

Spin and Orbital Angular Momenta of Electromagnetic Waves: A Preliminary Study

Wei E.I. Sha (沙威)

College of Information Science & Electronic Engineering Zhejiang University, Hangzhou 310027, P. R. China

On leave from EEE Department, the University of Hong Kong

Email: <u>weisha@zju.edu.cn</u> Website: <u>http://www.isee.zju.edu.cn/weisha/</u>

- **1. Theoretical Foundation**
- 2. Potential Applications
- 3. Manipulating Spin and Orbital Angular Momenta of EM Waves
 - 3.1. Polarization Control by Using 3-D Chiral Structures
 - **3.2.** Orbital Angular Momentum Generation by Metasurfaces
- 4. Spin and Orbital Angular Momenta Mixing

1. Theoretical Foundation

Momentum of Light

de Broglie hypothesis (wave-particle duality)

$$p = \hbar k = \hbar \frac{\omega}{c} = \frac{E}{c}$$

Linear momentum

$$\mathbf{P}^{em} = \frac{\int (\mathbf{E} \times \mathbf{H}) \cdot ds \cdot dt}{c} = \frac{\int (\mathbf{E} \times \mathbf{H}) \cdot ds \cdot dl}{c^2} = \frac{\int (\mathbf{E} \times \mathbf{H}) dV}{c^2}$$
$$\mathbf{P}^{em} = 1/c^2 \cdot \int (\mathbf{E} \times \mathbf{H}) dV = \varepsilon_0 \int (\mathbf{E} \times \mathbf{B}) dV$$

Splitting of linear momentum

$$\mathbf{P}^{em} = \varepsilon_0 \int (\mathbf{E}_{\parallel} \times \mathbf{B}) dV + \varepsilon_0 \int (\mathbf{E}_{\perp} \times \mathbf{B}) dV, \ \mathbf{E} = \underbrace{\mathbf{E}_{\parallel}}_{\text{longitudinal}} + \underbrace{\mathbf{E}_{\perp}}_{\text{transverse}}$$

$$\boldsymbol{\varepsilon}_{0} \int (\mathbf{E}_{\parallel} \times \mathbf{B}) dV \Longrightarrow \boldsymbol{\varepsilon}_{0} L^{3} \sum_{n} \tilde{\mathbf{E}}_{\parallel,n} \times \tilde{\mathbf{B}}_{n} \qquad \nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_{0}} \Longrightarrow \tilde{\mathbf{E}}_{\parallel,n} = -\frac{i\mathbf{k}_{n}}{\varepsilon_{0}k_{n}^{2}} \tilde{\rho}_{n}$$

 $\mathcal{E}_0 \int (\mathbf{E}_{\parallel} \times \mathbf{B}) dV = \int dV \rho(\mathbf{r}, t) \mathbf{A}(\mathbf{r}, t) = \sum q_n(\mathbf{r}_n) \mathbf{A}(\mathbf{r}_n, t)$

al Reflection Total Absorption Total Transmission

$$Q_{pR}=2$$
 $Q_{pR}=1$ $Q_{pR}=0$
 $Reaction$
Force
Perfect
Flat Reflector
Incide nt
Momentum
Change

Total

$$\nabla \times \mathbf{A} = \mathbf{B} \Longrightarrow \tilde{\mathbf{B}}_n = i \tilde{\mathbf{k}}_n \times \tilde{\mathbf{A}}_n$$

related to field momentum in quantum mechanism

Time-averaged radiation momentum density

 $\mathbf{p}^{rad} = \frac{\varepsilon_0}{2} \operatorname{Re}(\mathbf{E}_{\perp}^* \times \mathbf{B}) = \frac{\varepsilon_0}{2} \operatorname{Re}(\mathbf{E}_{\perp}^* \times \mathbf{B}_{\perp}) \qquad \mathbf{l}^{rad} = \mathbf{r} \times \mathbf{p}^{rad} \quad \text{angular momentum density}$

Splitting of time-averaged radiation momentum density

Time-averaged spin and orbital angular momentum density

$$\mathbf{l}^{s} = \mathbf{r} \times \mathbf{p}^{s} = \frac{\varepsilon_{0}}{2\omega} \operatorname{Im} \left[\mathbf{E}_{\perp}^{*} \times \mathbf{E}_{\perp} \right] \qquad \mathbf{l}^{o} = \mathbf{r} \times \mathbf{p}^{o} = \frac{\varepsilon_{0}}{2\omega} \operatorname{Im} \left[\mathbf{E}_{\perp}^{*} \cdot (\mathbf{r} \times \nabla) \mathbf{E}_{\perp} \right]$$

spin angular momentum density

orbital angular momentum density

SAM and OAM — Photon versus Electron

Angular Momentum: A Simple Look

- ➢ Spin angular momentum (SAM): value S = 0, ±ħ
- > Orbital angular momentum (OAM): value $L = l\hbar$

Laguerre-Gaussian Modes^[1]

[1] A. M. Yao, and M. J. Padgett, "Orbital angular momentum: origins, behavior and applications," Adv. Opt. Photonics, vol. 3, no. 2, pp. 161-204, 2011.

2. Potential Applications

3.1. Polarization Control by Using 3-D Chiral Structures

[1] M. L. N. Chen, L. J. Jiang, W. E. I. Sha, W. C. H. Choy, and T. Itoh, "Polarization control by using anisotropic 3-D chiral structures," *IEEE Trans. Antennas Propag.*, vol. 64, no. 11, pp. 4687-4694, Nov. 2016.

> Chiral medium

- composed of particles that <u>cannot be superimposed on their mirror images</u>
- > Examples

<u>BI</u>-isotropic and <u>BI</u>-anisotropic media

• Cross coupling between the electric and magnetic fields along the same direction

Aligned electric dipoles and magnetic dipoles appear simultaneously under the action of an electric field or a magnetic field alone.

> Proposed chiral structure

- Simple <u>3D</u> chiral geometry
- Conveniently fabricated on <u>PCB</u>
- Great capability to <u>manipulate the</u> <u>polarization state</u> of EM waves
- Large <u>tunability</u>

➢ <u>Two</u> pairs of <u>aligned</u> ME dipoles

(b) Current distribution viewed from the x axis and induced ME dipole pair along the x direction

(b) Current distribution viewed from the *y* axis and induced ME dipole pair along the *y* direction

> Assume a plane wave propagates along the z direction

$$\mathbf{E}_{i}(\mathbf{r},t) = \begin{pmatrix} i_{x} \\ i_{y} \end{pmatrix} e^{i(kz-\omega t)}, \quad \mathbf{E}_{t}(\mathbf{r},t) = \begin{pmatrix} t_{x} \\ t_{y} \end{pmatrix} e^{i(kz-\omega t)}$$

 $i_{x,y}$ and $t_{x,y}$ are polarization states of incident and transmitted waves.

> Chiral particle modelling

$$\begin{pmatrix} t_x \\ t_y \end{pmatrix} = \begin{pmatrix} T_{xx} & T_{xy} \\ T_{yx} & T_{yy} \end{pmatrix} \begin{pmatrix} i_x \\ i_y \end{pmatrix} = T_{lin} \begin{pmatrix} i_x \\ i_y \end{pmatrix} \quad \text{Linear basis}$$

$$T_{circ} = \begin{pmatrix} T_{++} & T_{+-} \\ T_{-+} & T_{--} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} (T_{xx} + T_{yy}) + i(T_{xy} - T_{yx}) & (T_{xx} - T_{yy}) - i(T_{xy} + T_{yx}) \\ (T_{xx} - T_{yy}) + i(T_{xy} + T_{yx}) & (T_{xx} + T_{yy}) - i(T_{xy} - T_{yx}) \end{pmatrix}$$

Circular basis

• Convert an x polarized wave to a circularly polarized wave

 $|T_{xx}| = |T_{yx}|, arg(T_{xx}) - arg(T_{yx}) = \pm 90^{\circ}$

Special relationship for ±α

<u>180° phase difference</u> between the crosspolarized component by switching the orientations of the two arms

$$T_{lin}^{\alpha} = \begin{pmatrix} T_{xx} & T_{xy} \\ T_{yx} & T_{yy} \end{pmatrix}, T_{lin}^{-\alpha} = \begin{pmatrix} T_{xx} & -T_{xy} \\ -T_{yx} & T_{yy} \end{pmatrix}$$
$$\downarrow$$
$$T_{circ}^{\alpha} = \begin{pmatrix} T_{++} & T_{+-} \\ T_{-+} & T_{--} \end{pmatrix}, T_{circ}^{-\alpha} = \begin{pmatrix} T_{--} & T_{-+} \\ T_{+-} & T_{++} \end{pmatrix}$$

Experiments

Dielectric substrate: AD600, $\epsilon_r = 6.15$, h = 1.524 mm

54 × 63 unit cells 378 ×378 mm²

Two horn antennas:

- linear polarized
- working frequency: 6.57 GHz ~ 9.99 GHz

Transmission matrix in linear basis

 $T_{\rm circ}$

Results

Simulation and experiment results

- Working frequency 9.2 GHz
- Efficiency 64%
- Compact size: unit cell size of 0.21 $\lambda_0 \times 0.18 \lambda_0$
- Conveniently implementation of both right- and left-handed circular polarizer

3.2. Orbital Angular Momentum Generation by Metasurfaces

[2] M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, "Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency," *Journal of Applied Physics*, vol. 119, no. 6, pp. 064506, 2016.

[3] M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, "Unltra-thin complementary metasurface for orbital angular momentum generation at microwave frequencies," *IEEE Trans. Antennas Propag.*, vol. 65, no. 1, pp. 396-400, Jan. 2017.

Literature Review

Challenges at Microwave Regime

• Efficiency

Absorption and reflection of scatterers

Complexity

Bulk at microwave based on the scaling law

Difference between optics and microwave regime

components at optics are not easy to be replicated at microwave regime (At optics, we have hologram, beam splitter...)

> Orbital angular momentum generation at microwave regime

- Metasurface: <u>low profile, high efficiency</u>
- Principle: momentum conservation law or berry phase based concept
- Incident wave: Circularly polarized <u>plane wave</u>
- Transmitted wave: Cross-circularly polarized <u>vortex wave</u>

> Scatterer under rotation

> Scatterer that shifts the circular polarization state

•
$$J_{xx} = -J_{yy} \& J_{xy} = J_{yx} = 0$$

$$\mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xx} & 0 \\ 0 & -J_{xx} \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xy} & 0 \\ J_{x} & 0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xy} & 0 \\ J_{x} & 0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xy} & 0 \\ J_{x} & 0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xy} & 0 \\ J_{x} & 0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xy} & 0 \\ J_{x} & 0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xy} & 0 \\ J_{x} & 0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xy} & 0 \\ J_{x} & 0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xy} & 0 \\ J_{x} & 0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xy} & 0 \\ J_{x} & 0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xy} & 0 \\ J_{x} & 0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xy} & 0 \\ J_{x} & 0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xy} & J_{xy} & 0 \end{pmatrix} \qquad \mathbf{J} = \begin{pmatrix} J_{xy} & J_{xy} & J_{xy} & J_{xy} & J_{xy} & J_{$$

geometric phase

Geometric Phase vs Azimuthal Phase Dependence

Geometric phase is modulated to coincide with the azimuthal phase dependence factor

Geometric phase $e^{-2i\alpha}$ \longrightarrow Phase factor for OAM $e^{-il\varphi}$

- Rotation angle α is determined by OAM order $\underline{\alpha} = l \varphi / 2$
- Scatterers with spatially varying rotation angle α according to their azimuthal location angle ϕ

> Scatterer that shifts the circular polarization state

- For x polarized wave, PEC (perfect electric conductor) $J_{xx} = -1$
- For y polarized wave, PMC (perfect magnetic conductor) $J_{yy} = 1$

> Parallel-plate waveguide

- Dimensions are designed so that the working frequency is below the cutoff TE frequency
- > Mushroom-type high impedance surface
 - Resonance at working frequency

> Simulated reflection coefficients of a single scatterer

- Amplitudes of the <u>co-polarized reflection coefficients</u> are 1
- Reflection phase by the strip array is <u>constant and 180°</u>
- Reflection phase by the mushroom varies and is zero at the resonance

Dielectric substrate: $\varepsilon_r = 2.2$, $d_1 = 2 \text{ mm}$, $d_2 = 3 \text{ mm}$ Geometric parameters: p = 7 mm; t = 1 mm, g = 2.5 mm; a = 6 mm, r = 0.25 mm

Schematic pattern of the continuous PEC-PMC metasurface

- Order of OAM $l = 2\alpha / \varphi = 2$
- PEC surface, a series of concentric loops
- PMC surface, isotropic, no need to rotate

> Simulated field patterns at a transverse plane of $z = 0.4 \lambda_0$

Right-circularly polarized incidence

(a) Amplitude of the reflected E field (b) Phase of the reflected E field (c) Phase of the incident E field

> To generate OAM with <u>arbitrary orders</u>

- Replace the PEC layer by <u>dipole scatterers</u>
- Keep the PMC layer unchanged
- At the <u>half-wavelength</u> resonance of dipole, the reflection phase is 180°
- Amplitudes of the co-polarized reflection coefficients are 1

Geometric parameters: h = 23 mm, t = 4 mm; p = 27 mm; d = 1 mm

\Box Field patterns at a transverse plane of $z = 0.8 \lambda_0$

Spin and Orbital Angular Momenta of Electromagnetic Waves

> Objective

•
$$\mathbf{J} = \begin{pmatrix} J_{xx} & J_{xy} \\ J_{yx} & J_{yy} \end{pmatrix} \longrightarrow \mathbf{T} = \begin{pmatrix} T_{xx} & T_{xy} \\ T_{yx} & T_{yy} \end{pmatrix} \qquad T_{xx} = -T_{yy} \& T_{xy} = T_{yx} = 0$$

Bi-layer complementary split ring resonators (CSRRs) by Babinet Principle

Equivalent circuit model

Spin and Orbital Angular Momenta of Electromagnetic Waves

Simulation Results by CST

- > Simulated transmission coefficients of the proposed scatterer
 - @ Designed frequency (17.85 GHz)
 - Magnitudes of T_{xx} and T_{yy} are 0.91 (almost 1)
 - Their phase difference is 180°
 - 81% conversion efficiency

Dielectric substrate: F4B220, $\varepsilon_r = 2.2$, h = 0.8 mm

Geometric parameters: The period of the unit cell is $7 \times 7 \text{ mm}^2$. Side lengths of the two types of square CSRRs are $a_1 = 5.2 \text{ mm}$ and $a_s = 3.9 \text{ mm}$. The length of the complementary gap is g = 0.2 mm. The width of the slots is t = 0.2 mm.

> Geometry of the metasurfaces (top view)

OAM of order $l = 2\alpha / \varphi = 2$

OAM of order $l = 2\alpha / \phi = 4$

> Simulation approaches

- Equivalent magnetic dipoles
- Simulation software

> Magnetic dipole approximation

- Equivalent magnetic point source by equivalence principle
- Green's function

$$\left(\mathbf{E}(\mathbf{r}) = 2\int_{V} \overline{\mathbf{G}}_{m}(\mathbf{r}, \mathbf{r}') \cdot \mathbf{M}(\mathbf{r}') d\mathbf{r}' = 2\int_{V} \bigtriangledown g(\mathbf{r}, \mathbf{r}') \times \mathbf{M}(\mathbf{r}') d\mathbf{r}'\right)$$

D Approximate field patterns at a transverse plane of $z = 0.6 \lambda_0$

G Full-wave simulated field patterns at a transverse plane of $z = 0.6 \lambda_0$

4. Spin and Orbital Angular Momenta Mixing

[1] X. Y. Z. Xiong, A. A.-Jarro, L. J. Jiang, N. C. Panoiu, and W. E. I. Sha, "Mixing of Spin and Orbital Angular Momenta via Second-Harmonic Generation in Plasmonic and Dielectric Chiral Nanostructures," Phys. Rev. B, vol. 95, no. 16, pp. 165432, Apr. 2017.

[2] M. Fang, Z. X. Huang, W. E. I. Sha, X. Y. Z. Xiong, and X. L. Wu, "Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials (invited paper)," PIER, vol. 157, pp. 63-78, Oct. 2016.

A Single Gold Nanosphere

Near-field Distribution

- Radius of the gold sphere: 100 nm
- Wavelength of the incident beam: 520 nm
- Near-field observation plane: 40 nm away from the back side of the sphere
- Laguerre-Gaussian (LG) beam with OAM l = 1, SAM $\sigma = +1/-1$.

A Single Silicon Nanosphere

Scattering Cross Section (SCS) Analysis

- Radius of the silicon sphere: 500 nm
- Laguerre-Gaussian (LG) beam with OAM l = 4, SAM $\sigma = +1/-1$.

Slide 40/46

Spin and Orbital Angular Momenta of Electromagnetic Waves

Chiral Nanostructures with Rotational Symmetry

Total Angular Momentum Matching

- Chiral cluster with 3-fold rotational symmetry containing 10 identical silicon nanospheres (*quasi-angular-momentum* N = 3)
- Radius of the silicon sphere/cross section: 500 nm
- Laguerre-Gaussian (LG) beam with OAM l = 4, SAM $\sigma = +1/-1$.
- Total angular momentum $j = l + \sigma$

Angular Momentum Conservation (1)

General Angular Momentum Conservation Law

• For a naostructure with <u>*N*-fold rotational symmetry</u>

The relation between the spin and orbital angular momenta of the incident field and that of the scattered second-harmonic wave is given by

 $i_{sca} = s(l + \sigma) + qN$ $\xrightarrow{\text{analogy}} \quad \text{translational momentum conservation}$ $k_0 \sin \theta_s = sk_0 \sin \theta_i + m \frac{2\pi}{\Lambda}$ $j_{sca}: \text{ total angular momentum of the scattered SH wave}$ $\sigma: \text{ spin angular momentum of the incident field } (\sigma = +1 \text{ or } \sigma = -1)$ I: orbital angular momentum of the incident field s: order of harmonic generation (s = 1 for linear processes, s = 2 for SH generation) N: quasi-angular-momentum of the nanostructure with N-fold rotational symmetry $q: \text{ an integer and } q = 0, \pm 1, \pm 2, \dots$

Angular Momentum Conservation (2)

[1] K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. K.-Gonokami, Phy. Rev. Lett. 112: 135502, 2014.

Spin and Orbital Angular Momenta of Electromagnetic Waves

Angular Momentum Analysis of Nanosphere Cluster by Multipole Expansion

Collaborators

Menglin Chen (HKU)

Xiaoyan Xiong (HKU)

Ahmed Al-Jarro (UCL)

Li Jun Jiang (HKU)

Weng Cho Chew (Purdue & HKU)

Zhixiang Huang (AHU)

Nicolae Panoiu (UCL)

Thanks for your attention!