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Spin and Orbital Angular Momenta of Light

Time-averaged radiation momentum density
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SAM and OAM — Photon versus Electron
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Angular Momentum: A Simple Look

Photon with SAM 

 Spin angular momentum (SAM): value S = 0, ±ħ

 Orbital angular momentum (OAM): value L = lħ

Photon with OAM 

Linear Polarization Circular Polarization

S = 0 S = ±ħ

Plane Wavefront

L = 2ħ

Twisted Wavefront

L = 0

L = ħ

circularly polarized waves carry SAM!
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 Laguerre-Gaussian Modes[1]

Azimuth index 
(Topological charge)Radial index

[1] A. M. Yao, and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics, vol. 3, no. 2, pp. 161-204, 2011.

Vortex Beam Carrying OAM 

Azimuthal phase dependence
, Azimuthal angle𝜙

Phase singularity
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Optical Tweezer

Nature 424 21 (2003)

Communications

Nat Commun. 5 4876 (2014)

Quantum Cryptography

Nature 412 19 (2001)

Quantum

Optics

Microwave

Molecular Detection

Nat Commun. 6 7117 (2015)
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3.1. Polarization Control by Using 3-D 
Chiral Structures

[1] M. L. N. Chen, L. J. Jiang, W. E. I. Sha, W. C. H. Choy, and T. Itoh, “Polarization control by using
anisotropic 3-D chiral structures,” IEEE Trans. Antennas Propag., vol. 64, no. 11, pp. 4687-4694, Nov.
2016.
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 Chiral medium
• composed of particles that cannot be superimposed on their mirror images

 Examples

Introduction

3D chiral structure Planar chiral structure
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EM Property of Chiral Media

 BI-isotropic and BI-anisotropic media
• Cross coupling between the electric and magnetic fields along the same direction

Constitutive relations

 Aligned electric dipoles and magnetic dipoles appear simultaneously 
under the action of an electric field or a magnetic field alone.

tensor form D ε E ξ H
B ζ E μ H

= ⋅ + ⋅

= ⋅ + ⋅

Bi-isotropic Bi-anisotropic

chiral materials *ξ ζ= pure imaginary
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Literature Review

3D Chiral Structure

Phys. Rev. B 79, 3 (2009)Appl. Phys. Lett. 94 15 (2009)

Planar Chiral Structure
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Proposed Chiral Structure

 Proposed chiral structure
• Simple 3D chiral geometry

• Conveniently fabricated on PCB

• Great capability to manipulate the 
polarization state of EM waves

• Large tunability



Spin and Orbital Angular Momenta of Electromagnetic Waves Wei SHASlide 16/46

Origin of Chirality

 Two pairs of aligned ME dipoles 

(a) 3D of the chiral 
particle resonating at 
the fundamental mode

(b) Current distribution viewed 
from the x axis and induced ME 
dipole pair along the x direction

(b) Current distribution viewed 
from the y axis and induced ME 
dipole pair along the y direction
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Transmission Matrix

 Assume a plane wave propagates along the z direction

ix,y and tx,y are polarization states of incident and transmitted waves.

Linear basis

Circular basis

 Chiral particle modelling
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Circular Polarizer Design

• Convert an x polarized wave to a circularly polarized wave

|Txx| = |Tyx|, arg(Txx) – arg(Tyx) = ± 90°

Right-handed 
circular polarizer

Left-handed 
circular polarizer

 Special relationship for ±α

180°phase difference between the cross-
polarized component by switching the 
orientations of the two arms 
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Experiments

54 × 63 unit cells
378 ×378 mm2

Two horn antennas: 
• linear polarized 
• working frequency: 6.57 GHz ~ 9.99 

GHz

Transmission matrix in linear basis 

Tcirc

Measure

Calculate

Transmitter Receiver

Dielectric substrate: AD600, 
εr = 6.15, h = 1.524 mm
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Results

 Simulation and experiment results

• Working frequency 9.2 GHz
• Efficiency 64%
• Compact size: unit cell size of 0.21 λ0 × 0.18 λ0

• Conveniently implementation of both right- and left-handed circular polarizer 
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3.2.  Orbital Angular Momentum Generation 
by Metasurfaces

[2] M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Artificial perfect electric conductor-perfect magnetic
conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly
perfect conversion efficiency,” Journal of Applied Physics, vol. 119, no. 6, pp. 064506, 2016.
[3] M. L. N. Chen, L. J. Jiang, and W. E. I. Sha, “Unltra-thin complementary metasurface for orbital
angular momentum generation at microwave frequencies,” IEEE Trans. Antennas Propag., vol. 65, no. 1,
pp. 396-400, Jan. 2017.
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Literature Review

Metasurface

Appl. Phys. Lett. 105 10 (2014)

Travelling-Wave Antenna

IEEE Trans. Antennas. Propag. 63 4 (2015)

Spiral Phase Plate

http://www.wikipedia.org/

Computer Generated Hologram

http://www.wikipedia.org/
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Challenges at Microwave Regime

• Efficiency
Absorption and reflection of scatterers

• Complexity
Bulk at microwave based on the scaling law 

• Difference between optics and 
microwave regime
components at optics are not easy to be 

replicated at microwave regime (At optics, we have 
hologram, beam splitter…)
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Design Objective

 Orbital angular momentum generation at microwave regime
• Metasurface: low profile, high efficiency

• Principle: momentum conservation law or berry phase based concept

• Incident wave: Circularly polarized plane wave

• Transmitted wave: Cross-circularly polarized vortex wave

Plane wave: 𝑬ሺ𝒓, 𝑡ሻ Vortex wave: 𝑬ሺ𝒓, 𝑡ሻ𝒆ି𝒊ℓ𝝓
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Geometric Phase

 Scatterer under rotation

geometric phase

 Scatterer that shifts the circular polarization state

• Jxx = - Jyy &  Jxy = Jyx = 0
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 Geometric phase is modulated to coincide with the azimuthal phase 
dependence factor

Geometric Phase vs Azimuthal Phase Dependence

𝑒ି π/ସ

𝑒ି ଶπ/ଷ l = 1, α = π/3൝   l = 2, α = 2π/3
l = 3, α = 3π/3

…
l = 1, α = π/8൝   l = 2, α = 2π/8
l = 3, α = 3π/8

…

Geometric phase Phase factor for OAM𝒆ି𝟐𝒊𝜶 𝒆ି𝒊𝒍𝝋
• Rotation angle α is determined by OAM order α = l φ / 2 
• Scatterers with spatially varying rotation angle α according to their azimuthal 

location angle φ
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Reflective Metasurface

 Scatterer that shifts the circular polarization state

• For x polarized wave, PEC (perfect electric conductor) Jxx = -1

• For y polarized wave, PMC (perfect magnetic conductor) Jyy = 1

PEC PMC

 Parallel-plate waveguide
• Dimensions are designed so that the working frequency is below the cutoff TE 

frequency
 Mushroom-type high impedance surface

• Resonance at working frequency
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Scatterer Design

 Simulated reflection coefficients of a single scatterer
• Amplitudes of the co-polarized reflection coefficients are 1
• Reflection phase by the strip array is constant and 180°
• Reflection phase by the mushroom varies and is zero at the resonance

Dielectric substrate: εr = 2.2, d1 = 2 mm, d2 = 3 mm
Geometric parameters: p = 7 mm; t = 1 mm, g = 2.5 mm; a = 6 mm, r = 0.25 mm
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Metasurface Design

 Schematic pattern of the continuous 
PEC-PMC metasurface
• Order of OAM l = 2α / φ = 2
• PEC surface, a series of concentric 

loops
• PMC surface, isotropic, no need to 

rotate

 Simulated field patterns at a transverse plane of z = 0.4 λ0

 Right-circularly polarized incidence

(a) Amplitude of the reflected E field  (b) Phase of the reflected E field (c) Phase of the incident E field
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Arbitrary-Order OAM Generation

 To generate OAM with arbitrary orders
• Replace the PEC layer by dipole scatterers
• Keep the PMC layer unchanged
• At the half-wavelength resonance of dipole, the reflection phase is 180°
• Amplitudes of the co-polarized reflection coefficients are 1

Geometric parameters: h = 23 mm, t = 4 mm; p = 27 mm; d = 1 mm



Spin and Orbital Angular Momenta of Electromagnetic Waves Wei SHASlide 31/46

Simulation Results

0

2π

0

4π

 Field patterns at a transverse plane of z = 0.8 λ0

Amplitude distribution Phase distribution

OAM of order 2

OAM of order 4
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 Objective

• Txx = - Tyy &  Txy = Tyx = 0

 Bi-layer complementary split ring resonators (CSRRs) by Babinet Principle

 Equivalent circuit model

y pol. x pol.

Transmittive Metasurface
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Simulation Results by CST

 Simulated transmission coefficients of the proposed scatterer
@ Designed frequency (17.85 GHz)
• Magnitudes of Txx and Tyy are 0.91 (almost 1)
• Their phase difference is 180°
• 81% conversion efficiency

Dielectric substrate: F4B220, εr = 2.2, h = 0.8 mm
Geometric parameters: The period of the unit cell is 7×7 mm2. Side lengths of the two types of square 
CSRRs are al = 5.2 mm and as = 3.9 mm. The length of the complementary gap is g = 0.2 mm. The 
width of the slots is t = 0.2 mm.
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 Simulation approaches
• Equivalent magnetic dipoles
• Simulation software

OAM of order l = 2α / φ = 2 OAM of order l = 2α / φ = 4

Metasurface Design

 Geometry of the metasurfaces (top view)
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 Magnetic dipole approximation
• Equivalent magnetic point source by equivalence principle

• Green’s function

Numerical Simulation 
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Numerical Results

 Approximate field patterns at a transverse plane of z = 0.6 λ0

Amplitude distribution Phase distribution

OAM of order 2

OAM of order 4

0

2π

0

4π
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0

2π

0

4π

Full-Wave Simulation Results

 Full-wave simulated field patterns at a transverse plane of z = 0.6 λ0

Amplitude distribution Phase distribution

OAM of order 2

OAM of order 4
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4.  Spin and Orbital Angular 
Momenta Mixing

[1] X. Y. Z. Xiong, A. A.-Jarro, L. J. Jiang, N. C. Panoiu, and W. E. I. Sha, “Mixing of Spin and Orbital
Angular Momenta via Second-Harmonic Generation in Plasmonic and Dielectric Chiral Nanostructures,”
Phys. Rev. B, vol. 95, no. 16, pp. 165432, Apr. 2017.

[2] M. Fang, Z. X. Huang, W. E. I. Sha, X. Y. Z. Xiong, and X. L. Wu, “Full Hydrodynamic Model of
Nonlinear Electromagnetic Response in Metallic Metamaterials (invited paper),” PIER, vol. 157, pp. 63-78,
Oct. 2016.



Spin and Orbital Angular Momenta of Electromagnetic Waves Wei SHASlide 39/46

A Single Gold Nanosphere
Near-field Distribution

Fundamental

Second-Harmonic
(SH)

• Radius of the gold sphere: 100 nm
• Wavelength of the incident beam: 520 nm
• Near-field observation plane: 40 nm away from the 

back side of the sphere
• Laguerre-Gaussian (LG) beam with OAM 𝑙 ൌ 1, 

SAM 𝜎 ൌ 1/െ1. 
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A Single Silicon Nanosphere
Scattering Cross Section (SCS) Analysis 

• Radius of the silicon sphere: 500 nm
• Laguerre-Gaussian (LG) beam with OAM 𝑙 ൌ 4, SAM 𝜎 ൌ 1/െ1.

Fundamental SCS, linearly polarized plane wave 

Fundamental SCS, Laguerre-Gaussian beam 

SH SCS, Laguerre-Gaussian beam 

Circles: fundamental mode enhancement; Diamonds: SH induced fundamental mode enhancement

Two SH enhancement mechanisms
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Chiral Nanostructures with Rotational Symmetry

Total Angular Momentum Matching

• Chiral cluster with 3-fold rotational symmetry 
containing 10 identical silicon nanospheres (quasi-
angular-momentum 𝑁 ൌ 3)

• Radius of the silicon sphere/cross section: 500 nm
• Laguerre-Gaussian (LG) beam with OAM 𝑙 ൌ 4, 

SAM 𝜎 ൌ 1/െ1.
• Total angular momentum 𝑗 ൌ 𝑙  𝜎

second-harmonic field
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Angular Momentum Conservation (1)

• For a naostructure with N-fold rotational symmetry

General Angular Momentum Conservation Law

𝑗௦: total angular momentum of the scattered SH wave𝜎: spin angular momenta of the incident field (𝜎 ൌ 1 or 𝜎 ൌ െ1 )𝑙: orbital angular momentum of the incident field𝑠: order of harmonic generation (s = 1 for linear processes, s = 2 for SH generation)𝑁: quasi-angular-momentum of the nanostructure with 𝑁-fold rotational symmetry𝑞: an integer and 𝑞 ൌ 0, േ1, േ2, …

The relation between the spin and orbital angular momenta of the incident field
and that of the scattered second-harmonic wave is given by𝑗௦ ൌ 𝑠 𝑙  𝜎  𝑞𝑁

0 0
2sin sins ik =sk +m πθ θ
Λ

analogy translational momentum conservation
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[1] K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. K.-Gonokami, Phy. Rev. Lett. 112: 135502, 2014.

experimental [1] numerical

𝑗 ൌ 2σ  𝑞𝑁
N=3

N=1

N→∞

Angular Momentum Conservation (2)

SH field
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𝜎 ൌ 1, 𝑙 ൌ 4, 𝑁 ൌ 3 
𝑗௦ ൌ ⋯ , െ7, െ4, െ1, 2, 5, 8, … 𝑗௦ ൌ ⋯ , െ8, െ5, െ2, 1, 4,7,10, … ,

Angular Momentum Analysis of Nanosphere Cluster by Multipole Expansion

𝑗௦ ൌ 𝑙  𝜎  𝑞𝑁 𝑗௦ ൌ 2 𝑙  𝜎  𝑞𝑁FH: SH: 

Angular Momentum Conservation (3)
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