnetic fields) will be extended to the anisotropic

inhomogeneous medium case. This, as far as we know, has not
been done before. Furthermore, connection with the mode de-
composition approach will be made including the anisotropic
inhomogeneous medium case. Two kinds of modes will be iden-
tified: the traveling wave case and the standing wave case. Each
of them presents a different picture of the modes, and their
physical pictures will be explained.

Next, the case of impressed sources will be introduced in both
classical and quantum Hamiltonian mechanics. This is similar
to the concept of impressed current sources in classical elec-
tromagnetics. Moreover, for a linear time invariant system, it
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can be shown that the solution can be more compactly written
by the introduction of the Green’s function as in the classical
electromagnetics case [9], [10]. The illustrations of the use of
Green’s functions in both the vector and scalar potential cases
will be given. The methods outlined in this part portend well for
the development of new quantum technologies.

II. ANISOTROPIC INHOMOGENEOUS MEDIUM CASE

QEM for the anisotropic inhomogeneous medium case has
not been presented in the literature before, even though it has
been presented for the isotropic inhomogeneous medium case
[2], [3]. Here, we present the lossless, reciprocal, anisotropic in-
homogeneous medium case using the generalized Lorenz gauge.
The generalized Lorenz gauge is not new and many past work
have been referred to in [5]. Some work that have recently come
to our attention are [6] and [7]. Furthermore, the treatment of
the lossy case is complicated and beyond the scope of this work
[9]–[11]. It requires the coupling of a quantum system to a noise
bath to maintain the Hermiticity of the system. Moreover, the
introduction of loss, from the Kramers–Kronig relation [12],
implies the dispersive nature of the medium. Before starting,
however, some new notations will be introduced to lessen the
algebra involved.

A. New Hamilton Equations

At this juncture, it is convenient to define the Hamiltonian
density such that

HA =
∫

drHA (Π(r, t),A(r, t)) . (II.1)

Moreover, the functional derivatives with respect to the
Hamiltonian always introduce the delta functions. Therefore,
the sifting property of the delta function will remove the integral
over the Hamiltonian density. With this in mind, the Hamilto-
nian density and the equations of motion can be rederived and
rewritten more succinctly as

∂A(r, t)
∂t

=
∂H̃A

∂Π(r, t)
∂Π(r, t)

∂t
= − ∂H̃A

∂A(r, t)
. (II.2)

In this notation, the tilde above implies that the integration by
parts has been performed so that the transpose of the operator
can be easily found.

The generalized Lorenz gauge [5] in this case is

∇ · [ε(r) · A(r, t)] = −χ(r)∂tΦ(r, t) (II.3)
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yielding the decoupled potential equations as

∇ · ε(r) · ∇Φ(r, t) − χ(r)∂2
t Φ(r, t) = 0 (II.4)

∇× μ−1(r) · ∇ × A(r, t) + ε(r) · ∂2
t A(r, t)

− ε(r) · ∇
(
χ−1(r)∇ · ε(r) · A(r, t)

)
= 0 (II.5)

where χ(r) = α|ε · μ · ε| and α is an arbitrary constant. Here,
ε(r) and μ(r) are real symmetric tensors because of the recip-
rocal and lossless conditions.

The Hamiltonian density for the vector potential for
anisotropic inhomogeneous medium case is

HA =
1
2

[∂tA(r, t)] · ε(r) · [∂tA(r, t)]

+
1
2

[∇× A(r, t)] · μ−1(r) · [∇× A(r, t)]

+
1
2

[∇ · ε(r) · A(r, t)]2 χ−1(r). (II.6)

The scalar potential Hamiltonian density for the same case is

HΦ =
1
2

[∇Φ(r, t)] · ε(r) · [∇Φ(r, t)] +
1
2
χ(r) [∂tΦ(r, t)]2 .

(II.7)
The total Hamiltonian density is then

H = HA − HΦ . (II.8)

The difference is needed as it can be shown that the above
equation, after using integration by parts and Lorenz gauge, is
equivalent to

H̃ =
1
2

[E(r, t) · D(r, t) + H(r, t) · B(r, t)] (II.9)

where the tilde implies that integration by parts has been used to
arrive at the above form for the Hamiltonian density. The con-
jugate momenta for the vector and scalar potentials are defined
as

Π(r, t) = ε(r) · ∂tA(r, t) Πs(r, t) = χ(r)∂tΦ(r, t).
(II.10)

Then, the total Hamiltonian density is

H = HA − HΦ

=
1
2
Π(r, t) · ε−1(r) · Π(r, t)

+
1
2

[∇× A(r, t)] · μ−1(r) · [∇× A(r, t)]

+
1

2χ(r)
[∇ · ε(r) · A(r, t)]2

− 1
2

[∇Φ(r, t)] · ε(r) · [∇Φ(r, t)] − 1
2χ(r)

Π2
s (r, t).

(II.11)

From the Hamilton equations, we obtain

∂H̃A

∂Π
= ε−1(r) · Π(r, t) = ∂tA(r, t) (II.12)

∂H̃A

∂A(r, t)
= −∂tΠ(r, t) = ∇× μ−1(r) · ∇ × A(r, t)

− ε(r) · ∇
[
χ−1(r)∇ · ε(r) · A(r, t)

]
(II.13)

where integration by parts and the fact that ε(r) and μ(r) are
real symmetric tensors have been used to arrive at the above
form. Combining the above equations yields the equation of
motion for the vector potential:

∇×μ−1(r) · ∇×A(r, t) − ε(r) · ∇(χ−1(r)∇ · ε(r)· A(r, t))

+ ε(r) · ∂2
t A(r, t) = 0. (II.14)

Similarly for the scalar potential part, only the scalar potential
and its conjugate momentum are perturbed yielding,

∂H̃Φ

∂Πs(r, t)
= χ−1(r)Πs(r, t) = ∂tΦ(r, t) (II.15)

∂H̃Φ

∂Φ(r, t)
= −∇ · ε(r) · ∇Φ(r, t) = −∂tΠs(r, t) (II.16)

where lossless reciprocal medium has been assumed here. Com-
bining the above equations yields the equation of motion for the
scalar potential

∇ · ε(r) · ∇Φ(r, t) − χ(r)∂2
t Φ(r, t) = 0. (II.17)

B. The Quantum Case

With the mathematical tools and algebra being developed, the
generalization to the quantum case is rather straightforward. To
arrive at the quantum description of the system, the conjugate
variables are first elevated to become quantum operators like the
free-space case. Then the commutators between the conjugate
quantum operators as obtained in Part I, (8.8) and (8.15), are
reproduced here[

Π̂s(r, t), Φ̂(r′, t)
]

= i�δ(r − r′)Î (II.18)

and [
Π̂(r, t), Â(r′, t)

]
= i�δ(r − r′)Î. (II.19)

They induce derivative properties in the Heisenberg equations
of motion as shown in Part I.

With the introduction of quantum Hamilton equations of mo-
tion previously, similar equations for the coupled harmonic os-
cillator case for anisotropic inhomogeneous medium case can
be derived. One needs only to replace the field variables in (II.4)
to (II.7) with operators. Then the total Hamiltonian density and
Hamiltonian will become operators as well.

The state of the quantum system is now determined by a state
vector whose time evolution is governed by the Schrödinger
equation, but with the appropriate Hamiltonian for anisotropic
inhomogeneous medium. The quantum equations of motion for
the vector and scalar potential can be shown to be

∇× μ−1(r) · ∇ × Â(r, t) − ε(r) · ∇(χ−1(r)

∇ · ε(r) · Â(r, t)) + ε(r) · ∂2
t Â(r, t) = 0 (II.20)

∇ · ε(r) · ∇Φ̂(r, t) − χ(r)∂2
t Φ̂(r, t) = 0. (II.21)
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Fig. 1. The mode decomposition picture is valid for cavity of arbitrary shape
filled with lossless anisotropic inhomogeneous medium.

Again, the above quantum operators act on a fixed quantum
state that defines the state of the system at t = 0, as these are
Heisenberg operators.

III. MODE DECOMPOSITION PICTURE

The mode decomposition approach gives a different physical
picture of the oscillatory fields of the coupled harmonic oscil-
lators as a collection of lone harmonic oscillators. Hence, it
is very useful for seeing the connection between classical har-
monic oscillators and quantum harmonic oscillators. The mode
decomposition approach has been described in most literature
for the free space case. It is also the standard way of connecting
classical electromagnetics with QEM, as have been presented
in many textbooks referenced in Part I of this work.

Previously, it has been shown that the quantum equations of
motion can be obtained directly from the quantum Hamiltonian
without going through mode decomposition. It can be shown
that the two approaches yield the same result, and hence, are
equivalent. The mode decomposition approach has not been
presented for the case of dispersionless, anisotropic, inhomoge-
neous media, which is represented in Fig. 1. Therefore, it will
be presented here. For simplicity, the scalar potential case will
be presented first.

A. Scalar Potential Case

The equation of motion for the scalar potential case for
anisotropic inhomogeneous media has been derived in (II.17).
Using the separation of variables, one lets

Φ(r, t) = sk (t)Φk (r). (III.1)

Consequently, using it in (II.17) gives

∂2
t sk (t) = −Ω2

k sk (t) (III.2)

∇ · ε · ∇Φk (r) + Ω2
kχ(r)Φk (r) = 0. (III.3)

In the above equation, Φk (r) represents an eigenmode of (III.3)
with eigenvalue Ω2

k . Due to the Hermiticity of the operators
involved, one can easily prove the orthogonality of these eigen-
modes and the realness of the eigenvalue Ω2

k [13]. The Her-
miticity is retained with Neumann, Dirichlet, or mixed bound-
ary conditions when solving (III.3). For domain of some spe-
cial shapes, periodic boundary condition can be imposed [14].
Therefore, one defines an orthonormal relation using Dirac no-
tation as described in Appendix A as

〈Φk ′ |χ|Φk 〉 =
∫

drΦ∗
k ′(r)χ(r)Φk (r) = δk ′k . (III.4)

On this note, one can expand in general a time varying field
as

Φ(r, t) =
∑

k

sk (t)Φk (r) =
∑

k

s∗k (t)Φ∗
k (r). (III.5)

The second equality follows from the realness of Φ(r, t) on
the left-hand side. Using the above eigenmode expansion of
Φ(r, t), it follows that the integral of the first term of the scalar
potential Hamiltonian density in (II.7) is∫

dr∇Φ(r, t) · ε(r) · ∇Φ(r, t)

=
∑
k,k ′

sk (t)s∗k ′(t)
∫

dr∇Φk (r) · ε(r) · ∇Φ∗
k ′(r) (III.6)

=
∑

k

|sk (t)|2Ω2
k . (III.7)

The last equality can be shown using integration by parts, (III.3),
boundary condition, and the orthogonality relationship (III.4).
They together imply that∫

dr [∇Φk (r)] · ε · [∇Φ∗
k ′(r)]

= −
∫

dr [∇ · ε(r) · ∇Φk (r)] Φ∗
k ′(r)

= Ω2
k

∫
drΦk (r)χ(r)Φ∗

k ′(r) (III.8)

= Ω2
k δkk ′ . (III.9)

By the same token, one can show that the integral of second
term of the scalar potential Hamiltonian density in (II.7) is∫

drχ(r)(∂tΦ(r, t))2 =
∑

k

|∂tsk (t)|2 . (III.10)

As a result, the Hamiltonian for the scalar potential then
becomes

HΦ =
1
2

∑
k

[
|Pk,Φ(t)|2 + |Qk,Φ(t)|2

]
(III.11)

where

Pk,Φ(t) = ∂tsk (t) Qk,Φ(t) = sk (t)Ωk . (III.12)

B. Vector Potential Case

For the vector potential case, again by the separation of vari-
ables, letting

A(r, t) = αk (t)Ak (r) (III.13)

yields

∂2
t αk (t) = −Ω2

kαk . (III.14)

As a result, the equation of motion (II.5) becomes

∇× μ−1(r) · ∇× Ak (r) − ε(r) · ∇(χ−1(r)∇ · ε(r) · Ak (r))

− Ω2
kε(r) · Ak (r) = 0. (III.15)
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The Hermiticity of the above-mentioned operators ensures the
realness of the eigenvalue Ω2

k , and the orthonormality relation
can be defined as [13]

〈Ak ′ |ε|Ak 〉 =
∫

drA∗
k ′(r) · ε(r) · Ak (r) = δk ′k . (III.16)

As in the scalar potential case, different boundary conditions
can be used to arrive at the above relation. Moreover, one can
expand a general field as

A(r, t) =
∑

k

αk (t)Ak (r) =
∑

k

α∗
k (t)A∗

k (r). (III.17)

Using the above equation in the second and third terms in the
integral of the Hamiltonian density given by (II.6) leads to∫

dr
[
∇× A(r, t) · μ−1(r) · ∇ × A(r, t)

+ (∇ · ε(r) · A(r, t))2χ−1(r)
]

=
∑
k,k ′

αk (t)α∗
k ′(t)

∫
dr

[
∇× Ak (r) · μ−1(r) · ∇ × A∗

k ′(r)

+ ∇ · ε · Ak (r)∇ · ε · A∗
k ′(r)χ−1(r)

]
(III.18)

=
∑

k

|αk (t)|2Ω2
k . (III.19)

In the above equation, integration by parts, (III.15), boundary
condition, and the orthogonal relation (III.16) have been used
to give ∫

dr
[
∇× Ak (r) · μ−1(r) · ∇ × A∗

k ′(r)

+ ∇ · ε(r) · Ak (r)χ−1(r)∇ · ε(r) · A∗
k ′(r)

]

=
∫

drAk (r) ·
[
∇× μ−1(r) · ∇ × Ak (r)

− ε(r) · ∇(χ−1(r)∇ · ε(r) · Ak (r))
]

= Ω2
k

∫
drAk (r) · ε · A∗

k ′(r) = Ω2
k δkk ′ . (III.19)

And using (III.16) and (III.17) in the integral of the first term
of the Hamiltonian density given by (II.6), then∫

dr∂tA(r, t) · ε(r) · ∂tA(r, t) =
∑

k

|∂tαk (t)|2 . (III.20)

Therefore, from (III.18) and (III.20), the Hamiltonian for the
vector potential is

HA =
1
2

∑
k

[
|Pk,A (t)|2 + |Qk,A (t)|2

]
(III.21)

where

Pk,A (t) = ∂tαk (t) Qk,A (t) = αk (t)Ωk . (III.22)

C. Total Hamiltonian for Mode Decomposition

The scalar and vector potentials are related by the generalized
Lorenz gauge. As a result, the scalar potential eigenmodes are
related to the vector potential eigenmodes. Therefore, sk (t) and

∂tsk (t) are related to ak (t) and ∂tak (t). The total Hamiltonian
of the system for anisotropic inhomogeneous medium is the
integral of (II.8), and is defined to be

H = HA − HΦ . (III.23)

By comparing (III.5) and (III.17), and that by taking the di-
vergence of (III.15), making it very similar to (III.3), it can be
shown that

∇ · ε · Ak (r) = ckχ(r)Φk (r). (III.24)

Here, ck is needed because Ak (r) and Φk (r) are orthonormal
functions, and they cannot be directly related by the generalized
Lorenz gauge. It is to be noted that the divergence operator maps
a 3-vector into a scalar, and the above equation can give rise to
three degrees of degeneracy for the scalar potential Φk (r). By
further taking the magnitude square of (III.24), multiplying it by
χ(r), integrating over space, using the orthonormality relation
of Φk (r), and making use of (III.19), one obtains∫

dr [∇× Ak (r)] · μ−1(r) · [∇× A∗
k (r)] = Ω2

k − |ck |2 .
(III.25)

For a lossless medium, μ(r) is a Hermitian positive definite
tensor. The positive definiteness of the left-hand side ensures
that Ω2

k > |ck |2 . By connecting the vector and scalar potential
via the Lorenz gauge, one can hence show that

∂tsk (t) = −ckαk (t) ∂tαk (t) =
Ω2

k

ck
sk (t). (III.26)

Using these, one can further show that

H = HA − HΦ =
1
2

∑
k

[
|∂tαk (t)|2 + |αk (t)|2Ω2

k

− |∂tsk (t)|2 − |sk (t)|2Ω2
k

]
. (III.27)

Again, as aforementioned, due to the degeneracies introduced
by the map (III.24), the scalar potential modes could be counted
multiple times in the index k. Using (III.26) in the above equa-
tion, one arrives at

H =
1
2

∑
k

(
1 − |ck |2

Ω2
k

)[
|∂tαk (t)|2 + |αk (t)|2Ω2

k

]
.

(III.28)
The above equation is a positive definite quantity from

(III.25). Accordingly, the total Hamiltonian can be similarly
expressed as

H =
1
2

∑
k

[
|Pk (t)|2 + |Qk (t)|2

]
(III.29)

where

Pk (t) =
(

1 − |ck |2
Ω2

k

)1/2

∂tαk (t),

Qk (t) =
(

1 − |ck |2
Ω2

k

)1/2

αk (t)Ωk . (III.30)

The Hamiltonian expounded in (III.29) represents the sum of
Hamiltonians of many lone harmonic oscillators. This makes it
easy to connect them to the lone quantum harmonic oscillators.
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It is to be noted that |Pk |2 is arrived at by subtracting the
potential energy of the scalar potential Φ from the kinetic energy
of the vector potential, and vice versa for |Qk |2 . It shall be shown
next that |Pk |2 and |Qk |2 correspond to the energy stored in the
electric field and magnetic field, respectively.

It motivates the definition of orthonormalized electric field
modes such that

Ek (r) =
(

1 − |ck |2
Ω2

k

)−1/2 (
Ak (r) +

ck

Ω2
k

∇Φk (r)
)

(III.31)

with the property that

〈Ek |ε|Ek ′ 〉 = δkk ′ . (III.32)

Then the expansion of the electric field is

E(r) =
∑

k

Pk (t)Ek (r). (III.33)

Similarly, one can define orthonormalized magnetic field
modes such that

Hk (r) =
(
Ω2

k − |ck |2
)−1/2

μ−1(r)∇× Ak (r) (III.34)

with the property that

〈Hk |μ|Hk ′ 〉 = δkk ′ . (III.35)

Then the expansion of the magnetic field is

H(r) =
∑

k

Qk (t)Hk (r). (III.36)

So it is clear that |Pk (t)|2 and |Qk (t)|2 correspond to energy
stored in the electric field modes and magnetic field modes,
respectively. One can also easily substitute the above mode
decompositions for E and H into (II.9) to arrive at (III.29).

D. Longitudinal Modes

Because the total Hamiltonian H equals to HA − HΦ , the en-
ergy in the vector potential Hamiltonian has excess energy com-
pared to the energy in the E and B Hamiltonian. The reason can
be attributed to the existence of the longitudinal modes. These
modes can even have zero electromagnetic field, but nonzero
scalar and vector potentials. For the zero magnetic field, the
corresponding vector potential is curl free, or that B = ∇× A
is zero. The case of zero electric field is less obvious but can be
constructed easily for the traveling wave modes in free space.
The electric field is given by

E = −∇Φ − ∂tA. (III.37)

For a traveling plane wave mode with oscillation frequency
of Ωk , the corresponding mode is

E = −ikΦ + iΩkA. (III.38)

If one chooses kΦ = ΩkA or that A points in the k direction,
this mode has zero corresponding electric field. The oscillations
of these modes are also called the longitudinal photons.

For the general anisotropic inhomogeneous medium case, the
scalar potential oscillates according to the following equation:

∇ · ε · ∇Φk (r) + Ω2
kχ(r)Φk (r) = 0. (III.39)

A corresponding vector potential can be constructed such that

Ak =
i

Ω k
∇Φk . (III.40)

Such a longitudinal mode has no corresponding electromag-
netic field! The energy of such modes has to be removed from
the Hamiltonian of the vector potential in order to equate it to
the energy of the electromagnetic field.

E. Traveling Wave Modes Versus Standing Wave Modes

In the previous section, the total Hamiltonian has been ex-
pressed in terms of individual Hamiltonian of each mode. The
total energy of each mode is denoted as the sum of |P (t)|2 and
|Q(t)|2 , be it the scalar potential case, the vector potential case,
or the E and H fields case. The time behavior of these two en-
ergies will differ depending on the nature of the mode: whether
if it is a traveling wave mode, or a standing wave mode.

From the eigenequations for the modes, it is seen that their
eigenvalues are real. This implies that if Φk is a solution, so
is Φ∗

k sharing the same eigenvalue. Since Φ∗
k corresponds to a

time reversed solution, two cases are possible here: First, it is
a standing wave, and Φk is real-valued or constant phase so
that its complex conjugation is the same mode. Second, it is a
traveling wave so that its time reversed solution is traveling in
the opposite direction.

1) Traveling Wave Modes: The mode decomposition pic-
ture for free space is often expressed in terms of traveling wave
modes. For instance, take the example of the scalar potential
case, with periodic boundary condition, an orthonormal travel-
ing wave mode in a volume V can be written as

Φκ(r) =
1√
V

eiκ ·r . (III.41)

By the use of the periodic boundary condition in a cuboid vol-
ume V = a × b × d, κ can be discretized and made countably
infinite in number. Then [14],

κ = x̂κx + ŷκy + ẑκz κx = 2lπ/a

κy = 2mπ/b κz = 2pπ/d (III.42)

κ2 = κ · κ = (2lπ/a)2 + (2mπ/b)2 + (2pπ/d)2 = Ω2
κ/c2

(III.43)

where (l,m, p) are integer triplets, and c is the velocity of light
in free space. The general solution to (III.2) is

sκ(t) = sκ,+e−iΩκ t + sκ,−eiΩκ t . (III.44)

Thus,

Φ(r, t) =
∑

κ

sκ(t)Φκ(r)

=
1√
V

∑
κ

(
sκ,+e−iΩκ teiκ ·r + sκ,−eiΩκ teiκ ·r) .

(III.45)

Since Ω−κ = Ωκ from (III.43), the first and second sums
physically represent plane wave modes propagating in all direc-
tions, and hence, only one of the two sums suffices to express the
modal expansion of a general traveling wave solution. There-
fore, when only one sum is needed to capture this physics, it can



90 IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, VOL. 1, 2016

be expressed as

Φ(r, t) =
1√
V

∑
κ

sκ(0)e−iΩκ teiκ ·r . (III.46)

Alternatively, the above equation can be rewritten as

Φ(r, t) =
1

2
√

V

∑
κ

[
sκ(0)e−iΩκ teiκ ·r + s∗κ(0)eiΩκ te−iκ ·r] .

(III.47)
The second term that comes from the left-hand side of (III.46)

is real-valued; hence, taking its complex conjugation yields
the same value. The last form is preferred so as to keep each
mode real-valued. So for a traveling wave mode, the amplitude
sκ(t) = sκ(0)e−iΩκ t is already a rotating wave. Moreover, us-
ing the above equation to find |Pk,Φ |2 and |Qk,Φ |2 , they are
always constants of time and equal to each other. The same
phenomenon is observed when one converts the vector potential
modes to traveling wave modes. The same goes for the electric
and magnetic field modes. Another example of a traveling wave
mode is a Bloch–Floquet mode [14]. If the periodic boundary
condition is applied to the anisotropic inhomogeneous medium
case, then Bloch–Floquet modes will ensue.

2) Standing Wave Modes: For a standing wave mode, Φk is
equiphase, and without loss of generality, Φk can be assumed
real. In this case, to guarantee the realness of Φ in (III.1), sk (t)
must be real. Therefore, the general solution for sk (t) is

sk (t) = bk cos(Ωk t + θk ), ∂tsk (t) = −Ωk bk sin(Ωk t + θk )
(III.48)

where bk and θk are real. It is clear that |∂tsk (t)|2 + Ω2
k |sk (t)|2

is a constant of time. Then, using the definitions of |Pk,Φ |2 and
|Qk,Φ |2 , it is clear that the corresponding Hamiltonian for the
scalar potential, HΦ defined in (III.11), is also a constant of
time. In this case, the Hamiltonian for each individual mode
is analogous to a lone harmonic oscillator where |Pk,Φ |2 and
|Qk,Φ |2 correspond to the “potential” and “kinetic” energies
stored. Their time variations correspond to the swapping of these
two energies, as in a pendulum or a simple harmonic oscillator.

The same argument can be applied to αk (t) and ∂tαk (t),
showing that |∂tαk (t)|2 + Ω2

k |αk (t)|2 is time independent, and
convincing one that the Hamiltonian for the vector potential,
HA in (III.21), is a constant of time. By the same token, this can
be applied to the total Hamiltonian in (III.29).

F. Constancy of Hamiltonian

It is seen above that the Hamiltonians for the scalar, vector,
and electromagnetics cases are time independent both for the
traveling wave case and for the standing wave case, albeit for
quite different reasons. In the traveling wave case, Pk (t) and
Qk (t) are complex functions with e−iΩk t time dependence, but
|Pk |2 and |Qk |2 are real, time independent, and equal to each
other, or 1

2

(
|Pk |2 + |Qk |2

)
= |Bk |2 . Therefore, the Hamilto-

nian can be written as

H =
∑

k

Bk (t)B∗
k (t) (III.49)

where Bk (t) ∼ e−iΩk t is a rotating wave.

For the standing wave case, since Pk (t) and Qk (t) are real si-
nusoidal functions similar to the case in (III.48). One can define
Bk (t) = 1√

2
[iPk (t) + Qk (t)] which naturally become a rotat-

ing wave with e−iΩk t time dependence. Then the Hamiltonian
defined by (III.49) is manifestly a constant of time. For the elec-
tromagnetic field case, since Bk is a linear superposition of the
E and H fields in quadrature phase, it is related to the Beltrami
field [15].

IV. QUANTIZATION VIA MODE DECOMPOSITION

The mode decomposition approach gives a lucidly clear pic-
ture of the coupled harmonic oscillators as a sum of individual
harmonic oscillators each of which is a natural or resonant mode.
It is also given in most text books. Equations (III.29) and (III.49)
give the physical picture that when the coupled harmonic oscilla-
tors are expressed in terms of the natural modes of the equations
of motion, be it traveling wave modes or standing wave modes,
one can clearly see that the Hamiltonian of spatially coupled
harmonic oscillators is the sum of the individual Hamiltonians
of the harmonic oscillators corresponding to the natural modes
of the system: each of them is a lone harmonic oscillator. So
when the system is elevated to a quantum system, each of the
harmonic oscillators is elevated to be a quantum harmonic os-
cillator individually with a resonant frequency of Ωk as in the
case of the lone harmonic oscillator.

A. Factorized Schrödinger Equation for Lone Quantum
Harmonic Oscillator

At this juncture, it is prudent to revisit the lone harmonic
oscillator case. One needs to connect quantum Hamiltonian of

Ĥψn (q) =
(
− �

2

2m

d2

dq2 +
1
2
mΩ2q2

)
ψn (q) = Enψn (q)

(IV.1)
with classical Hamiltonian defined by

H =
1
2

[
P 2(t) + Q2(t)

]

=
1
2

[iP (t) + Q(t)] [−iP (t) + Q(t)]

= B(t)B∗(t)

=
1
2

(B(t)B∗(t) + B∗(t)B(t)) . (IV.2)

To this end, it is necessary to cast the quantum Hamiltonian

into a similar form. On defining a new variable ξ =
√

mΩ
�

q, and
then defining

â† =
1√
2

(
− d

dξ
+ ξ

)
(IV.3)

â =
1√
2

(
d

dξ
+ ξ

)
. (IV.4)

The above equations are actually the sloppy notation of these
operators in coordinate representation. It can be shown that
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(IV.1) becomes [16], [17]

Ĥψn (q) =
(
− �

2

2m

d2

dq2 +
1
2
mΩ2q2

)
ψn (q)

=
1
2

�Ω
(
ââ† + â†â

)
ψn (ξ) = Enψn (ξ) (IV.5)

where with the abuse of notation, the new wave function is
ψn (ξ). In the above equation, â† is called the creation (raising)
operator, and â is the annihilation (lowering) operator. Further-
more, it can be easily shown that the commutator1

[
â, â†] = ââ† − â†â = Î . (IV.6)

The Hamiltonian can then be defined as

Ĥ =
1
2

�Ω
(
ââ† + â†â

)
= �Ω

(
â†â +

1
2

)
. (IV.7)

The above Hamiltonian is in the Schrödinger picture. The
corresponding Hamiltonian in the Heisenberg picture can be
easily derived using (6.3) in Part I, or as in the Appendix C

Ĥ =
1
2

�Ω
[
â(t)â†(t) + â†(t)â(t)

]
. (IV.8)

Previously, the quantum Hamiltonian has been obtained by
elevating the conjugate variables p and q to their quantum op-
erator forms. By the same token, comparing the above equation
with (IV.2), one can infer that the quantum Hamiltonian can be
obtained from the above equations by the following inference
or elevations:

B(t) →
√

�Ωâ(t) B∗(t) →
√

�Ωâ†(t). (IV.9)

One can further define that

π̂ =
−i√

2
d

dξ
ζ̂ =

ξ√
2

(IV.10)

then

â = iπ̂ + ζ̂ â† = −iπ̂ + ζ̂ (IV.11)

and the Hamiltonian can further be written as

Ĥ =
1
2

�Ω
(
π̂2 + ζ̂2

)
=

1
2

�Ω
(
π̂2(t) + ζ̂2(t)

)
(IV.12)

where the latter form can be easily shown to be in the Heisenberg
picture. By comparing the above equation with (IV.2), one can
infer that the above quantum Hamiltonian can also be obtained
by the following elevations:

P (t) →
√

�Ωπ̂(t) Q(t) →
√

�Ωζ̂(t). (IV.13)

In the above equations, â is a non-Hermitian operator, while π̂
and ζ̂ are Hermitian operators [16], [17]. Also, these operators
have been expressed in their coordinate representation of the
basis |ξ〉.

1Sometimes, this is used as the quantum postulate, rather than the commuta-
tion [p̂, q̂].

B. Connecting Classical Hamiltonian to Quantum
Hamiltonian–Mode Decomposition Approach

As a result, by writing the classical Hamiltonian in (III.49)
more suggestively as

H =
1
2

∑
k

[Bk (t)B∗
k (t) + B∗

k (t)Bk (t)] (IV.14)

each term of the above equation now becomes similar to the
Hamiltonian of a lone quantum harmonic oscillator. Therefore,
by letting

Bk (t) →
√

�Ωk âk (t) B∗
k (t) →

√
�Ωk â†

k (t) (IV.15)

the classical Hamiltonian can thus be elevated to be a quantum
Hamiltonian as

Ĥ =
1
2

∑
k

�Ωk

(
âk (t)â†

k (t) + â†
k (t)âk (t)

)
. (IV.16)

Similarly, by letting

Pk (t) →
√

�Ωk π̂k (t) Qk (t) →
√

�Ωk ζ̂k (t) (IV.17)

the classical Hamiltonian for each mode can be elevated to
become

Ĥ =
1
2

∑
k

�Ωk

(
π̂2

k (t) + ζ̂2
k (t)

)
. (IV.18)

In this manner, the quantum version of the Hamiltonian can
be arrived at.

Alternatively, one can elevate the field to be quantum opera-
tors in the classical Hamiltonian by the procedure of letting

Φ̂(r, t) =
∑

k

ŝk (t)Φk (r)

=
∑

k

ŝ†k (t)Φ∗
k (r)

=
1
2

∑
k

[
ŝk (t)Φk (r) + ŝ†k (t)Φ∗

k (r)
]

(IV.19)

Â(r, t) =
∑

k

α̂k (t)Ak (r) =
∑

k

α̂†
k (t)A∗

k (r)

=
1
2

∑
k

[
α̂k (t)Ak (r) + α̂†

k (t)A∗
k (r)

]
(IV.20)

where ŝk (t) and α̂k (t) are now quantum operators. The last
forms above are preferred as they keep the field operator for
each mode to be Hermitian, especially for the traveling wave
case. The above equalities are based only on mathematical logic,
and that Φ̂(r, t) and Â(r, t) are Hermitian operators.

Going through the same mode decomposition algebra as be-
fore, one can arrive at the aforementioned quantum Hamiltoni-
ans. If the modes are traveling wave modes as in the free space
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Fig. 2. It is shown here that the mode decomposition picture for quantization of Maxwell’s equations can be related to the resonance of many LC resonators
(tank circuits). Each mode can be represented by a single LC tank circuit.

case, then the field operators can be written as

Ê(r, t) =
1
2

∑
k

√
�Ωk

[
âk e−iΩk tEk (r) + â†

k eiΩk tE∗
k (r)

]

(IV.21)

Ĥ(r, t) =
1
2

∑
k

√
�Ωk

[
âk e−iΩk tHk (r) + â†

k eiΩk tH∗
k (r)

]

(IV.22)

where the sum over k is over all traveling wave modes. In the
index k, the polarizations of the modes are also incorporated.

C. Circuit View of the Mode Decomposition Picture

The fact that a mode can be viewed as a quantum simple
harmonic oscillator is because a mode is due to the coupling of
infinitely many quantum simple harmonic oscillators made from
electron–positron (e–p) pairs. As long as these oscillators are
coupled to form a mode, and remain in quantum coherence, the
macroscopic oscillator thus formed are in quantum coherence,
and hence, is still a quantum harmonic oscillator, even though the
mode involves the coherent coupling of many quantum simple
harmonic oscillators spread over space.

One can think likewise of the LC tank circuit [19]. Even
though it is a macroscopic oscillator spread over space, it is due
to the coupling of the many quantum simple harmonic oscillators
formed by e–p pairs at the fundamental level. The equations of
motion for a tank circuit can be easily written and derived in
classical as well as quantum forms. Alternatively, one can draw
an analogue of each mode to a LC tank resonator, and write
down its equations of motion. This picture is shown in Fig. 2.

Fig. 2 shows that the total Hamiltonian of the electromag-
netic field can be expressed as a superposition of energy stored
in each independent eigenmode. Each eigenmode behaves like
a LC resonator or harmonic oscillator, where the electric energy
( 1
2

Q 2

C or 1
2 mΩ2q2) is stored in capacitors, and magnetic energy

( 1
2 Lφ2 or 1

2 mp2) is stored in inductors, and Ω = 1/(LC) is the
resonant frequency of the tank circuit. Here, φ and Q denote
magnetic flux and electric charge, and p and q denote momen-
tum and coordinate. Analogous to the classical harmonic oscil-
lator, the quantum harmonic oscillator obeys the same Hamilton
equations of motion (see the right side of Fig. 2).

The momentum and coordinate operators satisfy the com-
mutation relation if the de Broglie and Schrödinger postulates
are made. The energy level (eigen-energy) of each quantum
harmonic oscillator is

(
n + 1

2

)
�Ω. The lowest energy 1

2 �Ω of
the quantum harmonic oscillator is called the zero-point energy,
which is responsible for many quantum electrodynamic effects
including spontaneous emission, Casimir force, etc., Due to the
zero-point energy, the vacuum electromagnetic field still fluctu-
ates even when the Kelvin temperature is equal to zero [36].

V. IMPRESSED SOURCES IN THE HAMILTONIANS

If the term [18]

A(r, t) · Jext(r, t) (V.1)

is added to the Hamiltonian density of the vector potential part,
and

Φ(r, t)ext(r, t) (V.2)

is added to the Hamiltonian density of the scalar potential part,
upon taking the functional derivatives, the equations of motion
with a source term result. For instance, the classical Hamiltonian
can be modified to be

HΦ =
1
2

∫
dr

[
(Πs(r, t))

2 + (∇Φ(r, t))2 − 2Φ(r, t)ext(r, t)
]
.

(V.3)
These sources are external sources that do not vary when the
variation with respect to the fields is taken. Hence, they are im-
mutable with respect to the change of the conjugate variables Πs
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and Φ. In classical electromagnetics, these are called impressed
sources [20].

By taking the variation of the above Hamiltonian with respect
to the conjugate variables Πs and Φ, the resultant equation of
motion for the scalar potential becomes

∂2
t Φ(r, t) −∇2Φ(r, t) = ext(r, t). (V.4)

Similarly, if the Hamiltonian for the vector potential is mod-
ified to be

HA =
1
2

∫
dr

[
(Π(r, t))2 + (∇× A(r, t))2

+ (∇ · A(r, t))2−2A(r, t) · Jext(r, t)
]

(V.5)

then the resultant equation of motion for the vector potential is

∇×∇× A(r, t) −∇(∇ · A(r, t)) + ∂2
t A(r, t) = Jext(r, t).

(V.6)
The external current sources are impressed sources in this

case. The above equation can be extended to the anisotropic
inhomogeneous medium case yielding the classical equations
of motion as

∇ · ε(r) · ∇Φ(r, t) − ∂2
t χ(r)Φ(r, t) = −ext(r, t) (V.7)

∇× μ−1(r) · ∇ × A(r, t) − ε(r) · ∇
(
χ−1(r)

∇ · ε(r) · A(r, t)) + ∂2
t ε(r) · A(r, t) = Jext(r, t). (V.8)

A. Green’s Functions

Since we have two kinds of source-driven equations, one for
the scalar potential, and one for the vector potential, two kinds
of Green’s functions can be derived. Since their derivations are
similar, the Green’s function for the vector potential will be
discussed first.

The Green’s function for vector potential can be expressed
in terms of a dyadic Green’s function that relates two field
quantities

A(r, t) =
∫

dr′ G(r, r′, t) � Jext(r′, t) (V.9)

where the “circled asterisk” means “convolution” in time,
whereas the dr integral is a convolution in space. To avoid
the use of the convolution notation, it is best that the above
relationship is expressed in the frequency domain, namely,

A(r, ω) =
∫

dr′ G(r, r′, ω) · Jext(r′, ω). (V.10)

The source driven equations for inhomogeneous anisotropic
medium are given in (V.7) and (V.8). One can expand the solution
in terms of the auxiliary eigenmodes of the above equation. To
this end, one lets

A(r, ω) =
∑
m

Ak (r)ak (ω). (V.11)

Substituting this into (III.15), and making use of the fact that
the eigenmodes satisfy the eigenequation, one arrives at∑

k

(
Ω2

k − ω2) ε(r) · Ak (r)ak (ω) = Jext(r, ω). (V.12)

Using the orthonormality relationship of the eigenmodes
yields

(
Ω2

k − ω2) ak (ω) =
∫

dr′A∗
k (r′) · Jext(r′, ω). (V.13)

Accordingly,

A(r, ω) =
∑

k

1
Ω2

k − ω2 Ak (r)
∫

dr′A∗
k (r′) · Jext(r′, ω).

(V.14)
One can subsequently identify the dyadic Green’s function to

be [13]

G(r, r′, ω) =
∑

k

Ak (r)A∗
k (r′)

Ω2
k − ω2 . (V.15)

The dyadic Green’s function in the time domain is related
to that in the frequency domain by the Fourier inverse integral,
namely,

G(r, r′, t) =
1
2π

∫ ∞

−∞
dωe−iω tG(r, r′, ω). (V.16)

In order to ensure causality, the Fourier inversion contour in
the complex ω plane has to be above the poles in (V.15).

Defining similar Green’s function for the scalar potential case,
one arrives at

Φ(r, t) =
∫

dr′g(r, r′, t) � ext(r′, t) (V.17)

and

Φ(r, ω) =
∫

dr′g(r, r′, ω)ext(r′, ω) (V.18)

where

g(r, r′, ω) =
∑

k

Φk (r)Φ∗
k (r′)

Ω2
k − ω2 (V.19)

and its time domain version can be obtained by a Fourier inverse
transform.

B. The Quantum Case

When sources are introduced, the Hamiltonians in the quan-
tum case are elevated from that for classical case in (V.3). For
the scalar potential case, it is

ĤΦ =
1
2

∫
dr

[(
Π̂s(r, t)

)2
+

(
∇Φ̂(r, t)

)2
−2Φ̂(r, t)̂ext(r, t)

]
.

(V.20)
Both the fields and the sources are elevated to be quantum

operators. These operators operate on the state vector of the
quantum system. Since the operators are in the Heisenberg pic-
ture, these state vectors should be their initial value at t = 0.

In the above equation, since the field operator Φ̂(r, t) and
the source operator ̂ext(r, t) operate on different independent
Hilbert space vectors, if each of them is a Hermitian operator,
the matrix representation of the product of these two matrices
remain Hermitian. They are like direct product of two matrices.
The above scenario can occur when one considers the atom-field
interaction system [18] where the atom produces a source that
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feeds into the field system, but there is no back action of the
field onto the atom system.

Then the resultant equation of motion for the scalar potential
operator becomes

∂2
t Φ̂(r, t) −∇2Φ̂(r, t) = ̂ext(r, t). (V.21)

Similarly, if the classical Hamiltonian for the vector potential
is elevated to be quantum, the corresponding quantum Hamil-
tonian is

ĤA =
1
2

∫
dr

[(
Π̂(r, t)

)2
+

(
∇× Â(r, t)

)2

+
(
∇ · Â(r, t)

)2
− 2 Â(r, t) · Ĵext(r, t)

]
.

(V.22)

The same remark applies to the product of two operators that act
on two independent Hilbert vector spaces as that in (V.20). By
taking the variation of the above equation, the resultant equation
of motion for the vector potential is

∇×∇× Â(r, t) −∇(∇ · Â(r, t)) + ∂2
t Â(r, t) = Ĵext(r, t).

(V.23)
The external current sources are impressed sources in this

case. The source-driven quantum equations of motion for the
anisotropic inhomogeneous media can be similarly derived
yielding

∇ · ε(r) · ∇Φ̂(r, t) − ∂2
t χ(r)Φ̂(r, t) = −̂ext(r, t) (V.24)

∇×μ−1(r) ·∇×Â(r, t) − ε(r) ·∇(χ−1(r)∇ · ε(r) · Â(r, t))

+ ∂2
t ε(r) · Â(r, t) = Ĵext(r, t). (V.25)

The Green’s function relation can be similarly derived for the
quantum case as follows:

Â(r, t) =
∫

dr′ G(r, r′, t) � Ĵext(r′, t) (V.26)

Φ̂(r, t) =
∫

dr′g(r, r′, t) � ̂ext(r′, t). (V.27)

Hence, the Green’s function technique is still very useful for
quantum effects calculations.

From (V.24) and (V.25), by defining that B̂(r, t) = ∇×
Â(r, t), Ê(r, t) = −∂tÂ(r, t) −∇Φ̂(r, t), and D̂(r, t) = ε ·
Ê(r, t), one can show that the quantum Maxwell’s equations
of motion for the anisotropic inhomogeneous medium case are

∇× Ĥ(r, t) − ∂tD̂(r, t) = Ĵext(r, t)

∇× Ê(r, t) + ∂tB̂(r, t) = 0 (V.28)

∇ · D̂(r, t) = ̂ext(r, t)

∇ · B̂(r, t) = 0. (V.29)

These quantum operators need to act on a quantum state vec-
tor, to generate a state vector that is representative of the fields.
Hence, a classical field, which can be described by a three com-
ponent vector, now needs to replace each of its component by a
state vector with infinite dimension. The potential for encoding
quantum information in these fields is greatly increased!

The above external current formulation can be used to couple
free field to simple harmonic oscillators formed by the Drude–
Lorentz–Sommerfeld model. They can also be used to couple
free field to the particle current in an atom in a field-atom cal-
culation. These cases will be shown in our future works. In the
following section, we outline the very rudiments of field-atom
interactions considered using the fully quantized Maxwell’s
equations.

VI. FIELD-ATOM INTERACTIONS

The quantized Maxwell’s equations presented above is es-
sential to the fully quantum mechanical description of field-
atom interactions. With the invention of artificial atoms in recent
decades [42], this field is becoming increasingly important and
will benefit greatly from the active participation of the electrical
engineering community. To include atoms in the description,
one may wish to extend the quantized Maxwell’s equations to
include quantum sources, resulting in the quantized Maxwell’s
equations. However, the resulting equations are too cumbersome
for descriptions of atoms. Hence, considerable simplification is
typically made on the atomic part.

The goal is to solve the atom-field dynamics governed by
some Hamiltonian, which in simple scenarios, can be the electric
dipole Hamiltonian. For a single two level atom coupled to the
electric field, we have [18]

Ĥed =
1
2

�ω0 σ̂z +
∑
k

�ωk â†
k âk

+
∑
k

�

(
g(k, r0)âk σ̂+ + g∗(k, r0)â

†
k σ̂−

)
. (VI.1)

Here, the first term represents the quantized two level atom,
with a transition frequency of ω0 . The second represents the
quantized electromagnetic fields in mode decomposed picture.
The summation over the field modes typically runs through
three wavenumber indices and a polarization index. Here, we
choose to denote everything generically by k. The last term
represents the dipole interaction between the two level atom
and the electric field. We may identify the term with âk as
representing absorption of a photon by the atom, while the other
term, emission. The coupling coefficient g(k, r0) are dependent
on the dipole moment of the particular atomic transition, as well
as the kth mode of the electric field local to the position of the
atom. Note that it is a function of both the position of the atom
and the wavenumber of the field modes.

The above electric dipole Hamiltonian is highly simplified.
To derive it, one would start from a first principle minimal
coupling Hamiltonian, which corresponds with the quantized
Maxwell’s equations [18]. Then the long wavelength and rotat-
ing wave approximations are applied. Simplification made to
the atomic part may include the neglect of diamagnetic inter-
actions (interactions of the currents internal to the atom with
the magnetic field) and few level approximation of the atom.
The fully quantized Maxwell’s equations play an essential role
in the understanding of the above approximations. For cases
where the electric dipole Hamiltonian is inadequate and more
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elaborate atom-field interactions desired, the full force of the
quantized Maxwell’s equations are needed.

Going back to the electric dipole Hamiltonian, a striking fea-
ture of the solution to the atom-field dynamics is the appearance
and usefulness of the classical dyadic Green’s function. For ex-
ample, the decay rate and radiative shift of the atom are related
to the imaginary and real parts of the classical dyadic Green’s
function, evaluated at the position of the atom. This relates
the important modification of spontaneous emission for atoms,
sometimes termed the Purcell effect [41], to the classical dyadic
Green’s function. This type of modification has been shown in
our previous work, which utilized the dyadic Green’s function
in a semiclassical setting [43]. With the quantized Maxwell’s
equations, scattering from a single two level atom can be stud-
ied fully quantum mechanically. However, the classical dyadic
Green’s function still plays an essential role in the scattering dy-
namics, as well as in the electromagnetic field associated with
the scattered photon. This will be shown in a future work. When
multiple atoms are involved, the dyadic Green’s function linking
the positions of the atoms becomes important with the advent
of multiple scattering [38].

Another important feature of the quantized Maxwell’s equa-
tions is the prediction of vacuum fluctuations of the electromag-
netic field. The spontaneous emission of atoms mentioned above
can be explained as a consequence of coupling to the fluctuat-
ing electromagnetic vacuum. The Casimir force between closely
spaced objects is understood to be another such consequence.
Due to the close analogy between the quantum mechanical
and classical Maxwell’s equations, the classical dyadic Green’s
function is still important in the calculation of the Casimir
force [44].

VII. CONCLUSION

In this work, the quantization of electromagnetic fields has
been presented from a different viewpoint. The vector and scalar
potential formulation is used with a generalized Lorenz gauge
[5]. The view of electromagnetic field propagation through
space is presented as the coupling of harmonic oscillators via
Maxwell’s equations.

To enhance our understanding of a quantum Maxwellian sys-
tem, we look at the classical and quantum mechanics of a lone
harmonic oscillator. A new simple way to look at Hamilto-
nian mechanics is introduced that avoids the ceremony of La-
grangian mechanics followed by Legendre transform. Further-
more, classical electromagnetic theory from classical Hamilto-
nian mechanics is presented. For the quantum case, a new set of
quantum Hamilton equations of motion is derived, with striking
similarities to the classical Hamilton equations. In this man-
ner, quantized forms of the equations of motion for scalar and
vector potential fields are easily obtained once their classical
Hamiltonians are derived. The equations of motion are in the
coordinate (r, t) space without having to go through the mode-
decomposition approach. Furthermore, the mode decomposition
approach is presented to show its connection and equivalence
to these quantized equations. The Green’s function approach in
solving these equations is also discussed.

A lucid understanding of these quantum equations of mo-
tion can potentially open a new area of research in allowing
the combination of electromagnetics with QEM. They could
be important in the future development of quantum technolo-
gies. Examples are quantum information, quantum cryptogra-
phy, computing, communication, etc.

Moreover, this work shows that the concept of Green’s func-
tion is equally important in quantum effects as in classical ef-
fects. Hence, the host of knowledge developed in computational
electromagnetics in solving classical Maxwell’s equations are
still useful in quantum technologies of the future [21]–[35]. It
is also explained why the quantum Maxwell’s equations of mo-
tion can greatly increase the potential for encoding quantum
information.

APPENDIX A
DIRAC NOTATION

The Dirac notation for the inner product between two vectors
(also called functions) is

〈f |g〉 =
∫

drf ∗(r)g(r). (A.1)

This notation is in line with that of the mathematics commu-
nity, where a complex conjugation is always used on one of the
functions. The corresponding inner product is defined as in the
mathematics community

〈f, g〉 =
∫

drf ∗(r)g(r). (A.2)

But in the electromagnetics community, two kinds of inner
products are used, the energy inner product such as the above,
and the reaction inner product where the functions are complex,
but a complex conjugation is not taken on one of the functions.
The reaction inner product is expressed as [26]

〈f, g〉 =
∫

drf(r)g(r). (A.3)

When f = g in the Dirac, or the energy inner product, (VIII.1)
or (VIII.2) gives rise to a positive definite number, making
it a useful measure for length of a vector, called the metric
or the norm. The norm is proportional to the energy of the
function, and Hilbert spaces correspond to infinite-dimensional
vector spaces where the vectors or functions have finite norm
or energy.

In Dirac notation, the expectation value of an operator q̂ which
is an observable is

q̄(t) = 〈q̂〉 = 〈ψ|q̂|ψ〉 =
∫ ∞

−∞
dq|ψ(q, t)|2q. (A.4)

For a general operator, its expectation value is

Ō(t) = 〈Ô〉 = 〈ψ|Ô|ψ〉. (A.5)

For a quantum operator representing an observable, the ex-
pectation value of the quantum operator yields a measurable
or observable quantity in the real world implying that Ō(t) is
real-valued. As a result, Ô has to be a Hermitian operator with
real eigenvalues [16], [17].
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APPENDIX B
IDENTITY OPERATORS AND MATRIX REPRESENTATIONS

There is a close relationship between operations in Hilbert
space in Dirac notation and operations in finite-dimensional
vector space in linear algebraic notation. A one-to-one map can
be established between the vector operations in Hilbert space
and the vector operations in linear algebra, as follows:

|f〉 ↔ f 〈g| ↔ g† 〈g|f〉 ↔ g† · f (B.1)

〈q|q′〉 = δ(q − q′) ↔ q†
i · qj = δij . (B.2)

One can define an identity operator in a finite-dimensional
vector space spanned by a complete, orthonormal set of vectors
qi , i = 1, . . . , N . This set is also called a basis set. An identity
matrix operator is then

Id =
N∑

j=1

qj · q†
j (B.3)

where the above expression is an outer product. This expression
can be verified as follows. First, assume that the set of or-
thonormal vectors qj , j = 1, . . . , N or its complex conjugate is
complete. Then given an arbitrary vector V, it can be expanded
in terms of these vectors as

V =
∑

j

ajqj =
∑

j

qj · q†
j · V = Id · V (B.4)

where the expansion coefficients aj have been found by invoking
the orthonormality of the vectors. By the same token,

V =
∑

j

bjq
†
j =

∑
j

V · qj · q†
j = V · Id . (B.5)

Therefore, it can be shown that for any vector V in a finite-
dimensional vector space V · Id = Id · V = V where Id as de-
fined above behaves like a matrix identity operator.

Using the analogy in (IX.1), the definition of an identity
operator in an infinite-dimensional Hilbert space becomes

Î =
∫

dq|fq 〉〈fq | or Î =
∞∑

j=1

|fj 〉〈fj |. (B.6)

The first case is for indenumerable (uncountably infinite) Hilbert
space, while the second case is for denumerable (countably
infinite) Hilbert space.

The Hilbert space operator Ô acting on a state vector |ψ〉 is
analogous to a matrix operator O acting on a vector x, namely,

Ô|ψ〉 ↔ O · x. (B.7)

Given an operator equation Ô|ψ〉 = |b〉, one can insert an iden-
tity operator into this Hilbert space equation and obtain

∞∑
j=1

Ô|fj 〉〈fj |ψ〉 = |b〉. (B.8)

Further testing or multiplying the above equation by 〈fi | leads
to

∞∑
j=1

〈fi |Ô|fj 〉〈fj |ψ〉 = 〈fi |b〉, i = 1, . . . ,∞. (B.9)

The above equation is similar to

∞∑
j=1

Oijxj = bi, i = 1, . . . ,∞ (B.10)

where Oij = 〈fi |Ô|fj 〉, xj = 〈fj |ψ〉, and bi = 〈fi |b〉. Here,
Oij is the matrix representation of Ô, and xj and bi are the
vector representations of |ψ〉 and |b〉, respectively. The above
equation corresponds to an infinite-dimensional matrix equa-
tion. One way to compute its solution is to truncate it into a
finite-dimensional matrix equation.

Repeating the exercise with the set of indenumerable basis
|fq 〉 one arrives at

∫
dq〈fq ′ |Ô|fq 〉〈fq |ψ〉 = 〈fq ′ |b〉 ∀q′. (B.11)

In this case, the matrix and vector representations in this basis
are 〈fq ′ |Ô|fq 〉, 〈fq |ψ〉, and 〈fq ′ |b〉. The above equation is still
an integral equation. There are many ways to convert the above
equation into a matrix equation. One way is to use quadrature
rules to replace the integral with summation.

APPENDIX C
TIME EVOLUTION OF RAISING AND LOWERING OPERATORS

In the Heisenberg picture, the Hamiltonian of the harmonic
oscillator can easily be derived from (IV.7), after using (6.3)
from Part I, to be

Ĥ =
1
2

�Ω
[
â(t)â†(t) + â†(t)â(t)

]
. (C.1)

Since the raising and lowering operators have very similar com-
mutator as the p̂ and q̂ operators, one can show that

d

dt
â(t) = − i

�

[
â, Ĥ

]
= − i

�

∂

∂â† Ĥ = −iΩâ(t),

d

dt
â†(t) = − i

�

[
â†, Ĥ

]
=

i

�

∂

∂â
Ĥ = iΩâ†(t). (C.2)

The above Heisenberg operators evolve with time as

â(t) = â(0)e−iΩt â†(t) = â†(0)eiΩt . (C.3)

Furthermore, one can define that for an operator,

â =
1
2

(
â + â†) +

1
2

(
â − â†) = âR + iâI (C.4)

where âR = 1
2

(
â + â†) and âI = 1

2i

(
â − â†) are Hermitian

operators. Then

âR (t) = âR (0) cos(Ωt) + âI (0) sin(Ωt),

âI (t) = −âR (0) sin(Ωt) + âI (0) cos(Ωt). (C.5)

Consequently,

ζ̂(t) =
1
2

(
â(t) + â†(t)

)
= âR (t)

π̂(t) =
1
2i

(
â(t) − â†(t)

)
= âI (t). (C.6)
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Then one can show that

ζ̂(t) = âR (0) cos(Ωt) + âI (0) sin(Ωt),

π̂(t) = −âR (0) sin(Ωt) + âI (0) cos(Ωt). (C.7)

The above equation can be used to connect the classical Hamil-
tonian to the quantum Hamiltonian.
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