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1 Volume Integral Equation Method

As a rigorous solution to Maxwell’s equations, a volume integral equation
(VIE) method is developed to characterize the optical absorption of organic
solar cells. The coupling between multiple nanospheres (NSPs), as well as the
interaction between NSPs and multilayer device structure, is fully taken into
account in our model.

Considering non-magnetic optical materials with an arbitrary inhomogeneity
profile, the VIE can be written as

Ei(r) =
J(r)

−i0ω (ϵ(r)− ϵ0)
− i0ωµ0

∫
v

G(r, r′) · J(r′)dr′ (1)

where i0 is the imaginary unit, Ei(r) is the incident electric field of the light, ϵ(r)
is the position-dependent permittivity of the inhomogeneous materials, J is the
volumetric polarization current to be solved, and G(r, r′) is the dyadic Green’s
tensor in free space. The widely adopted approach for solving the VIE is the
discrete dipole approximation (DDA) method [1]. Due to the hypersingularity
of the Green’s tensor and spurious discontinuity of tangential E -field induced by
the scalar (piecewise constant) basis functions, the DDA method cannot accu-
rately characterize the subwavelength plasmonic physics [2] and breaks down in
the multilayered device structure with high-contrast metallic materials. Here,
we develop an alternate algorithm to bypass the difficulties. In our model, the
polarization currents are expanded using the roof-top vector basis functions [3]
and thus the continuity of normal current is naturally satisfied at the materi-
al interfaces. Furthermore, the hypersingular Green’s tensor is smoothened by
using the finite-difference approximation.

From the VIE (1), the scattered electric field generated by the volumetric
polarization current J can be written as

Es(r) = i0ωµ0

∫
v

G(r, r′) · J(r′)dr′ (2)
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Considering the Cartesian coordinate system, we use the short notation (u1, u2, u3)
substituting for (x, y, z), then we have Es

1

Es
2

Es
3

 =

 L11 L12 L13

L21 L22 L23

L31 L32 L33

 J1
J2
J3

 (3)

where

Lij =

{
Lc
ii + Lq

ii, i = j

Lq
ij , i ̸= j

(4)

Lc
iiJi = i0ωµ0

∫
v

g(r, r′)Ji(r
′)dr′ (5)

Lq
ijJj =

i0
ωϵ0

∂

∂ui

∫
v

g(r, r′)
∂Jj(r

′)

∂u′
j

dr′ (6)

g(r, r′) =
exp(i0k0|r−r′|)

4π|r−r′| is the scalar green’s function,G(r, r′) =
[
I+ ∇∇

k2
0

]
g(r, r′),

and k0 is the wave number of free space.
Using the rooftop basis functions to expand the unknown currents, we have

J(r) =
3∑

i=1

ui

∑
k,m,n

JD
i (k,m, n)T i

k,m,n (7)

where T 1
k,m,n, T

2
k,m,n, and T 3

k,m,n are the volumetric rooftop functions given by

T 1
k,m,n = Λk(u1)Πm(u2)Πn(u3)

T 2
k,m,n = Πk(u1)Λm(u2)Πn(u3)

T 3
k,m,n = Πk(u1)Πm(u2)Λn(u3)

(8)

The functions Λk(u1) and Πm(u2) are defined by

Λk(u1) =

 1− |u1 − k∆u1|
∆u1

, |u1 − k∆u1| ≤ ∆u1

0, else

Πm(u2) =

 1,

∣∣∣∣u2 −
(
m− 1

2

)
∆u2

∣∣∣∣ < ∆u2

2

0, else

(9)

The cuboid cells are employed to discretize the structure to be modeled. Here,
∆u1 and ∆u2 are the grid sizes of each small cuboid along x and y directions,
respectively. Other functions in (8) can be defined in the same way.

As a result, the discretized form for the operator Lc
ii in (5) can be written

as
LD,c
ii JD

i = i0ωµ0g
D ⊗ JD

i (10)

where ⊗ denotes the discrete convolution

gD ⊗ JD
i =

∑
k,m,n

gD(k − k′,m−m′, n− n′)JD
i (k′,m′, n′) (11)
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and

gD(k,m, n) =

∫ ∆u1

0

∫ ∆u2

0

∫ ∆u3

0

g(u1,k − u′
1, u2,m − u′

2, u3,n − u′
3)du

′
1du

′
2du

′
3

(12)

Likewise, the operator LD,q
12 in (6) can be discretized as

LD,q
12 JD

2 =
−j0

ωϵ0∆u1∆u2

[
gD(k + 1,m, n)− gD(k,m, n)

]
⊗
[
JD
2 (k,m, n)− JD

2 (k,m− 1, n)
]

=
−j0

ωϵ0∆u1∆u2

{[
gD(k + 1,m, n)− gD(k,m, n)

]
−
[
gD(k + 1,m− 1, n)− gD(k,m− 1, n)

]}
⊗ JD

2 (k,m, n)

(13)

where the finite-difference method is used for the smooth approximation of the
dyadic Green’s function.

The computations of the discrete convolutions can be performed efficiently
by means of cyclic convolutions and fast Fourier transform (FFT) [4], which is
similar to the DDA method. As a traditional iterative solver of the resulting VIE
matrix equation, the conjugate-gradient method converges very slowly and will
produce the non-physical random errors in the calculation of optical absorption.
To tackle the problem, we employ the fast and smoothly converging biconjugate
gradient stabilized (BI-CGSTAB) method [5]. The FFT is adopted to accelerate
the matrix-vector multiplications encountered in the BI-CGSTAB solver with
computational complexity of O(N logN) and memory of O(N).

2 The Biconjugate Gradient Stabilized Algorith-
m

The resulting VIE matrix equation can be expressed as

Ax = b

The procedure of the biconjugate gradient stabilized (BI-CGSTAB) algorithm
is given as follows:

Give an initial guess x0, we have

r0 = b−Ax0, r̂0 = r0

ρ0 = α = ω0 = 1

v0 = p0 = 0
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Iterate for i = 1, 2, · · · , n

ρi = ⟨r̂0, ri−1⟩
β = (ρi/ρi−1) (α/ωi−1)

pi = ri−1 + β(pi−1 − ωi−1vi−1)

vi = Api

α = ρi/⟨r̂0, vi⟩
s = ri−1 − αvi

t = As

ωi = ⟨t, s⟩/⟨t, t⟩
xi = xi−1 + αpi + ωis

ri = s− ωit

Terminate when
||ri||2
||b||2

< η

where η is the tolerance that specifies the desired accuracy of solution.
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