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SUMMARY

A new wavelet matrix transform (WMT), operated by lifting wavelet-like transform (LWLT), is applied
to the solution of matrix equations in computational electromagnetics. The method can speedup the
WMT without allocating auxiliary memory for transform matrices and can be implemented with the
absence of the fast Fourier transform. Furthermore, to handle the matrix equation of arbitrarily dimension,
a new in-space preprocessing technique based on LWLT is constructed to eliminate the limitation in
matrix dimension. Complexity analysis and numerical simulation show the superiority of the proposed
algorithm in saving CPU time. Numerical simulations for scattering analysis of differently shaped objects
are considered to validate the effectiveness of the proposed method. In particular, due to its generality,
the proposed preprocessing technique can be extended to other engineering areas and therefore can pave
a broad way for the application of the WMT. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The method of moments (MOM) has been widely used to solve integral equations arising in
electromagnetic (EM) scattering problems [1–3], and the integral equation algorithms are very
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convenient for solving the unbounded EM scattering problems with high accuracy [4], since the
radiation boundary conditions are satisfied automatically. However, the impedance matrix generated
by MOM is always a dense matrix, which often becomes computationally expensive and memory
consuming, especially when the electrical size of the object becomes large [5]. To overcome
this difficulty, various algorithms have been developed during the past decades, such as the fast
multipole method [6–10], the adaptive integral equation method [11], the conjugate gradient-fast
Fourier transform algorithm [12, 13], and the wavelet transform method [14–16].

Generally, wavelets have been applied to the solution of integral equations in two ways. One
is to be used directly as basis functions and test functions in MOM, including periodic wavelets
and intervallic wavelets, etc., which are introduced in [17, 18]. However, this approach requires
considerable computational work to evaluate the complex integrals. The other is to generate the
impedance matrix by MOM using conventional basis and testing functions, and then the discrete
wavelet transform (DWT) is applied to the impedance matrix to obtain a sparse matrix equation
in wavelet domain [19–21]. The computational cost is substantially reduced by implementing the
wavelet matrix transform (WMT) and a great amount of research papers about DWT have been
published by EM researchers. Unfortunately, the application of such WMT is always limited to
the matrix equation with the dimension of 2n×2n [22–25]. To satisfy this dimension condition,
only problems of special electrical size can be solved; otherwise, the number of unknowns in
the discretized integral equation is usually increased intentionally, which will result in additional
computational operations. Especially for three-dimensional (3-D) scattering problems, one can
hardly get a suitable number of unknowns.

In this paper, the improved lifting wavelet-like transform (LWLT) scheme is proposed to alleviate
this problem. The wavelet transform implemented by lifting algorithm presents an in-space matrix
transform method, which can speedup the transform by a factor of two without allocating memory
for constructing a wavelet transform matrix. Meanwhile, an arbitrarily dimensional technique is
proposed to complete the matrix transform properly.

2. THEORY

2.1. The fast lifting scheme for wavelet transform

As shown in Figure 1, a wavelet transform can be performed by a filter bank. The forward transform
uses a low-pass filter h̃ and a high-pass filter g̃ followed by subsampling. The inverse transform
is constructed by first performing an upsampling and then using two synthesis filters h and g.

Figure 1. The structure of the discrete wavelet transform.
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Figure 2. The polyphase matrices representation of wavelet transform.

To describe the special structure of the lifting scheme, the polyphase representation of a filter
F is introduced as

F(z)=Fe(z
2)+z−1Fo(z

2), F=h,g, h̃, g̃ (1)

in which e and o denote even component and odd component of the filters, respectively

Fe(z) =∑
k
F2k z

−k, Fo(z)=∑
k
F2k+1z

−k (2)

Fe(z
2) = F(z)+F(−z)

2
, Fo(z

2)= F(z)−F(−z)

2z−1
(3)

The polyphase matrix is defined as

P(z)=
(
he(z) ge(z)

ho(z) go(z)

)
(4)

the dual polyphase matrix P̃(z) can be defined similarly, and the forward transform shown in
Figure 1 can be represented by(

U (z)

V (z)

)
=
(
h̃e(z

−1) h̃o(z
−1)

g̃e(z
−1) g̃o(z

−1)

)(
Xe(z)

Xo(z)

)
= P̃(z−1)t

(
Xe(z)

Xo(z)

)
(5)

Similarly, the inverse transform can be implemented by P(z). As shown in Figure 2, the forward
transform in traditional DWT can be completed by subsampling even and odd samples followed
by the application of dual polyphase matrix, whereas the inverse transform first uses the polyphase
matrix and then an upsampling is applied. As can be seen from Figure 2, the information of both
the forward transform and the inverse transform is included in the polyphase matrix and its dual
matrix.

2.2. Specific steps for lifting wavelet-like matrix transform

Solved by MOM, the EM integral equation can always be reduced to a matrix equation by

ZI=V (6)

where Z is the impedance matrix with size N , I is the unknown current coefficients vector, and V
is the excitation vector.

By a WMT method, Equation (6) is transformed as

W̃ZWW̃I=W̃V (7)
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where W̃ and W are assumed to be N×N matrices with identity WW̃=W̃W=U, and for
orthogonal wavelets, W=W̃t . Set Z̃=W̃ZW, Ĩ=W̃I, and Ṽ=W̃V, one can get

Z̃Ĩ= Ṽ (8)

Then a threshold is applied to the elements of Z̃ to eliminate the small values to make it sparse.
The WMT shown in Equation (8) has attracted a great deal of attention in computational EM

field since it can greatly speedup the matrix-vector multiplication (MVM).
However, there are also some inherent pitfalls with the method mentioned above. On the one

hand, auxiliary memory must be allocated for transform matrices W̃ and W. On the other hand,
owing to the construction of transform matrices, the dimension of the matrix to be transformed
is always limited to 2n×2n , which seriously impede the application of this method. For example,
the total number of unknowns is increased intentionally to be 4096, though 2901 unknowns are
efficient for solving a specific problem.

In this section, the first pitfall is eliminated by the fast LWLT. And the second one will be
described and alleviated in the next section.

Daubechies and Sweldens have proved in [26] that given a complementary filter pair {h,g}
or {h̃, g̃}, then there always exist Laurent polynomials si (z) and ti (z) for 1�i�m and a nonzero
constant K so that

P(z) =
m∏
i=1

(
1 si (z)

0 1

)(
1 0

ti (z) 1

)⎛
⎝K 0

0
1

K

⎞
⎠ (9)

P̃(z) =
m∏
i=1

(
1 0

−si (z
−1) 1

)(
1 −ti (z

−1)

0 1

)⎛
⎝K 0

0
1

K

⎞
⎠ (10)

Without loss of generality, we take the db2 wavelet, for example, to illuminate the specific steps
to implement the WMT by lifting wavelet-like scheme. The filters h̃ and g̃ for it are defined as

h̃(z−1) = h0+h1z
−1+h2z

−2+h3z
−3 (11)

g̃(z−1) = −h3z
2+h2z

1−h1+h0z
−1 (12)

in which

h0= 1+√
3

4
√
2

, h1= 3+√
3

4
√
2

, h2= 3−√
3

4
√
2

, h3= 1−√
3

4
√
2

From the definition of polyphase matrix and its dual matrix, one can obtain

P̃(z−1)=
(
h̃e(z

−1) g̃e(z
−1)

h̃o(z
−1) g̃o(z

−1)

)
=
[
h0+h2z

−1 −h3z
1−h1

h1+h3z
−1 h2z

1+h0

]
(13)
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which can be factored as the product of matrices of the form

P̃(z−1)=
[
1 −√

3

0 1

]⎡⎢⎣
1 0

√
3

4
+

√
3−2

4
z−1 1

⎤
⎥⎦
[
1 z

0 1

]⎡⎢⎢⎢⎣
√
3+1√
2

0

0

√
3−1√
2

⎤
⎥⎥⎥⎦ (14)

and the transpose of it is given by

P̃(z−1)t =

⎡
⎢⎢⎢⎣

√
3+1√
2

0

0

√
3−1√
2

⎤
⎥⎥⎥⎦
[
1 0

z 1

]⎡⎢⎣1
√
3

4
+

√
3−2

4
z−1

0 1

⎤
⎥⎦
[

1 0

−√
3 1

]
(15)

Obviously, P(z) can be computed from the (perfect reconstruction) PR conditions as

P(z) = (P̃(z−1)t )−1

=
[

1 0
√
3 1

]⎡⎢⎣1 −
√
3

4
−

√
3−2

4
z−1

0 1

⎤
⎥⎦
[

1 0

−z 1

]⎡⎢⎢⎢⎣
√
3−1√
2

0

0

√
3+1√
2

⎤
⎥⎥⎥⎦ (16)

P(z−1)t =

⎡
⎢⎢⎢⎣

√
3−1√
2

0

0

√
3+1√
2

⎤
⎥⎥⎥⎦
[
1 −z−1

0 1

]⎡⎢⎣
1 0

−
√
3

4
−

√
3−2

4
z 1

⎤
⎥⎦
[
1

√
3

0 1

]
(17)

According to the structure shown in Figure 2 and Equation (5), and with the help of the factorization
of P̃(z−1)t in Equation (15), we can get the following implementations for the forward transform:

xe(l) = x(2l) (18a)

xo(l) = x(2l+1) (18b)

x(1)
e (l) = xe(l) (19a)

x(1)
o (l) = xo(l)−

√
3xe(l) (19b)

x(2)
e (l) = x(1)

e (l)+
√
3

4
x(1)
o (l)+

√
3−2

4
x(1)
o (l+1) (20a)

x(2)
o (l) = x(1)

o (l) (20b)

x(3)
e (l) = x(2)

e (l) (21a)

x(3)
o (l) = x(2)

o (l)+x(2)
e (l−1) (21b)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1124–1142
DOI: 10.1002/nme



SOLUTION OF ARBITRARILY DIMENSIONAL MATRIX EQUATION 1129

x̃e = x(4)
e (l)=

√
3+1√
2

x(3)
e (l) (22a)

x̃o = x(4)
o (l)=

√
3−1√
2

x(3)
o (l) (22b)

And for the impedance matrix, the left-hand forward transform (for the impedance matrix
Ẑ=W̃Z, for the vector transform Ĩ=W̃I or Ṽ=W̃V) will be performed by the following imple-
mentation steps:

Ẑ(0)
([

1 : N
2

]
, ·
)

=Z([2 :2 :N ], ·) (23a)

Ẑ(0)
([

N

2
+1 :N

]
, ·
)

=Z([1 :2 :N−1], ·) (23b)

Ẑ(1)
([

1 : N
2

]
, ·
)

= Ẑ(0)
([

1 : N
2

]
, ·
)

(24a)

Ẑ(1)
([

N

2
+1 :N

]
, ·
)

= Ẑ(0)
([

N

2
+1 :N

]
, ·
)

−√
3×Ẑ(0)

([
1 : N

2

]
, ·
)

(24b)

Ẑ(2)(1, ·) = Ẑ(1)(1, ·)+
√
3

4
Ẑ(1)

(
N

2
+1, ·

)
+

√
3−2

4
Ẑ(1)(N , ·) (25a)

Ẑ(2)
([

2 : N
2

]
, ·
)

= Ẑ(1)
([

2 : N
2

]
, ·
)

+
√
3

4
Ẑ(1)

([
N

2
+2 :N

]
, ·
)

+
√
3−2

4
Ẑ(1)

([
N

2
+1 :N−1

]
, ·
)

(25b)

Ẑ(2)
([

N

2
+1 :N

]
, ·
)

= Ẑ(1)
([

N

2
+1 :N

]
, ·
)

(25c)

Ẑ(3)
([

1 : N
2

]
, ·
)

= Ẑ(2)
([

1 : N
2

]
, ·
)

(26a)

Ẑ(3)(N , ·) = Ẑ(2)(N , ·)+Ẑ(3)(1, ·) (26b)

Ẑ(3)
([

N

2
+1 :N−1

]
, ·
)

= Ẑ(2)
([

N

2
+1 :N−1

]
, ·
)

+Ẑ(3)
([

2 : N
2

]
, ·
)

(26c)

Ẑ(4)
([

1 : N
2

]
, ·
)

=
√
3+1√
2

Ẑ(3)
([

1 : N
2

]
, ·
)

(27a)
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Figure 3. The global structure for multilevel forward transform.

Ẑ(4)
([

N

2
+1 :N

]
, ·
)

=
√
3−1√
2

Ẑ(3)
([

N

2
+1 :N

]
, ·
)

(27b)

Ẑ= Ẑ(4) (28)

in the above equations, N is the dimension of matrix Z, the periodic extension is applied in (25a)
and (26b).

To complete multilevel forward transform by lifting scheme, one just needs to replace N with
N (i) =N/2i (i=0,1,2, . . .) and repeat the operations according to Equations (23)–(28) until the
N (M) =N/2M is not a integer or N (M) is small enough (the transforms for N (M)�16 are ignored in
this paper). Finally, to illustrate the operations for multilevel forward transform, a global structure
is described in Figure 3.

The right-hand forward transform Z̃= ẐW can be operated by the factorization of P(z−1)t , which
is the dual matrix of P̃(z−1)t . The specific steps are similar to Equations (23)–(28) and are neglected
here for the sake of brevity. In the orthonormal wavelet case, P(z)= P̃(z), P(z−1)t = P̃(z−1)t , and
W=W̃−1=W̃t . The right-hand forward transform Z̃= Ẑ can also be completed by transposing Ẑ
firstly and then operating the transform to Ẑt by Equations (23)–(28).

Similarly, the inverse transform I=W̃−1Î=WÎ is operated by the factorization of P(z) in
Equation (16).

I(0)
(
1 : N

2

)
=

√
3−1√
2

Î
(
1 : N

2

)
(29a)

I(0)
(
N

2
+1 :N

)
=

√
3+1√
2

Î
(
N

2
+1 :N

)
(29b)

I(1)
(
1 : N

2

)
= I(0)

(
1 : N

2

)
(30a)

I(1)
(
N

2
+1 :N−1

)
= I(0)

(
N

2
+1 :N−1

)
−I(0)

(
2 : N

2

)
(30b)

I(1)(N ) = I(0)(N )−I(0)(1) (30c)
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I(2)(1) = I(1)(1)−
√
3

4
I(1)

(
N

2
+1

)
−

√
3−2

4
I(2)(N ) (31a)

I(2)
(
2 : N

2

)
= I(1)

(
2 : N

2

)
−

√
3

4
I(2)

(
N

2
+2 :N

)
−

√
3−2

4
I(2)

(
N

2
+1 :N−1

)
(31b)

I(2)
(
N

2
+1 :N

)
= I(1)

(
N

2
+1 :N

)
(31c)

I(3)
(
1 : N

2

)
= I(2)

(
1 : N

2

)
(32a)

I(3)
(
N

2
+1 :N

)
= I(2)

(
N

2
+1 :N

)
+√

3I(2)
(
1 : N

2

)
(32b)

I(1 :2 :N−1) = I(3)
(
N

2
+1 :N

)
(33a)

I(2 :2 :N ) = I(3)
(
1 : N

2

)
(33b)

the periodic extension is applied in (30c) and (31a).
To complete the corresponding multilevel inverse transform by lifting scheme, one just needs

to replace N with N (M−i) =N/2M−i (i=1,2, . . . ,M) and repeat the operations according to
Equations (29)–(33).

The physical meaning of the scheme is given below. For simplicity, we take the lifting scheme
of Harr wavelet for example, where we ignore the final step for orthogonality.

xo(l) = x(2l+1)

xe(l) = x(2l)

x̃o(l) = xo(l)−xe(l)

x̃e(l) = xe(l)+0.5 · x̃o(l)

The fluctuation term x̃o, which contains the minor information of the impedance matrix, can be
predicted by the difference of the odd and even components. The leading term x̃e, which contains
the major information and properties (mean, high-order moments, etc.) of the impedance matrix,
can be updated by the fluctuation term and the even component. The fluctuation of the impedance
matrix element leads to the fluctuation of currents. The noise-like current fluctuation is expected
to be very small and random, so that it plays little contribution for far-field computation. Based
on the explanation, we can set the fluctuation term x̃o to be zero, and we can also decompose the
leading term x̃e again by the multilevel implementation.
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Table I. The complexity comparison for Ẑ=W̃Z.

Wavelet type Haar db2 db4 db6 db8 CDF9/7

Wavelet-like transform 4N2 8N2 16N2 24N2 32N2 16N2

Lifting wavelet-like transform 3N2 5N2 12N2 14N2 20N2 6N2

Table II. CPU time for wavelet matrix transform (units: seconds).

db4 db8 CDF9/7

Wavelet type N =2048 N =4096 N =2048 N =4096 N =2048 N =4096

Wavelet-like transform 2.47 9.21 4.71 18.9 2.39 9.07
Lifting wavelet-like transform 1.71 6.83 2.84 11.3 0.90 3.44

2.3. Computational complexity and CPU time comparison

The computation complexity evaluation for the wavelet-like transforms used for preprocessing a
matrix is now investigated. The 1-D wavelet transform of a vector can be completed by a number
of multiplications given by

qN×(1+ 1
2 + 1

4 +·· ·)=2qN (34)

where q is the length of the filter, N is the size of the vector. For an N×N matrix the total
complexity for Ẑ=W̃Z will be described by 2qN 2.

The number of operations for the LWLT scheme is

p
N

2

(
1+ 1

2
+ 1

4
+·· ·

)
= pN (35)

where p is the number of multiplications included in the polyphase matrix. For an N×N matrix
the total complexity for Ẑ=W̃Z will be computed by pN 2.

The complexity of the operation for Ẑ=W̃Z by several kinds of wavelet is shown in Table I,
and the comparison of CPU time consumed for WMT is illuminated in Table II. From this we can
conclude that the LWLT scheme is faster than the wavelet-like transform, especially for the wavelet
with high varnishing moments and biorthogonal wavelet such as Cohen Daubechies Feauveau 9/7
(CDF9/7), since the factorization of polyphase matrix for wavelet with high varnishing moments
can be optimized and the multiplications in CDF9/7 can be merged by distributive law.

In addition, the reason why the lifting scheme is faster than the traditional wavelet-like transform
can be traced to a classic mathematical method. For example, a polynomial f (x)= x3−6x2+
11x−6 can be factorized into a nested representation f (x)=6+(11+(−6+x)x)x .

2.4. Algorithm for solution of arbitrarily dimensional matrix equation

To alleviate the limitation in the dimension of impedance matrix Z, a novel method in conjugation
with the LWLT is proposed in this section.
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From the specific steps for lifting wavelet-like matrix transform described in the previous section,
we can see that the LWLT comes to a standstill at the M th level when N (M) cannot be divided
by 2. For the sake of convenience, we describe the zeroth-level LWLT for matrix Z (LWLTM) as

Z̃(0) =LWLTM(0)(Z) (36a)

the zeroth-level LWLT for vector I or V (LWLTV) is given as

Ĩ(0) =LWLTV(0)(I), Ṽ(0) =LWLTV(0)(V) (36b)

Then the matrix equation in Equation (6) is transformed to be

Z̃(0)Ĩ(0) = Ṽ(0) (36c)

and I will be solved by the inverse LWLT transform (ILWLT)

I= ILWLT(0)(Ĩ(0)) (36d)

Generally, the matrix equation after i−1th-level LWLT is given by

Z̃(i−1)Ĩ(i−1) = Ṽ(i−1) (37)

the i th-level LWLT will be given as

Z̃(i) = LWLTM(i)(Z̃(i−1)) (38a)

Ĩ(i) = LWLTV(i)(Ĩ(i−1)), Ṽ(i) =LWLTV(i)(Ṽ(i−1)) (38b)

and the matrix equation in Equation (6) is transformed to be

Z̃(i)Ĩ(i) = Ṽ(i) (38c)

Ĩ(i−1) will be obtained by

Ĩ(i−1) = ILWLT(i)(Ĩ(i)) (38d)

When N (i)/2 is not a integer, the i+1th-level LWLT cannot be carried out any further. To
handle the i+1th-level LWLT, we introduce a new matrix

Z̄(i) =
(

�Km×m 0

0 Z̃(i)

)
(39a)

V̄(i) =
(

�Cm×1

Ṽ(i)

)
(39b)

Km×m =

⎛
⎜⎜⎜⎜⎜⎝

1

1

. . .

1

⎞
⎟⎟⎟⎟⎟⎠

m×m

, Cm×1=

⎛
⎜⎜⎜⎜⎜⎝

1

1

...

1

⎞
⎟⎟⎟⎟⎟⎠

m×1

(39c)
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The integer m is an odd number and usually chosen to be 1. To make the condition number
unchanged and to avoid the truncation error, � and � are always computed by

� = trace(Z̃(i))/N (39d)

� =mean(Ṽ(i)) (39e)

Then the matrix equation will be given by

Z̄(i)Ī(i) = V̄(i) (39f)

Obviously, Ĩ(i) is included in Ī(i), and can be obtained by deleting the first element in Ī(i).
By applying the LWLT to the new equation in (39f), the i+1th-level LWLT can be written as

Z̃(i+1)Ĩ(i+1) = Ṽ(i+1) (40a)

Z̃(i+1) =LWLTM(i+1)(Z̄(i)) (40b)

Ṽ(i+1) =LWLTV(i+1)(V̄(i)) (40c)

when Ĩ(i+1) is solved, Ī(i) will be obtained by Ī(i) = ILWLT(i+1)(Ĩ(i+1)). Delete the first element
in Ī(i), one will obtain Ĩ(i), and I will be obtained by the inverse LWLT to Ĩ(i) at different levels
(ILWLT(i), ILWLT(i−1), . . . , ILWLT(0)).

The technique described above is named as ‘arbitrary dimension WMT method’, and the
following theorem will be demonstrated.

Theorem
The solution of the matrix equation cannot be influenced by the application of ‘arbitrary dimension
WMT method’ at different levels.

For a given matrix Z, the WMT is applied to it at different levels ({0,1,2, . . . ,M−1}). Let
{i1, i2, . . . , iL} be a subsequence of {0,1,2, . . . ,M−1}, at which the arbitrary dimension WMT
method is applied.

Ī(iL ) is computed by the inverse LWLT

Ī(iL ) = ILWLT(iL+1)(Ĩ(iL+1))

Ĩ(iL+1) = ILWLT(iL+2)(Ĩ(iL+2))

...

Ĩ(M−2) = ILWLT(M−1)(Ĩ(M−1))

Ĩ(iL ) is obtained by deleting the first element in Ī(iL ). And Ī(iL−1) will be computed by

Ī(iL−1) = ILWLT(iL−1+1)(Ĩ(iL−1+1))

Ĩ(iL−1+1) = ILWLT(iL−1+2)(Ĩ(iL−1+2))

...

Ĩ(iL−1) = ILWLT(iL )(Ĩ(iL ))

Ĩ(i1) can be obtained by repeating the above operations, and finally I is obtained.
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3. NUMERICAL RESULTS

3.1. Two-dimensional examples

As the first example, an infinite perfectly electrical conducting (PEC) circular cylinder with radius
of 15 wavelengths is considered. The cylinder is excited by a TM plane wave at an angle of
incident �i =0. The surface of the circular cylinder is discretized with 1257 pulses and combined
field integral equation (CFIE) is used. The Daubechies wavelet with 8 varnishing moments (db8)
is adopted to operate the WMT. The arbitrary dimension WMT method is applied at the levels
{0,1,2,4}, which finally results into a 1261×1261 matrix shown in Figure 4. The sparsity of the
wavelet-domain impedance matrix, which is defined as its percentage content of nonzero elements,

Figure 4. The wavelet-domain impedance matrix for the PEC circular cylinder.
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Figure 5. The surface electrical current of the PEC circular cylinder.
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Figure 6. The wavelet-domain impedance matrix for the PEC square cylinder.
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Figure 7. The surface electrical current of the PEC square cylinder.

is 4.79%, and the surface electrical current is compared with that of the analytical solution method
as shown in Figure 5.

As can be seen from Figure 6, the wavelet-domain impedance matrix for an infinite PEC square
cylinder with sparsity of 5.26% is presented after clipping operation. The side length of it is chosen
to be l=11�. CFIE is used to generate the impedance matrix, and db8 wavelet is applied to get the
impedance matrix in wavelet domain. The surface of the cylinder is discretized with 810 pulses,
with the arbitrary dimension WMT method applied at levels {0,2,4}, a 813×813 wavelet-domain
impedance matrix is obtained. The surface electrical current is compared with that obtained by the
direct solution method as shown in Figure 7.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:1124–1142
DOI: 10.1002/nme



SOLUTION OF ARBITRARILY DIMENSIONAL MATRIX EQUATION 1137

Figure 8. The wavelet-domain impedance matrix for the dielectric circular cylinder.
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Figure 9. The normalized scattering width of the dielectric circular cylinder.

Figure 8 shows a wavelet-domain impedance matrix for a dielectric circular cylinder, the sparsity
of which is 6.42%. The electrical field integral equation is solved byMOM. The object is illuminated
by a TM plane wave with a frequency f =300MHz, and the parameter of it can be described as
εr =4, �r =2, with radius of 4m. The surface of the object is discretized with 725 pulses, which
results into a 1450×1450 matrix. As the db4 wavelet is used to operate the WMT, the arbitrary
dimension WMT method applied at levels {1,2,4,6}, a 1454×1454 wavelet-domain impedance
matrix is obtained. The normalized scattering width is computed and compared with that of the
direct solution method as shown in Figure 9, and the relative root mean-square error is 1.13%.

As the final 2-D example, a composite inhomogeneous dielectric rectangular cylinder is shown
in Figure 10(a). The relative permittivity of the top and bottom parts is 4 and 2, respectively.
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Figure 10. The scattering analysis of a composite inhomogeneous dielectric rectangular cylinder:
(a) the modeling of the object; (b) the impedance matrix in wavelet-domain; and (c) the

normalized scattering width of the object.

By using the LWLT scheme (db4) in conjunction with the Poggio, Miller, Chang, Harrington,
and Wu (PMCHW) formulation, the normalized scattering width is computed and compared with
that obtained by directly solving a volume integral equation. After the application of the arbitrary
dimension WMT method at levels {2,3,4,5,6}, the dimension of the wavelet-domain impedance
matrix is increased to be 1545×1545 from 1540×1540.

3.2. 3-D examples

In Figure 11, a PEC sphere with radius of one wavelength is considered, which is illuminated by
a plane wave propagating in the z direction and E-polarized in the x direction. The surface of the
object is discretized into 1620 triangular elements resulting in 2430 unknown current coefficients.
The bistatic radar cross section (RCS) is calculated and the result is compared with that obtained
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Figure 11. The E-plane RCS of a PEC sphere.
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Figure 12. The E-plane RCS of a PEC cube.

by Mie series. The arbitrary dimension WMT method is applied at levels {1,7}, which results in
a 2432×2432 wavelet-domain impedance matrix.

A PEC cube with side length of 1.1� is considered as another 3-D PEC example. With the surface
discretized into 1452 triangular elements, a 2178×2178 matrix equation is generated for solution.
The arbitrary dimension WMT method is applied at each level after zeroth level completed by the
usual lifting WMT. As shown in Figure 12, the bistatic RCS is calculated and compared with that
of the direct solution method.

In the two 3-D examples shown in Figures 11 and 12, the EFIE is built to get the solution of
the surface current. To consider the effect of the proposed WMT method for the impedance matrix
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Figure 13. The E-plane RCS of a finite circular cylinder.

generated from CFIE, a finite circular cylinder is considered. The PEC circular cylinder is parallel
to the y-axis with its diameter assumed to be 1� and height to be 2�. When it is illuminated by a
plane wave propagating in the z direction and E-polarized in the x direction, the bistatic RCS is
computed as shown in Figure 13. The impedance matrix generated from CFIE is a 3510×3510
matrix, which is finally transformed into a 3513×3513 wavelet-domain impedance matrix by the
application of the arbitrary dimension WMT at levels {1,3,6}.

Finally, to validate the application of the proposed method to PMCHW equation for 3-D homoge-
neous dielectric objects, a homogeneous dielectric sphere with radius of 0.5m, which is illuminated
by a 300MHz plane wave, is considered. The surface of the object is discretized into 1280 trian-
gular elements, and the total number of the unknown currents coefficients is 3840, which makes
a special example because it can be directly operated by the usual LWLT method without the use
of the arbitrary dimension WMT. The relative permittivity and relative permeability are set to be
εr =2−2 j , �r =1. As shown in Figure 14, the E-plane RCS is computed and agrees well with
that of the analytical solution.

All the computations reported above have been carried out on a Personal Computer with Pentium
IV-2.66GHz processor and 1GB RAM. The code has been written in Microsoft Visual C++ 6.0.

When db4 is used for 3-D objects, the sparsity of the wavelet-domain impedance matrix and
the CPU time consumed is shown in Table III, from which one can conclude that the proposed
method can greatly speedup the MVM.

4. CONCLUSIONS

A new preprocessing technique, which is completed by LWLT method in conjugation with
an arbitrarily dimension operation, is proposed to speedup the solution of a matrix equation.
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Figure 14. The E-plane RCS of a homogeneous dielectric sphere.

Table III. Sparsity of the wavelet-domain impedance matrix for 3-D objects and the CPU time consumed
for the solution of the impedance matrix equation.

LWLT-MOMMOM
Examples Sparsity (%) iteration time (s) Time for wavelet matrix transform (s) Iteration time (s)

Figure 11 34.81 38.4 2.4 15.86
Figure 12 33.04 51.8 1.9 16.72
Figure 13 26.8 62.5 4.8 18.43
Figure 14 32.8 61.7 5.7 24.18

As compared with the traditional wavelet matrix method, the proposed method is an in-place
method, which can speedup the wavelet transform by a factor of two without the help of FFT, and
can be applied to overcome the limitation in the matrix dimension.

Special issues such as the application of lifting wavelet packet transform to CEM, further
improving the sparsity of impedance matrix, and the application of the proposed method to fast
algorithms can be the topics for future work. In particular, owing to its generality in handling a
matrix equation, the proposed technique can be extended to other engineering computation areas
if there is a matrix equation, which will pave a broad way for the application of the WMT.
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