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Simulating Maxwell–Schrödinger Equations by
High-Order Symplectic FDTD Algorithm

Guoda Xie , Zhixiang Huang , Senior Member, IEEE, Ming Fang , and Wei E. I. Sha , Senior Member, IEEE

Abstract—A novel symplectic algorithm is proposed to solve
the Maxwell–Schrödinger (M–S) system for investigating light–
matter interaction. Using the fourth-order symplectic integration
and fourth-order collocated differences, M–S equations are
discretized in temporal and spatial domains, respectively. The
symplectic finite-difference time-domain (SFDTD) algorithm is
developed for accurate and efficient study of coherent interaction
between electromagnetic fields and artificial atoms. Particularly,
the Dirichlet boundary condition is adopted for modeling the
Rabi oscillation problems under the semiclassical framework.
To implement the Dirichlet boundary condition, image theory
is introduced, tailored to the high-order collocated differences.
For validating the proposed SFDTD algorithm, three-dimensional
numerical studies of the population inversion in the Rabi oscil-
lation are presented. Numerical results show that the proposed
high-order SFDTD(4, 4) algorithm exhibits better numerical
performance than the conventional FDTD(2, 2) approach at the
aspects of accuracy and efficiency for the long-term simulation.
The proposed algorithm opens up a promising way toward a
high-accurate energy-conservation modeling and simulation of
complex dynamics in nanoscale light–matter interaction.

Index Terms—Maxwell–Schrödinger (M–S) equations,
nanoscale light–matter interaction, Rabi oscillation, symplec-
tic finite-difference time-domain (SFDTD).

I. INTRODUCTION

COMPUTATIONAL electromagnetics (CEM) [1] is fun-
damental to the electronic technology and plays an

essential role in the field of modeling and designing modern
electronic devices. The fast innovation process and the in-
creasing complication of technology require higher integration
and smaller component dimensions, leading to new modeling
and simulation challenges in the traditional CEM technology.
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For instance, advances in nanotechnology enable to fabricate
devices at nanoscale, where quantum mechanics (QM) effects
become more significant and cannot be ignored. As electrons
are trapped in a deep subwavelength scale, the electronic states
will be quantized, and thus, the dynamics of electrons should be
governed by Schrödinger equations [2]. Meanwhile, the excited
electrons produce quantum current which generates EM fields.
Hence, in order to precisely describe the light–matter interaction
between electromagnetic (EM) fields and artificial atoms, the
coupled Maxwell–Schrödinger (M–S) system must be consid-
ered. In fact, the coupled M–S system has been used to solve the
multiphysics problems in literatures. In [3] and [4], a transmis-
sion line matrix technique combined with the finite-difference
time-domain (FDTD) approach [5], [6] is presented to solve the
M–S system, which is applied to describe the EM characteristics
of nanostructures. In [7], an M–S numerical toolbox is proposed
to study the interaction between electrons wave packet and
gratings. In addition, some researchers studied the optical
problems and nonlinear effects in plasmon/molecule interaction
by solving the coupled M–S equations [8]–[13]. Among these
methods, the EM fields (E and H) in Maxwell’s equations
are included in the numerical system. However, it revealed
that numerical simulations based on the E–H formulations
may suffer from low-frequency breakdown when the incident
wavelength is much larger than the object’s size [14], [15].

To circumvent this problem, some efforts have been made
to solve the coupled M–S equations where only potentials are
considered rather than the E–H equations [16], [17]. Recently,
a coupled M–S system for modeling EM fields–artificial atoms
interaction has been introduced in [18]. The Coulomb gauge is
employed to solve the Maxwell equation in the form of vector
and scalar potentials. In addition, the reduced eigenmode expan-
sion (REE) approach is used to expand the atomic wave function,
which can be connected to the Bloch equation [19], [20]. This
coupled system is solved by the conventional FDTD approach.
Nevertheless, the standard FDTD approach only has second-
order accuracy in both space and time, significant error accu-
mulation will occur in the simulation due to its large numerical
dispersion and anisotropy. Therefore, dense grids (DGs) should
be adopted to satisfy the precision requirement, which will result
in substantial memory and computational time, especially for
the long-term numerical simulation. It should be noted that the
M–S system always needs more time steps compared to a pure
EM system. Based on the above descriptions, developing a more
accurate energy-preservation solution for the M–S system is
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highly important to model and optimize emerging nanodevices.
Fortunately, intensive research works suggested that symplectic
algorithm is one of the best methods for long-term simulation, in
view of its energy-conserving and highly stable characteristics
[21], [22]. Furthermore, numerous physical systems can be
modeled by Hamiltonian differential equations, and the time
evolution of the differential equations is symplectic transfor-
mation [23], [24]. The symplectic algorithm is a differential
method, which is based on the basic principles of Hamiltonian
mechanics for preserving symplectic structures of Hamiltonian
systems.

In this paper, we present a three-dimensional high-order sym-
plectic FDTD algorithm [SFDTD(4, 4)], with the fourth-order
symplectic propagators to solve the coupled M–S system. The
M–S system will be used to describe the Rabi oscillation phe-
nomenon generated by artificial atoms under the influence of
external EM fields. Simultaneously, for the fourth-order collo-
cated spatial differences, the image theory [25] is adopted to
handle the Dirichlet boundary condition. At last, the calcula-
tions of the atomic population inversion have been carried out
to demonstrate the superiorities of the high-order SFDTD(4, 4)
algorithm at the respects of calculation precision and efficiency.

II. FORMULAE

A. Symplectic Structure of the M–S System

For QM part, an electron with charge e and mass m interacting
with external fields can be described by a modified Schrödinger
equation

i�
∂ψ (r, t)

∂t

=

{
1

2m
[p− eA (r, t)]2 + eφ(r, t) + V (r)

}
ψ (r, t) (1)

where p =− i�∇ denotes the canonical momentum operator,
and the variables A(r, t) and φ(r, t) are the vector and scalar
potentials, respectively. V(r) is the electrostatic confinement po-
tential. Hence, the Hamiltonian operator of an electron bound to
an atom under EM fields radiation is given by

H =
1

2m
[p− eA (r, t)]2 + eφ (r, t) + V (r). (2)

Since the vector potentials (A) and scalar potentials (φ) can
be directly incorporated into the EM-QM hybrid system, the
classical Maxwell equation based on the E–H components are
replaced by the A–φ components. Additionally, the Coulomb
gauge (∇ ·A) which is often used to analyze the quantum op-
tics problem [26] is adopted. After this, an auxiliary variable
Y is defined for the EM system (Y = εrε0E, εr is the relative
permittivity).

According to (1), (2), and the auxiliary variable defined in the
EM system, the coupled Hamiltonian in (2) can be written in the
following expression:

H (A,Y, ψ, ψ∗) = Hem (A,Y) +Hq (A, ψ, ψ∗) (3)

where

Hem (A,Y) =

∫
Ω

(
1

2ε0εr
|Y|2 + 1

2μ0
|∇ ×A|2

)
dr (4)

Hqm (A, ψ, ψ∗) =
∫
Ω

[
ψ∗ (p− eA)2

2m
ψ + ψ∗V ψ

]
dr. (5)

Apparently, Hem represents the Hamiltonian of the EM sys-
tem, and Hqm is the Hamiltonian of the QM system.

By employing the variational principle and decomposing the
wave function (ψ) into the real and imaginary parts

ψ =
1√
2�

(ψr + iψi) (6)

where the canonical Hamilton’s equations for the EM–QM sys-
tems are deduced as

∂A

∂t
=
∂H

∂Y
,
∂Y

∂t
= − ∂H

∂A
(7)

∂ψr

∂t
=
∂H

∂ψi
,
∂ψi

∂t
= − ∂H

∂ψr
. (8)

In this infinite-dimensional Hamiltonian system, the canoni-
cal pairs are (ψr, ψi) and (A,Y), and their canonical equations
are

∂A

∂t
=

Y

ε0εr
(9)

∂Y

∂t
= −∇×∇×A

μ0
+ J (10)

∂ψr

∂t
=

(x1 − x2)

i
√
2�

ψr +

(
(x1 + x2)√

2�
+

√
2V√
�

)
ψi (11)

∂ψi

∂t
= −

(
(x1 + x2)√

2�
+

√
2V√
�

)
ψr +

(x1 − x2)

i
√
2�

ψi (12)

with

x1 =
(p− eA)2

2m
,x2 =

(p+ eA)2

2m

and the quantum current J is described by the following form:

J =
e

2m
[ψ∗ (p− eA)ψ + ψ (−p− eA)ψ∗] . (13)

The current term is generated by the motion of atoms and
will radiate EM fields. The generated quantum current will be
coupled back to the Maxwell’s equations.

For QM part, (11) and (12) can be written as

∂

∂t

(
ψr

ψi

)
= (L)

(
ψr

ψi

)
(14)

according to the matrix L, it is easy to get

LT = −L

LTE +EL = 0

E =

(
0 I

−I 0

)
. (15)
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Hence, (1) possesses symplectic structure, and the symplectic
algorithm can be employed to calculate the QM part.

For the temporal direction, the EM part in the homogenous,
lossless, and sourceless medium can be described by

∂

∂t

(
A
Y

)
=

(
03×3 ε−1

3×3

−(μ−1∇×∇×)
3×3

03×3

)(
A

Y

)
= U

(
A

Y

)
.

(16)

As the matrix U can be represented as

U =

(
03×3 UA

UB 03×3

)
(17)

where

UA = ε−1
3×3 =

⎛
⎜⎝
1/ε0εr 0 0

0 1/ε0εr 0

0 0 1/ε0εr

⎞
⎟⎠ = UA

T (18)

UB = −(μ−1∇×∇×)
3×3

=

⎛
⎜⎜⎜⎝

(
∂2

∂y2 + ∂2

∂z2

)
− ∂2

∂x∂y − ∂2

∂x∂z

− ∂2

∂x∂y

(
∂2

∂x2 + ∂2

∂z2

)
− ∂2

∂y∂z

− ∂2

∂x∂z − ∂2

∂y∂z

(
∂2

∂x2 + ∂2

∂y2

)

⎞
⎟⎟⎟⎠

= UB
T . (19)

According to (18) and (19), we have

UTJ6×6 + J6×6U

=

(
03×3 UB

T

UA
T 03×3

)(
03×3 I3×3

−I3×3 03×3

)

+

(
03×3 I3×3

−I3×3 03×3

)(
03×3 UA

UB 03×3

)

=

(
−UB

T +UB 03×3

03×3 UA
T −UA

)
=

(
03×3 03×3

03×3 03×3

)
(20)

this means that U is an infinitesimal real sympletic matrix.
Additionally,

U =

(
03×3 UA

03×3 03×3

)
+

(
03×3 03×3

UB 03×3

)
= U1 +U2 (21)

since U1
ζ = 0,U2

ζ = 0,ζ ≥ 2, then

exp (ΔtU1) = I6×6 +ΔtU1 (22)

exp (ΔtU2) = I6×6 +ΔtU2 (23)

therefore, exp(ΔtU1) and exp(ΔtU2) can be obtained explic-
itly. Note that the matrices U1 and U2 do not commute

U1U2 �= U2U1. (24)

Accordingly, the symplectic integrator is applicable to solve
the EM subsystem [27].

TABLE I
COEFFICIENTS cl = cm+1−l (0 < l < m+ 1); dl = dm−l (0 < l < m),

dm = 0 IN THE SYMPLECTIC ALGORITHMS

Obviously, the symplectic algorithm can be constructed to
solve the above M–S system. Hence, utilizing symplectic map-
ping, the solution of (9)–(12) for the M–S system from t = 0 to
t = Δt is established approximately

exp (ΔtF ) =

m∏
l=1

exp (clΔtF 1) exp (dlΔtF 2) +O
(
Δtp+1

)

=

m∏
l=1

(1 + clΔtF 1) (1 + dlΔtF 2) +O
(
Δtp+1

)

(25)

whereF = L orU and cl and dl are the coefficients of symplec-
tic integration algorithm.m is the number of the substep in each
time step and p represents the approximation order, generally
m ≥ p. In order to achieve the value of p as high as possible for
a given number m, some efforts have been made to obtain the
coefficients cl and dl. Substantial numerical experiments prove
that the coefficients cl and dl in [27] perform better than other
symplectic integrators. The coefficients for different order ap-
proximations are listed in Table I.

B. High-Order Symplectic Algorithm for EM System

In Section II-A, we have introduced that the EM and QM sys-
tems can be calculated by the symplectic algorithm, hence the
self-consistent solution for the M–S system ((11), (12) and the
current term J) can be solved by using the m-stage and fourth-
order symplectic integrators. Therefore, the components of M–S
equations at the discrete points in time and space can be de-
scribed as

G (i, j, k, t) = Gn+l/m (iΔx, jΔy, kΔz, (n+ l/m)Δt)
(26)

where Δx, Δy, and Δz are the cell sizes along three different
directions.

In addition, some studies have indicated that the satisfactory
results can be obtained by using a combination of the high-order
time algorithm and the high-order space algorithm [28]. Based
on this, the explicit fourth-order collocated difference is adopted
for discretizing the differential operators in space domain.

From above descriptions, the qth-order accurate collocated
difference expressions, which are applied to discretize the
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TABLE II
COEFFICIENTS FOR DIFFERENT-ORDER ACCURATE COLLOCATED DIFFERENCES

second-order differential operators, are of the following forms:

∂2Gn+l/m (r)

∂ζ2
=

1

Δ2
ζ

d= q
2∑

d=− q
2

βdG
n+l/m (r + d) +O

(
Δq+1

ζ

)

(27)

where ζ = x, y, z, r = i, j, k, and βd listed in Table II denotes
the difference coefficients at different grid points for the second-
and fourth-order differences.

Based on the above descriptions, the SFDTD(4, 4) update
equations can be given by (taking the y-direction as an example)

A
n+ l

m
y

(
i, j +

1

2
, k

)
= A

n+ l−1
m

y

(
i, j +

1

2
, k

)

+
clΔt

ε0εr
Y

n+ l−1
m

y

(
i, j +

1

2
, k

)
(28)

Y
n+ l

m
y

(
i, j +

1

2
, k

)
= Y

n+ l−1
m

y

(
i, j +

1

2
, k

)

+ J
n+ l−1

m
y

(
i, j +

1

2
, k

)
+ αx1 ×

[
A

n+ l−1
m

y

(
i+ 1, j +

1

2
, k

)

− 2A
n+ l−1

m
y

(
i, j +

1

2
, k

)
+ A

n+ l−1
m

y

(
i− 1, j +

1

2
, k

)]

+ αx2 ×
[
A

n+ l−1
m

y

(
i+2, j+

1

2
, k

)
− 2A

n+ l−1
m

y

(
i, j +

1

2
, k

)

+A
n+ l−1

m
y

(
i− 2, j+

1

2
, k

)]
+ αz1×

[
a
n+ l−1

m
y

(
i, j+

1

2
, k+1

)

− 2A
n+ l−1

m
y

(
i, j +

1

2
, k

)
+ A

n+ l−1
m

y

(
i, j+

1

2
, k − 1

)]

+ αz2 ×
[
A

n+ l−1
m

y

(
i, j+

1

2
, k+2

)
−2A

n+ l−1
m

y

(
i, j +

1

2
, k

)

+ A
n+ l−1

m
y

(
i, j +

1

2
, k − 2

)]
(29)

where αx1 = 4
3dl × κx, αz1 = 4

3dl × κz , αx2 = − 1
12dl × κx,

and αz2 = − 1
12dl × κz . For the cubic grid, we have Δx =

Δy = Δz = Δ and κx = κy = κz = κζ . The constant κζ is de-
fined as a kind of the Courant-Friedrichs-Levy coefficients in the
FDTD approach.

C. High-Order Symplectic Algorithm for QM System

In theory, (9)–(13) compose a complete symplectic frame-
work, where four variables A,Y, ψr, and ψi are calculated
subsequently in each time step. In [18], to eliminate the com-
putational burden of the numerical solver caused by the multi-
scale problem between QM and EM systems, a REE approach is

presented. The wave function ψ(r, t) can be expressed as

ψ(r, t) = Cg(t)e
−iEgt/�ψg(r) + Ce(t)e

−iEet/�ψe(r) (30)

where Cg(t) and Ce(t) denote the coefficients which satisfy the
energy-conserving condition

|Cg(t)|2 + |Ce(t)|2 = 1 (31)

the exponential terms of e−iEgt/� and e−iEet/� characterize the
time evolution of the eigenstates, and Eg = �ωg Ee = �ωe.
These two dominant atomic states are denoted by ψg(r) (for
ground) and ψe(r) (for excited), respectively. The QM system
is nothing but a two-level system, and the two states can be
expressed by

ψg(rs=x,y,x) =

(
1

a
√
π

)3/2

e−(x
2+y2+z2)/2a2

(32)

ψe(rs=x,y,x) =

(
1

a
√
π

)3/2 ( s
a

)√
2e−(x

2+y2+z2)/2a2

(33)

and a =
√
�/mω.

At last, two sets of equations about Cg(t) and Ce(t) are de-
duced as

i�
dCg(t)

dt
= −eA

m
〈ψg |p|ψe〉Ce(t)e

−iω0t +
e2A2

2m
Cg(t)

(34)

i�
dCe(t)

dt
= −eA

m
〈ψe |p|ψg〉Cg(t)e

iω0t +
e2A2

2m
Ce(t)

(35)

and the current term J is given below

〈J〉 = −e
2A

m

(
|Cg(t)|2 + |Ce(t)|2

)

+
e

m

[
C∗

g(t)Ce(t)e
−iω0t 〈ψg |p|ψe〉

+ C∗
e(t)Cg(t)e

iω0t 〈ψe |p|ψg〉
]

(36)

where ω0 is the transition frequency which is equal to ωe − ωg .
The SFDTD discretization of (34)–(36) is

C
n+ l

m
g =C

n+ l−1
m

g − eAyΔt

i�m
〈ψg |p|ψe〉Cn+ l−1

m
e e−iω0(n+ l−1

m )Δt

+
e2Ay

2Δt

2i�m
C

n+ l−1
m

g (37)

C
n+ l

m
e = C

n+ l−1
m

e − eAyΔt

i�m
〈ψe |p|ψg〉Cn+ l−1

m
g eiω0(n+ l−1

m )Δt

+
e2Ay

2Δt

2i�m
C

n+ l−1
m

e (38)

J
n+ l

m
y = −e

2Ay

m

(∣∣∣Cn+ l−1
m

g

∣∣∣2 +
∣∣∣Cn+ l−1

m
e

∣∣∣2
)

+
e

m

[(
C

n+ l−1
m

g

)∗
C

n+ l−1
m

e e−iω0(n+ l−1
m )Δt 〈ψg |p|ψe〉

+
(
C

n+ l−1
m

e

)∗
C

n+ l−1
m

g eiω0(n+ l−1
m )Δt 〈ψe |p|ψg〉

]
.

(39)
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Fig. 1. Simulation procedures of the symplectic algorithm for the coupled
M–S system.

Fig. 2. Boundary treatment of A field by the image theory.

Finally, (28), (29), (37), (38), and (39) constitute the high-
order discretized equations for solving the coupled M–S sys-
tem. Fig. 1 shows the simulation procedures of the symplectic
algorithm for the coupled M–S system.

Although the canonical symplectic algorithm [23], which is
proposed by Chen et al., is more suitable to solve the M–S equa-
tions when simulating the problems of the high harmonic gen-
eration physics and the stabilization effect of the ionization, our
proposed is optimal for the oscillation problem. As the vari-
ables in the QM part are coordinate independent, less memory
and CPU time will be cost when using our method to solve the
coupled M–S system.

D. Boundary Condition in the EM system

To obtain the reversible population inversion of the atomic
system, the Dirichlet boundary condition is indispensable. In
the proposed M–S system, only A and Y components should
be discretized in space, hence the Dirichlet boundary condition
is only applied to the EM system. For simplicity, taking one
dimension as an example, A(0) = A(L) = 0 and Y(0) = Y(L) =
0 are set at the two ends of the A and Y boundaries, respectively.
L denotes the resonant cavity size.

For the fourth-order collocated differences in space, the image
theory applied to the EM fields (E and H) can be directly adopted
to A and Y components. In this paper, the image theory is used,
such as for A and Y components, we have A(0) = 0, Â(1) =
−A(1), and Â (2) = −A(2). Â(1) and Â (2) are the image
points of A(1) and A(2), respectively (see Fig. 2). For another
side, A(L) = 0, Â (L− 1) = −A(L− 1), and Â (L− 2) =

−A(L− 2). Â (L− 1) and Â (L− 2) are the image points
of A(L − 1) and A(L − 2), respectively. Similarly, for Y com-
ponents, Y(0) = 0, Ŷ (1) = Y(1), and Ŷ (2) = Y(2); Y(L) =
0, Ŷ (L− 1) = Y(L− 1), and Ŷ(L− 2) = Y(L− 2).

III. NUMERICAL RESULTS

To investigate the accuracy and efficiency of the proposed
fourth-order SFDTD(4, 4) algorithm for the QM System, it will
be employed to solve the coupled M–S system. The population
inversion defined by the formula (40) is used to describe the
Rabi oscillation phenomenon

W (t) = |Ce (t)|2 − |Cg (t)|2. (40)

An artificial atom is illuminated by the external fields in a
metal resonating cavity without any dielectric and radiation loss.
The size of the nanocavity is Lx = Ly = Lz = 40 nm and
the grid size Δx = Δy = Δz = 1 nm. The resonating cav-
ity is excited at its fundamental mode (TE101), with the initial
solution

Yy |t=0 = −εrε0E0 sin

(
π

Lx
x

)
sin

(
π

Lz
z

)
cos (ωt) |t=0

(41)

where

ω =

√(
π

Lx

)2

+

(
π

Lx

)2

(42)

and the relative permittivity εr equals to 1 in the vacuum. The
atom is placed at the center of the structure and is in a superposed
state with Cg = 1/

√
2 and Ce = 1/

√
2. Under the external il-

lumination of EM fields, the population is transferred back and
forth between the ground state and excited state cyclically. Most
importantly, the atomic population evolution can be analytically
described by the Rabi model [18], which provides a platform
for verifying the accuracy of the proposed algorithm and lays
a solid foundation for more complex applications by using the
proposed symplectic algorithm.

A. Effect of EM Field Strength

First, the case of exact resonance (Δ = 0) is considered,
where Δ = ω − ω0 represents the detuning between the atomic
transition frequency (ω0) and the fundamental resonance fre-
quency (ω) of the cavity. In this situation, the relation between
the Rabi frequency ΩR and the intensity of E field is linear
(see [18, eqs. (A.9) and (A.10)]). Two cases with weak field
(Ω = 0.02ω) and strong field (Ω = 0.2ω) excitations are con-
sidered, the time step is 6.75 × 10−7 ns. According to (32), the
population inversion is computed and shown in Figs. 3(a) and
4(a) for the two cases. The population inversion obtained by the
FDTD(2, 2) approach and SFDTD(4, 4) algorithm have good
agreements with the Rabi model [18].

Additionally, for a comparative study between the SFDTD
(4, 4) algorithm and the FDTD(2, 2) approach, relative errors
(Wrr) in decibel for the population inversion are estimated by
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Fig. 3. (a) Calculation results for a weak field (Ω = 0.02ω) in the ex-
act resonance condition. (b) Relative errors of the FDTD(2, 2) approach and
SFDTD(4, 4) algorithm for a weak field (Ω = 0.02ω) in the exact resonance
condition.

using the following formula

Wrr = 20 log10
|W (t)−Wref (t)|
max |Wref (t)| (43)

where W (t) refers to the numerical result and Wref(t) is
the reference analytical solution. The denominator of (43)
(max |Wref(t)|) denotes the maximum value of the reference
solution. For the sake of comparisons, the simulation results of
the Rabi model are used as reference solutions. Relative errors
of the proposed SFDTD(4, 4) algorithm depicted in Figs. 3(b)
and 4(b) are reduced significantly compared to the traditional
FDTD(2, 2) approach in the whole simulation process. Further-
more, the relative error of the traditional FDTD(2, 2) approach
increases as the simulation time increases. However, in both
cases, the relative error of the SFDTD(4, 4) algorithm remains
stable owing to its high-order precision. The results confirm that
the SFDTD(4, 4) algorithm has high accuracy and stability in
solving the M–S system.

Fig. 4. (a) Calculation results for a strong field (Ω = 0.2ω) in the exact reso-
nance condition, where rotating wave approximation (RWA) breaks down [29].
(b) Relative errors of the FDTD(2, 2) approach and SFDTD(4, 4) algorithm for
a strong field (Ω= 0.02ω) in the exact resonance condition, where RWA breaks
down [29].

B. Effect of Detuning

Next, the effect of detuning factorΔ is considered. We setΩ=
0.02ω and consider the following conditions where Δ = 0.05ω
andΔ= 0.3ω. Figs. 5(a) and 6(a) depict the population inversion
for Δ = 0.05ω and Δ = 0.3ω, respectively. It can be seen that
the population inversion obtained by the FDTD(2, 2) approach
and the SFDTD(4, 4) algorithm have good agreements with the
analytical method for the detuning cases. Similarly, the relative
errors of the two numerical approaches for the two cases (Δ =
0.05ω and Δ= 0.3ω) are calculated and shown in Figs. 5(b) and
6(b), respectively. One can see that the proposed SFDTD(4, 4)
algorithm has smaller calculation error than the FDTD(2, 2)
approach.

It is worthy of noting that the analytical method in [18] must be
modified for the detuning case (the detailed explanation appears
in the Appendix for reference).
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Fig. 5. (a) Calculation results for a small detuning Δ = 0.05ω condition.
(b) Relative errors of the FDTD(2, 2) approach and SFDTD(4, 4) algorithm for
a small detuning Δ= 0.05ω condition.

Additionally, the grid size Δ = 0.5 nm is also used in the
low-order FDTD(2, 2) approach. Accordingly, the time incre-
ment is set to be the half of the previous one. The relative
errors for the FDTD(2, 2) with DG (Δ = 0.5 nm), FDTD(2,
2) with coarse grid (Δ = 1 nm), and the SFDTD(4, 4) with
coarse grid (Δ = 1 nm) are depicted in Fig. 7. It indicates
that the accuracy of the FDTD(2, 2) approach can be im-
proved by increasing the grid resolution, but it is still worse
than the SFDTD(4, 4) algorithm. Furthermore, in terms of
the FDTD(2, 2) approach with DG, the CPU time is around
1203.716 s. However, the execution time of the SFDTD(4, 4)
algorithm is only 307.672 s. Simultaneously, the relative er-
rors of the second-order FDTD(2, 2) with different grid sizes
always increase with the time evolution goes on. Hence, for
the second-order FDTD(2, 2) approach, the high-resolution set-
tings in time and space can only slow down the increasing
rate of the accumulated errors, but cannot eliminate the error
accumulation.

Fig. 6. (a) Calculation results for a large detuning Δ = 0.3ω condition.
(b) Relative errors of the FDTD(2, 2) approach and SFDTD(4, 4) algorithm
for a large detuning Δ= 0.3ω condition.

Fig. 7. Relative errors of the FDTD(2, 2), FDTD(2, 2)-DG and SFDTD(4,
4) approaches for a large detuning Δ = 0.3ω condition. The FDTD(2, 2) and
SFDTD(4, 4) use coarse grids of 1 nm. The FDTD(2, 2)-DG uses fine grids of
0.5 nm.
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IV. CONCLUSION

A canonical symplectic structure of the M–S equations is de-
duced from the Hamiltonian of the EM–QM hybrid system. A
three-dimensional fourth-order SFDTD(4, 4) algorithm is pro-
posed to solve the self-consistent M–S system which is essential
to describe the EM field–artificial atom interaction. This method
possesses fourth-order accuracy in space by utilizing the high-
order collocated spatial differences and the image theory tech-
nique. Simultaneously, by applying symplectic integrators, the
proposed algorithm exhibits superior numerical property when
it was applied to compute the population inversion of an artifi-
cial atom in a resonant cavity. At last, a theoretical Rabi model
which corresponds to the detuning case has been developed and
provided to test the correctness of the presented high-order nu-
merical solver. The numerical examples validate the algorithm
and demonstrate its long-term accuracy, stability, and efficiency.
In future, this proposed high-order numerical solver will be ap-
plied to the EM field–artificial atom interaction in more complex
environments where lossy media and irregular structures are in-
cluded.

APPENDIX

The Rabi model and the difference of r · E Hamiltonian and
p · A Hamiltonian.

Under dipole approximation and “length” gauge, an electron
interacts the external EM field can be described as

i�
∂ψ (r, t)

∂t
=

{
p2

2m
+ V (r)− er ·E (r, t)

}
ψ (r, t) (A. 1)

where e and m denote the charge and the mass of the electron,
respectively. The external EM field is assumed as a single-mode
field (E = E0cos(ωt)) which is treated classically and atom is
modeled as a two-level quantum system [30]. Adopting the REE
technique, the coupled set of equations for the amplitudesCg(t)
and Ce(t) are derived as

i�
dCg(t)

dt
= −eE0 〈ψg |r|ψe〉Ce(t) cos(t)e

−iω0t (A. 2)

i�
dCe(t)

dt
= −eE0 · 〈ψe |r|ψg〉Cg(t) cos(t)e

iω0t (A. 3)

this is the theoretical Rabi model applied in [18].
Notice that the Hamiltonian of (A.1) can be expressed as

H = H0 +H1 (A. 4)

with

H0 =
p2

2m
+ V (r) (A. 5)

H1 = −er ·E (r, t) (A. 6)

this coupling Hamiltonian can be defined as r · E Hamiltonian.
However, according to (2) in this paper, the atom-field Hamil-

tonian is expressed by the canonical momentum p and the vector
potential A instead of the expression (A. 4). According to [30],
(2) corresponds to a Hamiltonian

H = H0 +H2 (A.7)

with

H2 = − e

m
p ·A (r, t) (A.8)

and H0 is given in (A.5). Additionally, the A2 term which is
included in (A. 7) is ignored as its value is usually small when
compared to other terms.

According to the above analysis, the numerical solution sys-
tem in this paper is based on the p · A Hamiltonian. However,
the theoretical Rabi model corresponds to the r · E Hamiltonian.
The relation between these two Hamiltonians has been proved
to be related to the ratio of the atomic transition frequency (ω0)
and the EM field frequency (ω) (the detailed derivation is given
in [30, pp. 150–151]). For the case of exact resonance (Δ = 0),
the ratio R is equal to 1, i.e., there is no difference between these
two Hamiltonians. On the contrary, for the detuning case, they
are different, because the ratio R is no longer equal to 1. Hence,
in order to be consistent with the p · A Hamiltonian, the update
equations for Cg(t) and Ce(t) should be modified as

i�
dCg(t)

dt
= −eE0 · (R · 〈ψg |r|ψe〉)Ce(t) cos(t)e

−iω0t

(A.9)

i�
dCe(t)

dt
= −eE0 · (R · 〈ψe |r|ψg〉)Cg(t) cos(t)e

iω0t.

(A.10)

Equations (A.9) and (A.10) provide a theoretical Rabi model
which corresponds to the detuning case.
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